# Introduction to Econometrics (4 ${ }^{\text {th }}$ Updated Edition) 

> by

James H. Stock and Mark W. Watson

## Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 19

(This version September 18, 2018)
19.1. (a) The regression in the matrix form is

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{U}
$$

with

$$
\begin{gathered}
\mathbf{Y}=\left(\begin{array}{c}
\text { TestScore }_{1} \\
\text { TestScore }_{2} \\
\vdots \\
\text { TestScore }_{n}
\end{array}\right), \quad \mathbf{X}=\left(\begin{array}{ccc}
1 & \text { Income }_{1} & \text { Income }_{1}^{2} \\
1 & \text { Income }_{2} & \text { Income }_{2}^{2} \\
\vdots & \vdots & \vdots \\
1 & \text { Income }_{n} & \text { Income }_{n}^{2}
\end{array}\right) \\
\mathbf{U}=\left(\begin{array}{c}
U_{1} \\
U_{2} \\
\vdots \\
U_{n}
\end{array}\right), \quad \beta=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right) .
\end{gathered}
$$

(b) The null hypothesis is

$$
\mathbf{R} \boldsymbol{\beta}=\mathbf{r}
$$

versus $\mathbf{R} \boldsymbol{\beta} \neq \mathbf{r}$ with

$$
\mathbf{R}=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \text { and } \mathbf{r}=0 .
$$

The heteroskedasticity-robust $F$-statistic testing the null hypothesis is

$$
F=(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r})^{\prime}\left[\mathbf{R} \hat{\boldsymbol{\Sigma}}_{\hat{\boldsymbol{\beta}}} \mathbf{R}^{\prime}\right]^{-1}(\mathbf{R} \hat{\boldsymbol{\beta}}-\mathbf{r}) / q
$$

With $q=1$. Under the null hypothesis,

$$
F \xrightarrow{d} F_{q, \infty} .
$$

We reject the null hypothesis if the calculated $F$-statistic is larger than the critical value of the $F_{q, \infty}$ distribution at a given significance level.
19.3. (a)

$$
\begin{aligned}
\operatorname{Var}(Q) & =E\left[\left(Q-\mu_{Q}\right)^{2}\right] \\
& =E\left[\left(Q-\mu_{Q}\right)\left(Q-\mu_{Q}\right)^{\prime}\right] \\
& =E\left[\left(\mathbf{c}^{\prime} \mathbf{W}-\mathbf{c}^{\prime} \boldsymbol{\mu}_{\mathbf{w}}\right)\left(\mathbf{c}^{\mathbf{W}} \mathbf{W}-\mathbf{c}^{\prime} \boldsymbol{\mu}_{\mathbf{w}}\right)^{\prime}\right] \\
& =\mathbf{c}^{\prime} E\left[\left(\mathbf{W}-\boldsymbol{\mu}_{\mathbf{W}}\right)\left(\mathbf{W}-\mu_{\mathbf{W}}\right)^{\prime}\right] \mathbf{c} \\
& =\mathbf{c}^{\prime} \operatorname{var}(\mathbf{W}) \mathbf{c}=\mathbf{c}^{\prime} \mathbf{\Sigma}_{\mathbf{w}} \mathbf{c}
\end{aligned}
$$

where the second equality uses the fact that $Q$ is a scalar and the third equality uses the fact that $\mu_{Q}=\mathbf{c}^{\prime} \boldsymbol{\mu}_{\mathbf{w}}$.
(b) Because the covariance matrix $\sum_{\mathrm{W}}$ is positive definite, we have $\mathbf{c}^{\prime} \Sigma_{\mathbf{w}} \mathbf{c}>0$ for every non-zero vector from the definition. Thus, $\operatorname{var}(Q)>0$. Both the vector $\mathbf{c}$ and the matrix $\sum_{\mathrm{w}}$ are finite, so $\operatorname{var}(Q)=\mathbf{c}^{\prime} \sum_{\mathrm{w}} \mathbf{c}$ is also finite. Thus, $0<\operatorname{var}(Q)$ $<\infty$.
19.5. $\mathbf{P}_{\mathbf{X}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right){ }^{1} \mathbf{X}^{\prime}, \mathbf{M}_{\mathbf{X}}=\mathbf{I}_{n}-\mathbf{P}_{\mathbf{X}}$.
(a) $\mathbf{P}_{\mathbf{X}}$ is idempotent because

