Introduction to Econometrics (4th Edition)

by

James H. Stock and Mark W. Watson

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 2*

(This version September 14, 2018)
2.1. (a) Probability distribution function for Y

Outcome (number of heads)	$Y=0$	$Y=1$	$Y=2$
Probability	0.25	0.50	0.25

(b) Cumulative probability distribution function for Y

Outcome (number of heads)	$Y<0$	$0 \leq Y<1$	$1 \leq Y<2$	$Y \geq 2$
Probability	0	0.25	0.75	1.0

(c) $\mu_{Y}=E(Y)=(0 \times 0.25)+(1 \times 0.50)+(2 \times 0.25)=1.00$

Using Key Concept 2.3: $\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}$,
and
$E\left(Y^{2}\right)=\left(0^{2} \times 0.25\right)+\left(1^{2} \times 0.50\right)+\left(2^{2} \times 0.25\right)=1.50$
so that

$$
\operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=1.50-(1.00)^{2}=0.50 .
$$

2.3. For the two new random variables $W=3+6 X$ and $V=20-7 Y$, we have:
(a)

$$
\begin{aligned}
E(V) & =E(20-7 Y)=20-7 E(Y)=20-7 \times 0.78=14.54, \\
E(W) & =E(3+6 X)=3+6 E(X)=3+6 \times 0.70=7.2
\end{aligned}
$$

(b)

$$
\begin{aligned}
\sigma_{W}^{2} & =\operatorname{var}(3+6 X)=6^{2} \sigma_{X}^{2}=36 \times 0.21=7.56 \\
\sigma_{V}^{2} & =\operatorname{var}(20-7 Y)=(-7)^{2} \times \sigma_{Y}^{2}=49 \times 0.1716=8.4084
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \sigma_{W V}=\operatorname{cov}(3+6 X, 20-7 Y)=6(-7) \operatorname{cov}(X, Y)=-42 \times 0.084=-3.52 \\
& \quad \operatorname{corr}(W, V)=\frac{\sigma_{W V}}{\sigma_{W} \sigma_{V}}=\frac{-3.528}{\sqrt{7.56 \times 8.4084}}=-0.4425 .
\end{aligned}
$$

2.5. Let X denote temperature in ${ }^{\circ} \mathrm{F}$ and Y denote temperature in ${ }^{\circ} \mathrm{C}$. Recall that $Y=0$ when $X=32$ and $Y=100$ when $X=212$.

This implies $Y=(100 / 180) \times(X-32)$ or $Y=-17.78+(5 / 9) \times X$.

Using Key Concept 2.3, $\mu_{X}=70^{\circ} \mathrm{F}$ implies that $\mu_{Y}=-17.78+(5 / 9) \times 70=21.11^{\circ} \mathrm{C}$, and $\sigma_{X}=7^{\circ} \mathrm{F}$ implies $\sigma_{Y}=(5 / 9) \times 7=3.89^{\circ} \mathrm{C}$.
2.7. Using obvious notation, $C=M+F$; thus $\mu_{C}=\mu_{M}+\mu_{F}$ and $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$. This implies
(a) $\mu_{C}=40+45=\$ 85,000$ per year.
(b) $\operatorname{corr}(M, F)=\frac{\operatorname{cov}(M, F)}{\sigma_{M} \sigma_{F}}$, so that $\operatorname{cov}(M, F)=\sigma_{M} \sigma_{F} \operatorname{corr}(M, F)$. Thus $\operatorname{cov}(M, F)=12 \times 18 \times 0.80=172.80$, where the units are squared thousands of dollars per year.
(c) $\sigma_{C}^{2}=\sigma_{M}^{2}+\sigma_{F}^{2}+2 \operatorname{cov}(M, F)$, so that $\sigma_{C}^{2}=12^{2}+18^{2}+2 \times 172.80=813.60$, and $\sigma_{C}=\sqrt{813.60}=28.524$ thousand dollars per year.
(d) First you need to look up the current Euro/dollar exchange rate in the Wall Street Journal, the Federal Reserve web page, or other financial data outlet. Suppose that this exchange rate is e (say $e=0.85$ Euros per Dollar or $1 / e=1.18$ Dollars per Euro); each 1 Eollar is therefore with e Euros. The mean is therefore $e \times \mu_{C}$ (in units of thousands of euros per year), and the standard deviation is $e \times \sigma_{C}$ (in units of thousands of euros per year). The correlation is unit-free, and is unchanged.
2.9.

		Value of \boldsymbol{Y}					Probability
		$\mathbf{1 4}$	$\mathbf{2 2}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{6 5}$	Distribution of \boldsymbol{X}
Value of \boldsymbol{X}	$\mathbf{1}$	0.02	0.05	0.10	0.03	0.01	0.21
	$\mathbf{5}$	0.17	0.15	0.05	0.02	0.01	0.40
	$\mathbf{8}$	0.02	0.03	0.15	0.10	0.09	0.39
Probability distribution of \boldsymbol{Y}	0.21	0.23	0.30	0.15	0.11	1.00	

(a) The probability distribution is given in the table above.

