Introduction to Econometrics (4 ${ }^{\text {th }}$ Edition)

by

James H. Stock and Mark W. Watson

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 16

(This version September 14, 2018)
16.1. (a) See the table below. β_{i} is the dynamic multiplier. With the 25% oil price jump, the predicted effect on output growth for the i th quarter is $25 \beta_{i}$ percentage points.

Period ahead (\boldsymbol{i})	Dynamic multiplier $\left(\boldsymbol{\beta}_{\boldsymbol{i}}\right)$	Predicted effect on output growth $\left(\mathbf{2 5} \boldsymbol{\beta}_{\boldsymbol{i}}\right)$	$\mathbf{9 5 \%}$ confidence interval 25 $\times\left[\boldsymbol{\beta}_{\boldsymbol{i}} \pm\right.$ $\left.\mathbf{1 . 9 6 S E}\left(\boldsymbol{\beta}_{\boldsymbol{i}}\right)\right]$
0	-0.006	-0.15	$[-0.787,0.487]$
1	-0.014	-0.35	$[-0.889,0.189]$
2	-0.020	-0.5	$[-0.990,-0.010]$
3	-0.024	-0.6	$[-1.041,-0.159]$
4	-0.036	-0.9	$[-1.488,-0.312]$
5	-0.013	-0.325	$[-0.668,0.018]$
6	0.005	0.125	$[-0.365,0.615]$
7	-0.007	-0.175	$[-0.567,0.217]$
8	0.005	0.125	$-[0.267,0.517]$

(b) The 95% confidence interval for the predicted effect on output growth for the i 'th quarter from the 25% oil price jump is $25 \times$ [$\left.\beta_{i} \pm 1.96 \mathrm{SE}\left(\beta_{i}\right)\right]$ percentage points. The confidence interval is reported in the table in (a).
(c) The predicted cumulative change in GDP growth over eight quarters is

$$
25 \times(-0.006-0.014 \ldots+0.005)=25 \times(-0.110)=-2.75 \%
$$

(d) The 1% critical value for the F-test is 2.407 . Since the HAC F-statistic 5.45 is larger than the critical value, we reject the null hypothesis that all the coefficients are zero at the 1% level.
16.3. The dynamic causal effects are for experiment A. The regression in exercise 16.1 does not control for interest rates, so that interest rates are assumed to evolve in their "normal pattern" given changes in oil prices.

16.5. Substituting

$$
\begin{aligned}
X_{t} & =\Delta X_{t}+X_{t-1}=\Delta X_{t}+\Delta X_{t-1}+X_{t-2} \\
& =\cdots \\
& =\Delta X_{t}+\Delta X_{t-1}+\cdots+\Delta X_{t-p+1}+X_{t-p}
\end{aligned}
$$

into Equation (16.4), we have

$$
\begin{aligned}
Y_{t}= & \beta_{0}+\beta_{1} X_{t}+\beta_{2} X_{t-1}+\beta_{3} X_{t-2}+\cdots+\beta_{r+1} X_{t-r}+u_{t} \\
= & \beta_{0}+\beta_{1}\left(\Delta X_{t}+\Delta X_{t-1}+\cdots+\Delta X_{t-r+1}+X_{t-r}\right) \\
& +\beta_{2}\left(\Delta X_{t-1}+\cdots+\Delta X_{t-r+1}+X_{t-r}\right) \\
& +\cdots+\beta_{r}\left(\Delta X_{t-r+1}+X_{t-r}\right)+\beta_{r+1} X_{t-r}+u_{t} \\
= & \beta_{0}+\beta_{1} \Delta X_{t}+\left(\beta_{1}+\beta_{2}\right) \Delta X_{t-1}+\left(\beta_{1}+\beta_{2}+\beta_{3}\right) \Delta X_{t-2} \\
& +\cdots+\left(\beta_{1}+\beta_{2}+\cdots+\beta_{r}\right) \Delta X_{t-r+1} \\
& +\left(\beta_{1}+\beta_{2}+\cdots+\beta_{r}+\beta_{r+1}\right) X_{t-r}+u_{t} .
\end{aligned}
$$

Comparing the above equation to Equation (16.7), we see
$\delta_{0}=\beta_{0}, \delta_{1}=\beta_{1}, \delta_{2}=\beta_{1}+\beta_{2}, \delta_{3}=\beta_{1}+\beta_{2}+\beta_{3}, \ldots$, and $\delta_{r+1}=\beta_{1}+\beta_{2}+\ldots+\beta_{r+1}$.

16.7. Write $u_{t}=\sum_{i=0}^{\infty} \phi_{1}^{i} \tilde{u}_{t-i}$

(a) Because $E\left(\tilde{u}_{i} \mid X_{t}\right)=0$ for all i and $t, E\left(u_{i} \mid X_{t}\right)=0$ for all i and t, so that X_{t} is strictly exogenous.
(b) $X_{t}=\tilde{u}_{t+1}$. Note that $E\left(u_{t} \mid X_{t}\right)=E\left(u_{t} \mid \tilde{u}_{t+1}\right)=0$. But $E\left(u_{t} \mid X_{t}, X_{t-1}, X_{t-2}, \ldots\right)=$ $E\left(u_{t} \mid \tilde{u}_{t+1}, \tilde{u}_{t}, \tilde{u}_{t-1}, ..\right)=u_{t}$, so X_{t} is not exogenous (and therefore not strictly exogenous).
16.9. (a) This follows from the material around equation (3.2).
(b) Quasi differencing the equation yields $Y_{t}-\phi_{1} Y_{t-1}=\left(1-\phi_{1}\right) \beta_{0}+u_{t}$, and the GLS estimator of $\left(1-\phi_{1}\right) \beta_{0}$ is the mean of $Y_{t}-\phi_{1} Y_{t-1}=\frac{1}{T-1} \sum_{t=2}^{T}\left(Y_{t}-\phi_{1} Y_{t-1}\right)$. Dividing by $\left(1-\phi_{1}\right)$ yields the GLS estimator of β_{0}.
(c) This is a rearrangement of the result in (b).
(d) Write $\hat{\beta}_{0}=\frac{1}{T} \sum_{t=1}^{T} Y_{t}=\frac{1}{T}\left(Y_{T}+Y_{1}\right)+\frac{T-1}{T} \frac{1}{T-1} \sum_{t=2}^{T-1} Y_{t}$, so that $\hat{\beta}_{0}-\hat{\beta}_{0}^{G L S}=\frac{1}{T}\left(Y_{T}+Y_{1}\right)-\frac{1}{T} \frac{1}{T-1} \sum_{t=2}^{T-1} Y_{t}-\frac{1}{1-\phi} \frac{1}{T-1}\left(Y_{T}-Y_{1}\right)$ and the variance is seen to be proportional to $\frac{1}{T^{2}}$.
16.11
(a) Follows directly from multiplying the terms.
(b) If $|\phi| \geq 1$, the coefficients in $b(\mathrm{~L})$ do not converge to zero.