$$
P_{X} P_{X}=\boldsymbol{X}(\boldsymbol{X} \boldsymbol{X})^{-1} \boldsymbol{X} \boldsymbol{X}(\boldsymbol{X} \boldsymbol{X})^{-1} \boldsymbol{X}^{\prime}=\boldsymbol{X}(\boldsymbol{X} \boldsymbol{X})^{-1} \boldsymbol{X}^{\prime \wedge}=\boldsymbol{P}_{X}
$$

$\mathbf{M}_{\mathbf{X}}$ is idempotent because

$$
\begin{aligned}
\mathbf{M}_{\mathbf{x}} \mathbf{M}_{\mathbf{x}} & =\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{x}}\right)\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{x}}\right)=\mathbf{I}_{n}-\mathbf{P}_{\mathbf{x}}-\mathbf{P}_{\mathbf{x}}+\mathbf{P}_{\mathbf{x}} \mathbf{P}_{\mathbf{x}} \\
& =\mathbf{I}_{n}-2 \mathbf{P}_{\mathbf{x}}+\mathbf{P}_{\mathbf{x}}=\mathbf{I}_{\mathbf{n}}-\mathbf{P}_{\mathbf{x}}=\mathbf{M}_{\mathbf{x}}
\end{aligned}
$$

$\mathbf{P}_{\mathbf{X}} \mathbf{M}_{\mathbf{X}}=0_{n x n}$ because

$$
\mathbf{P}_{\mathbf{x}} \mathbf{M}_{\mathbf{X}}=\mathbf{P}_{\mathbf{x}}\left(\mathbf{I}_{\mathrm{n}}-\mathbf{P}_{\mathbf{x}}\right)=\mathbf{P}_{\mathbf{x}}-\mathbf{P}_{\mathbf{x}} \mathbf{P}_{\mathbf{x}}=\mathbf{P}_{\mathbf{x}}-\mathbf{P}_{\mathbf{x}}=0_{n \times n}
$$

(b) Because $\hat{\beta}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$, we have

$$
\hat{\mathbf{Y}}=\mathbf{X} \hat{\boldsymbol{\beta}}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}=\mathbf{P}_{\mathbf{X}} \mathbf{Y}
$$

which is Equation (19.27). The residual vector is

$$
\hat{\mathbf{U}}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{P}_{\mathbf{x}} \mathbf{Y}=\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{x}}\right) \mathbf{Y}=\mathbf{M}_{\mathbf{x}} \mathbf{Y} .
$$

We know that $\mathbf{M}_{\mathbf{X}} \mathbf{X}$ is orthogonal to the columns of $\mathbf{X}$ :

$$
\boldsymbol{M}_{X} X=\left(\boldsymbol{I}_{\boldsymbol{n}}-\boldsymbol{P}_{X}\right) \boldsymbol{X}=\boldsymbol{X}=\boldsymbol{P}_{X} \boldsymbol{X}=\boldsymbol{X}+\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{X} \boldsymbol{X}=\boldsymbol{X}-\boldsymbol{X}=\boldsymbol{0}
$$

so the residual vector can be further written as

$$
\hat{\mathbf{U}}=\mathbf{M}_{\mathbf{x}} \mathbf{Y}=\mathbf{M}_{\mathbf{X}}(\mathbf{X} \boldsymbol{\beta}+\mathbf{U})=\mathbf{M}_{\mathbf{x}} \mathbf{X} \boldsymbol{\beta}+\mathbf{M}_{\mathbf{x}} \mathbf{U}=\mathbf{M}_{\mathbf{X}} \mathbf{U}
$$

which is Equation (19.28).
(c) From the hint, $\operatorname{rank}\left(P_{X}\right)=\operatorname{trace}\left(P_{X}\right)=\operatorname{trace}\left[X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]=\operatorname{trace}\left[\left(X^{\prime} X\right)^{-1} X^{\prime} X\right]=$ $\operatorname{trace}\left(I_{k+1}\right)=k+1$. The result for $M_{X}$ follows from a similar calculation.
19.7. (a) We write the regression model, $Y_{i}=\beta_{1} X_{i}+\beta_{2} W_{i}+u_{i}$, in the matrix form as

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}_{1}+\boldsymbol{W} \boldsymbol{\beta}_{2}+\boldsymbol{U}
$$

with

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \mathbf{X}=\left(\begin{array}{c}
X_{1} \\
X_{2} \\
\vdots \\
X_{n}
\end{array}\right), \quad \mathbf{W}=\left(\begin{array}{c}
W_{1} \\
W_{2} \\
\vdots \\
W_{n}
\end{array}\right), \quad \mathbf{U}=\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right)
$$

The OLS estimator is

$$
\left.\begin{array}{rl}
\binom{\hat{\beta}_{1}}{\hat{\beta}_{2}} & =\left(\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{X} & \mathbf{W}^{\prime} \mathbf{W}
\end{array}\right)^{-1}\binom{\mathbf{X}^{\prime} \mathbf{Y}}{\mathbf{W}^{\prime} \mathbf{Y}} \\
& =\binom{\beta_{1}}{\beta_{2}}+\left(\begin{array}{cc}
\mathbf{X}^{\prime} \mathbf{X} & \mathbf{X}^{\prime} \mathbf{W} \\
\mathbf{W}^{\prime} \mathbf{X} & \mathbf{W}^{\prime} \mathbf{W}
\end{array}\right)^{-1}\binom{\mathbf{X}^{\prime} \mathbf{U}}{\mathbf{W}^{\prime} \mathbf{U}} \\
& =\binom{\beta_{1}}{\beta_{2}}+\left(\begin{array}{cc}
\frac{1}{n} \mathbf{X}^{\prime} \mathbf{X} & \frac{1}{n} \mathbf{X}^{\prime} \mathbf{W} \\
\frac{1}{n} \mathbf{W}^{\prime} \mathbf{X} & \frac{1}{n} \mathbf{W}^{\prime} \mathbf{W}
\end{array}\right)^{-1}\binom{\frac{1}{n} \mathbf{X}^{\prime} \mathbf{U}}{\frac{1}{n} \mathbf{W}^{\prime} \mathbf{U}} \\
& =\binom{\beta_{1}}{\beta_{2}}+\left(\begin{array}{cc}
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} & \frac{1}{n} \sum_{i=1}^{n} X_{i} W_{i} \\
\frac{1}{n} \sum_{i=1}^{n} W_{i} X_{i} & \frac{1}{n} \sum_{i=1}^{n} W_{i}^{2}
\end{array}\right)^{\frac{1}{n} \sum_{i=1}^{n} X_{i} u_{i}} \\
\frac{1}{n} \sum_{i=1}^{n} W_{i} u_{i}
\end{array}\right) .
$$

By the law of large numbers $\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} \xrightarrow{p} E\left(X^{2}\right) ; \frac{1}{n} \sum_{i=1}^{n} W_{i}^{2} \xrightarrow{p} E\left(W^{2}\right)$;
$\frac{1}{n} \sum_{i=1}^{n} X_{i} W_{i} \xrightarrow{p} E(X W)=0$ (because $X$ and $W$ are independent with means of zero); $\frac{1}{n} \sum_{i=1}^{n} X_{i} u_{i} \xrightarrow{p} E(X u)=0$ (because $X$ and $u$ are independent with means of zero); $\frac{1}{n} \sum_{i=1}^{n} X_{i} u_{i} \xrightarrow{p} E(X u)=0$ Thus

$$
\begin{aligned}
& \binom{\hat{\beta}_{1}}{\hat{\beta}_{2}} \xrightarrow{p}\binom{\beta_{1}}{\beta_{2}}+\left(\begin{array}{cc}
E\left(X^{2}\right) & 0 \\
0 & E\left(W^{2}\right)
\end{array}\right)^{-1}\binom{0}{E(W u)} \\
= & \binom{\beta_{1}}{\beta_{2}+\frac{E(W u)}{E\left(W^{2}\right)}} .
\end{aligned}
$$

(b) From the answer to (a) $\hat{\beta}_{2} \xrightarrow{p} \beta_{2}+\frac{E(W u)}{E\left(W^{2}\right)} \neq \beta_{2}$ if $E(W u)$ is nonzero.
(c) Consider the population linear regression $u_{i}$ onto $W_{i}$ :

$$
u_{i}=\lambda W_{i}+a_{i}
$$

where $\lambda=E(W u) / E\left(W^{2}\right)$. In this population regression, by construction, $E(a W)=0$. Using this equation for $u_{i}$ rewrite the equation to be estimated as

$$
\begin{aligned}
Y_{i} & =X_{i} \beta_{1}+W_{i} \beta_{2}+u_{i} \\
& =X_{i} \beta_{1}+W_{i}\left(\beta_{2}+\lambda\right)+a_{i} \\
& =X_{i} \beta_{1}+W_{i} \theta+a_{i}
\end{aligned}
$$

where $\theta=\beta_{2}+\lambda$. A calculation like that used in part (a) can be used to show that

$$
\begin{aligned}
\binom{\sqrt{n}\left(\hat{\beta}_{1}-\beta_{1}\right)}{\sqrt{n}\left(\hat{\beta}_{2}-\theta\right)}= & \left(\begin{array}{cc}
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} & \frac{1}{n} \sum_{i=1}^{n} X_{i} W_{i} \\
\frac{1}{n} \sum_{i=1}^{n} W_{i} X_{i} & \frac{1}{n} \sum_{i=1}^{n} W_{i}^{2}
\end{array}\right)^{-1}\binom{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i} a_{i}}{\frac{1}{\sqrt{n}} \sum_{i=1}^{n} W_{u} a_{i}} \\
& \xrightarrow{d}\left(\begin{array}{cc}
E\left(X^{2}\right) & 0 \\
0 & E\left(W^{2}\right)
\end{array}\right)^{-1}\binom{S_{1}}{S_{2}}
\end{aligned}
$$

where $S_{1}$ is distributed $N\left(0, \sigma_{a}^{2} E\left(X_{2}\right)\right)$. Thus by Slutsky's theorem

$$
\sqrt{n}\left(\hat{\beta}_{1}-\beta_{1}\right) \xrightarrow{d} N\left(0, \frac{\sigma_{a}^{2}}{E\left(X^{2}\right)}\right)
$$

Now consider the regression that omits $W$, which can be written as:

$$
Y_{i}=X_{i} \beta_{1}+d_{i}
$$

where $d_{i}=W_{i} \theta+a_{i}$. Calculations like those used above imply that

$$
\sqrt{n}\left(\hat{\beta}_{1}^{r}-\beta_{1}\right) \xrightarrow{d} N\left(0, \frac{\sigma_{d}^{2}}{E\left(X^{2}\right)}\right) .
$$

Since $\sigma_{d}^{2}=\sigma_{a}^{2}+\theta^{2} E\left(W^{2}\right)$, the asymptotic variance of $\hat{\beta}_{1}^{r}$ is never smaller than the asymptotic variance of $\hat{\beta}_{1}$.
19.9. (a)

$$
\begin{aligned}
\hat{\boldsymbol{\beta}} & =\left(\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{Y} \\
& =\left(\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}}(\mathbf{X} \boldsymbol{\beta}+\mathbf{W} \boldsymbol{\gamma}+\mathbf{U}) \\
& =\boldsymbol{\beta}+\left(\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{U} .
\end{aligned}
$$

The last equality has used the orthogonality $\mathbf{M}_{\mathbf{W}} \mathbf{W}=\mathbf{0}$. Thus

$$
\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}=\left(\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{W}} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{U}=\left(n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{W}} \mathbf{X}\right)^{-1}\left(n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{U}\right) .
$$

(b) Using $\mathbf{M}_{\mathbf{W}}=\mathbf{I}_{n}-\mathbf{P}_{\mathbf{W}}$ and $\mathbf{P}_{\mathbf{W}}=\mathbf{W}\left(\mathbf{W}^{\prime} \mathbf{W}\right){ }^{1} \mathbf{W}^{\prime}$ we can get

$$
\begin{aligned}
n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{W}} \mathbf{X} & =n^{-1} \mathbf{X}^{\prime}\left(\mathbf{I}_{n}-\mathbf{P}_{\mathbf{W}}\right) \mathbf{X} \\
& =n^{-1} \mathbf{X}^{\prime} \mathbf{X}-n^{-1} \mathbf{X}^{\prime} \mathbf{P}_{\mathbf{w}} \mathbf{X} \\
& =n^{-1} \mathbf{X}^{\prime} \mathbf{X}-\left(n^{-1} \mathbf{X}^{\prime} \mathbf{W}\right)\left(n^{-1} \mathbf{W}^{\prime} \mathbf{W}\right)^{-1}\left(n^{-1} \mathbf{W}^{\prime} \mathbf{X}\right) .
\end{aligned}
$$

First consider $n^{-1} \mathbf{X}^{\prime} \mathbf{X}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime}$. The $(j, l)$ element of this matrix is $\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{j i} \mathbf{X}_{l i}$. By Assumption (ii), $\mathbf{X}_{i}$ is i.i.d., so $X_{j i} X_{l i}$ is i.i.d. By Assumption (iii) each element of $\mathbf{X}_{i}$ has four moments, so by the Cauchy-Schwarz inequality $X_{j i} X_{l i}$ has two moments:

$$
E\left(X_{j i}^{2} X_{l i}^{2}\right) \leq \sqrt{E\left(X_{j i}^{4}\right) \cdot E\left(X_{l i}^{4}\right)}<\infty .
$$

Because $X_{j i} X_{l i}$ is i.i.d. with two moments, $\frac{1}{n} \sum_{i=1}^{n} X_{j i} X_{l i}$ obeys the law of large numbers, so

$$
\frac{1}{n} \sum_{i=1}^{n} X_{j i} X_{l i} \xrightarrow{p} E\left(X_{j i} X_{l i}\right) .
$$

This is true for all the elements of $n^{1} \mathbf{X}^{\prime} \mathbf{X}$, so

$$
n^{-1} \mathbf{X}^{\prime} \mathbf{X}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{X}_{i}^{\prime} \xrightarrow{p} \quad E\left(\mathbf{X}_{i} \mathbf{X}_{i}^{\prime}\right)=\sum_{\mathbf{x X} .} .
$$

Applying the same reasoning and using Assumption (ii) that $\left(\mathbf{X}_{i}, \mathbf{W}_{i}, Y_{i}\right)$ are i.i.d. and Assumption (iii) that $\left(\mathbf{X}_{i}, \mathbf{W}_{i}, u_{i}\right)$ have four moments, we have

$$
\begin{aligned}
n^{-1} \mathbf{W}^{\prime} \mathbf{W} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i} \mathbf{W}_{i}^{\prime} \xrightarrow{p} E\left(\mathbf{W}_{i} \mathbf{W}_{i}^{\prime}\right)=\Sigma_{\mathbf{W W}}, \\
n^{-1} \mathbf{X}^{\prime} \mathbf{W} & =\frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i} \mathbf{W}_{i}^{\prime} \xrightarrow{p} E\left(\mathbf{X}_{i} \mathbf{W}_{i}^{\prime}\right)=\Sigma_{\mathbf{x w}},
\end{aligned}
$$

and

$$
n^{-1} \mathbf{W}^{\prime} \mathbf{X}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{W}_{i} \mathbf{X}_{i}^{\prime} \xrightarrow{p} E\left(\mathbf{W}_{i} \mathbf{X}_{i}^{\prime}\right)=\sum_{\mathbf{W X}} .
$$

From Assumption (iii) we know $\Sigma_{\mathrm{xx}}, \Sigma_{\mathrm{ww}}, \Sigma_{\mathrm{xw}}$, and $\Sigma_{\mathrm{wx}}$ are all finite nonzero, Slutsky's theorem implies

$$
\begin{gathered}
n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{W}} \mathbf{X}=n^{-1} \mathbf{X}^{\prime} \mathbf{X}-\left(n^{-1} \mathbf{X}^{\prime} \mathbf{W}\right)\left(n^{-1} \mathbf{W}^{\prime} \mathbf{W}\right)^{-1}\left(n^{-1} \mathbf{W}^{\prime} \mathbf{X}\right) \\
\xrightarrow{p} \boldsymbol{\Sigma}_{\mathbf{x x}}-\boldsymbol{\Sigma}_{\mathbf{x w}} \boldsymbol{\Sigma}_{\mathbf{W} \mathbf{W}}^{-1} \boldsymbol{\Sigma}_{\mathbf{w} \mathbf{X}}
\end{gathered}
$$

which is finite and invertible.
(c) The conditional expectation

$$
\begin{aligned}
E(\mathbf{U} \mid \mathbf{X}, \mathbf{W}) & =\left(\begin{array}{c}
E\left(u_{1} \mid \mathbf{X}, \mathbf{W}\right) \\
E\left(u_{2} \mid \mathbf{X}, \mathbf{W}\right) \\
\vdots \\
E\left(u_{n} \mid \mathbf{X}, \mathbf{W}\right)
\end{array}\right)=\left(\begin{array}{c}
E\left(u_{1} \mid \mathbf{X}_{1}, \mathbf{W}_{1}\right) \\
E\left(u_{2} \mid \mathbf{X}_{2}, \mathbf{W}_{2}\right) \\
\vdots \\
E\left(u_{n} \mid \mathbf{X}_{n}, \mathbf{W}_{n}\right)
\end{array}\right) \\
& =\left(\begin{array}{c}
\mathbf{W}_{1}^{\prime} \delta \\
\mathbf{W}_{2}^{\prime} \delta \\
\vdots \\
\mathbf{W}_{n}^{\prime} \delta
\end{array}\right)=\left(\begin{array}{c}
\mathbf{W}_{1}^{\prime} \\
\mathbf{W}_{2}^{\prime} \\
\vdots \\
\mathbf{W}_{n}^{\prime}
\end{array}\right) \delta=\mathbf{W} \delta .
\end{aligned}
$$

The second equality used Assumption (ii) that $\left(\mathbf{X}_{i}, \mathbf{W}_{i}, Y_{i}\right)$ are i.i.d., and the third equality applied the conditional mean independence assumption (i).
(d) In the limit
$n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{U} \xrightarrow{p} E\left(\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{U} \mid \mathbf{X}, \mathbf{W}\right)=\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} E(\mathbf{U} \mid \mathbf{X}, \mathbf{W})=\mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{W} \delta=\mathbf{0}_{k_{1} \times 1}$
because $\mathbf{M}_{\mathbf{w}} \mathbf{W}=\mathbf{0}$.
(e) $n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{X}$ converges in probability to a finite invertible matrix, and $n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{U}$ converges in probability to a zero vector. Applying Slutsky's theorem,

$$
\hat{\beta}-\beta=\left(n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{X}\right)^{-1}\left(n^{-1} \mathbf{X}^{\prime} \mathbf{M}_{\mathbf{w}} \mathbf{U}\right) \xrightarrow{p} \mathbf{0} .
$$

This implies

$$
\hat{\beta} \xrightarrow{p} \beta .
$$

19.11. (a) Using the hint $\boldsymbol{C}=\left[\begin{array}{ll}\boldsymbol{Q}_{1} & \boldsymbol{Q}_{2}\end{array}\right]\left[\begin{array}{cc}\mathbf{I}_{r} & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}\mathbf{Q}_{1}{ }^{\prime} \\ \mathbf{Q}_{2}{ }^{\prime}\end{array}\right]$, where $\boldsymbol{Q}^{\prime} \boldsymbol{Q}=\boldsymbol{I}$. The result follows with $\boldsymbol{A}=\boldsymbol{Q}_{1}$.
(b) $\boldsymbol{W}=\boldsymbol{A}^{\prime} \boldsymbol{V} \sim \mathrm{N}\left(\boldsymbol{A}^{\prime} \mathbf{0}, \boldsymbol{A}^{\prime} \boldsymbol{I}_{n} \boldsymbol{A}\right)$ and the result follows immediately.
(c) $\boldsymbol{V}^{\prime} \boldsymbol{C} \boldsymbol{V}=\boldsymbol{V}^{\prime} \boldsymbol{A} \boldsymbol{A}^{\prime} \boldsymbol{V}=\left(\boldsymbol{A}^{\prime} \boldsymbol{V}\right)^{\prime}\left(\boldsymbol{A}^{\prime} \boldsymbol{V}\right)=\boldsymbol{W}^{\prime} \boldsymbol{W}$ and the result follows from (b).
19.13. (a) This follows from the definition of the Lagrangian.
(b) The first order conditions are

$$
\left.{ }^{*}\right) X^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \tilde{\boldsymbol{\beta}})+\boldsymbol{R}^{\prime} \lambda=0
$$

and

$$
{ }^{(* *)} \boldsymbol{R} \tilde{\boldsymbol{\beta}}-\boldsymbol{r}=0
$$

Solving (*) yields

$$
(* * *) \tilde{\boldsymbol{\beta}}=\hat{\boldsymbol{\beta}}+\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime} \boldsymbol{\lambda}
$$

Multiplying by $\boldsymbol{R}$ and using $\left({ }^{(* *}\right)$ yields $\boldsymbol{r}=\boldsymbol{R} \hat{\boldsymbol{\beta}}+\boldsymbol{R}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime} \boldsymbol{\lambda}$, so that

$$
\lambda=-\left[\boldsymbol{R}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime}\right]^{-1}(\boldsymbol{R} \hat{\boldsymbol{\beta}}-\boldsymbol{r}) .
$$

Substituting this into $\left({ }^{* * *}\right)$ yields the result.
(c) Using the result in (b), $\boldsymbol{Y}-\boldsymbol{X} \tilde{\boldsymbol{\beta}}=(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})-\boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime}\left[\boldsymbol{R}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime}\right]^{-1}(\boldsymbol{R}$ $\hat{\boldsymbol{\beta}}-\boldsymbol{r}$ ), so that

$$
\begin{aligned}
(\boldsymbol{Y}-\boldsymbol{X} \tilde{\boldsymbol{\beta}})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \tilde{\boldsymbol{\beta}})= & (\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime}(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})+(\boldsymbol{R} \hat{\boldsymbol{\beta}}-r)^{\prime}\left[\boldsymbol{R}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime}\right]^{-1}(\boldsymbol{R} \hat{\boldsymbol{\beta}}-\boldsymbol{r}) \\
& +2(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime} \boldsymbol{X}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime}\left[\boldsymbol{R}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime}\right]^{-1}(\boldsymbol{R} \hat{\boldsymbol{\beta}}-\boldsymbol{r})
\end{aligned}
$$

But $(\boldsymbol{Y}-\boldsymbol{X} \hat{\boldsymbol{\beta}})^{\prime} \boldsymbol{X}=0$, so the last term vanishes, and the result follows.
(d) The result in (c) shows that $(\boldsymbol{R} \hat{\boldsymbol{\beta}}-\boldsymbol{r})^{\prime}\left[\boldsymbol{R}\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{-1} \boldsymbol{R}^{\prime}\right]^{-1}(\boldsymbol{R} \hat{\boldsymbol{\beta}}-\boldsymbol{r})=\operatorname{SSR}_{\text {Restricted }}$ $S S R_{\text {Unrestricted. }}$. Also $s_{u}^{2}=S S R_{\text {Unrestricted }} /\left(n-k_{\text {Unrestricted }}-1\right)$, and the result follows immediately.
19.15. (a) This follows from exercise (19.6).
(b) $\tilde{\mathbf{Y}}_{i}=\tilde{\mathbf{X}}_{i} \beta+\tilde{\mathbf{u}}_{i}$, so that

$$
\begin{aligned}
\hat{\beta}-\beta & =\left(\sum_{i=1}^{n} \tilde{X}_{i}^{\prime} \tilde{X}_{i}\right)^{-1} \sum_{i=1}^{n} \tilde{X}_{i}^{\prime} \tilde{u}_{i} \\
& =\left(\sum_{i=1}^{n} \tilde{X}_{i}^{\prime} \tilde{X}_{i i}\right)^{-1} \sum_{i=1}^{n} X_{i}^{\prime} M^{\prime} M u_{i} \\
& =\left(\sum_{i=1}^{n} \tilde{X}_{i i}{ }^{\prime} \tilde{X}_{i i}\right)^{-1} \sum_{i=1}^{n} X_{i}^{\prime} M^{\prime} u_{i} \\
& =\left(\sum_{i=1}^{n} \tilde{X}_{i i}{ }^{\prime} \tilde{X}_{i i}\right)^{-1} \sum_{i=1}^{n} \tilde{X}_{i i}^{\prime} u_{i}
\end{aligned}
$$

(c) $\hat{Q}_{\tilde{X}}=\frac{1}{n} \sum_{i=1}^{n}\left(T^{-1} \sum_{t=1}^{T}\left(X_{i t}-\bar{X}_{i}\right)^{2}\right)$, where $\left(T^{-1} \sum_{t=1}^{T}\left(X_{i t}-\bar{X}_{i}\right)^{2}\right)$ are i.i.d. with mean $\mathbf{Q}_{\mathbf{x}}$ and finite variance (because $X_{i t}$ has finite fourth moments). The result then follows from the law of large numbers.
(d) This follows the the Central limit theorem.
(e) This follows from Slutsky's theorem.
(f) $\eta_{i}^{2}$ are i.i.d., and the result follows from the law of large numbers.
(g) Let $\hat{\eta}_{i}=T^{-1 / 2} \tilde{\mathbf{X}}_{i} ' \hat{\tilde{\mathbf{u}}}_{i}=\eta_{i}-T^{-1 / 2}(\hat{\beta}-\beta) \tilde{\mathbf{X}}_{i} \tilde{\mathbf{X}}_{i}$. Then

$$
\hat{\eta}_{i}^{2}=T^{-1 / 2} \tilde{\mathbf{X}}_{i}^{\prime} \hat{\tilde{\mathbf{u}}}_{i}=\eta_{i}^{2}+T^{-1}(\hat{\beta}-\beta)^{2}\left(\tilde{\mathbf{X}}_{i}{ }^{\prime} \tilde{\mathbf{X}}_{i}\right)^{2}-2 T^{-1 / 2}(\hat{\beta}-\beta) \eta_{i} \tilde{\mathbf{X}}_{i} \tilde{\mathbf{X}}_{i}
$$

and

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{\eta}_{i}^{2}-\frac{1}{n} \sum_{i=1}^{n} \eta_{i}^{2}=T^{-1}(\hat{\beta}-\beta)^{2} \frac{1}{n} \sum_{i=1}^{n}\left(\tilde{\mathbf{X}}_{i}^{\prime} \tilde{\mathbf{X}}_{i}\right)^{2}-2 T^{-1 / 2}(\hat{\beta}-\beta) \frac{1}{n} \sum_{i=1}^{n} \eta_{i} \tilde{\mathbf{X}}_{i} \tilde{\mathbf{X}}_{i}
$$

Because $(\hat{\beta}-\beta) \xrightarrow{p} 0$, the result follows from (a) $\frac{1}{n} \sum_{i=1}^{n}\left(\tilde{X}_{i} \tilde{X}_{i}\right)^{2} \xrightarrow{p} E\left[\left(\tilde{X}_{i} \tilde{X}_{i}\right)^{2}\right]$ and (b) $\frac{1}{n} \sum_{i=1}^{n} \eta_{i} \tilde{X}_{i}{ }^{\prime} \tilde{X}_{i} \xrightarrow{p} E\left(\eta_{i} \tilde{X}_{i}^{\prime} \tilde{X}_{i}\right)$. Both (a) and (b) follow from the law of large numbers; both (a) and (b) are averages of i.i.d. random variables. Completing the proof requires verifying that $\left(\tilde{\mathbf{X}}_{i}{ }^{\prime} \tilde{\mathbf{X}}_{i}\right)^{2}$ has two finite moments
and $\eta_{i} \tilde{\mathbf{X}}_{i}{ }^{\prime} \tilde{\mathbf{X}}_{i}$ has two finite moments. These in turn follow from 8-moment assumptions for $\left(X_{i t}, u_{i t}\right)$ and the Cauchy-Schwartz inequality. Alternatively, a "strong" law of large numbers can be used to show the result with finite fourth moments.
19.17 The results follow from the hints and matrix multiplication and addition.