$$
\begin{aligned}
& E(Y)=14 \times 0.21+22 \times 0.23+30 \times 0.30+40 \times 0.15+65 \times 0.11=30.15 \\
& E\left(Y^{2}\right)=14^{2} \times 0.21+22^{2} \times 0.23+30^{2} \times 0.30+40^{2} \times 0.15+65^{2} \times 0.11=1127.23 \\
& \operatorname{var}(Y)=E\left(Y^{2}\right)-[E(Y)]^{2}=218.21
\end{aligned}
$$

$$
\sigma_{Y}=14.77
$$

(b) The conditional probability of $Y \mid X=8$ is given in the table below

Value of \boldsymbol{Y}					
$\mathbf{1 4}$	$\mathbf{2 2}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{6 5}$	
$0.02 / 0.39$	$0.03 / 0.39$	$0.15 / 0.39$	$0.10 / 0.39$	$0.09 / 0.39$	

$$
\begin{aligned}
E(Y \mid X=8)= & 14 \times(0.02 / 0.39)+22 \times(0.03 / 0.39)+30 \times(0.15 / 0.39) \\
& +40 \times(0.10 / 0.39)+65 \times(0.09 / 0.39)=39.21 \\
E\left(Y^{2} \mid X=8\right) & =14^{2} \times(0.02 / 0.39)+22^{2} \times(0.03 / 0.39)+30^{2} \times(0.15 / 0.39) \\
& +40^{2} \times(0.10 / 0.39)+65^{2} \times(0.09 / 0.39)=1778.7
\end{aligned}
$$

$\operatorname{var}(Y)=1778.7-39.21^{2}=241.65$

$$
\sigma_{Y \mid X=8}=15.54
$$

(c)

$$
\begin{aligned}
& E(X Y)=(1 \times 14 \times 0.02)+(1 \times 22: 0.05)+\cdots(8 \times 65 \times 0.09)=171.7 \\
& \operatorname{cov}(X, Y)=E(X Y)-E(X) E(Y)=171.7-5.33 \times 30.15=11.0 \\
& \operatorname{corr}(X, Y)=\operatorname{cov}(X, Y) /\left(\sigma_{X} \sigma_{Y}\right)=11.0 /(2.60 \times 14.77)=0.286
\end{aligned}
$$

2.11. (a) 0.90
(b) 0.05
(c) 0.05
(d) When $Y \sim \chi_{10}^{2}$, then $Y / 10 \sim F_{10, \infty}$.
(e) $Y=Z^{2}$, where $Z \sim \mathrm{~N}(0,1)$, thus $\operatorname{Pr}(Y \leq 1)=\operatorname{Pr}(-1 \leq Z \leq 1)=0.32$.
2.13. (a) $E\left(Y^{2}\right)=\operatorname{Var}(Y)+\mu_{Y}^{2}=1+0=1 ; E\left(W^{2}\right)=\operatorname{Var}(W)+\mu_{W}^{2}=100+0=100$.
(b) Y and W are symmetric around 0 , thus skewness is equal to 0 ; because their mean is zero, this means that the third moment is zero.
(c) The kurtosis of the normal is 3 , so $3=\frac{E\left(Y-\mu_{Y}\right)^{4}}{\sigma_{Y}^{4}}$; solving yields $\mathrm{E}\left(Y^{4}\right)=3$; a similar calculation yields the results for W.
(d) First, condition on $X=0$, so that $S=W$:

$$
E(S \mid X=0)=0 ; E\left(S^{2} \mid X=0\right)=100, E\left(S^{3} \mid X=0\right)=0, E\left(S^{4} \mid X=0\right)=3 \times 100^{2} .
$$

Similarly,

$$
E(S \mid X=1)=0 ; E\left(S^{2} \mid X=1\right)=1, E\left(S^{3} \mid X=1\right)=0, E\left(S^{4} \mid X=1\right)=3 .
$$

From the large of iterated expectations

$$
\begin{aligned}
E(S) & =E(S \mid X=0) \times \operatorname{Pr}(\mathrm{X}=0)+E(S \mid X=1) \times \operatorname{Pr}(X=1)=0 \\
E\left(S^{2}\right) & =E\left(S^{2} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{2} \mid X=1\right) \times \operatorname{Pr}(X=1)=100 \times 0.01+1 \times 0.99=1.99 \\
E\left(S^{3}\right) & =E\left(S^{3} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{3} \mid X=1\right) \times \operatorname{Pr}(X=1)=0 \\
E\left(S^{4}\right) & =E\left(S^{4} \mid X=0\right) \times \operatorname{Pr}(\mathrm{X}=0)+E\left(S^{4} \mid X=1\right) \times \operatorname{Pr}(X=1) \\
& =3 \times 100^{2} \times 0.01+3 \times 1 \times 0.99=302.97
\end{aligned}
$$

(e) $\mu_{S}=E(S)=0$, thus $E\left(S-\mu_{S}\right)^{3}=E\left(S^{3}\right)=0$ from part (d). Thus skewness $=0$.

Similarly, $\sigma_{S}^{2}=E\left(S-\mu_{S}\right)^{2}=E\left(S^{2}\right)=1.99$, and $E\left(S-\mu_{S}\right)^{4}=E\left(S^{4}\right)=302.97$.
Thus, kurtosis $=302.97 /\left(1.99^{2}\right)=76.5$
2.15. (a)

$$
\begin{aligned}
\operatorname{Pr}(9.6 \leq \bar{Y} \leq 10.4) & =\operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq \frac{\bar{Y}-10}{\sqrt{4 / n}} \leq \frac{10.4-10}{\sqrt{4 / n}}\right) \\
& =\operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)
\end{aligned}
$$

where $Z \sim N(0,1)$. Thus,
(i) $n=20 ; \operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)=\operatorname{Pr}(-0.89 \leq Z \leq 0.89)=0.63$
(ii) $n=100 ; \operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)=\operatorname{Pr}(-2.00 \leq Z \leq 2.00)=0.954$
(iii) $n=1000 ; \operatorname{Pr}\left(\frac{9.6-10}{\sqrt{4 / n}} \leq Z \leq \frac{10.4-10}{\sqrt{4 / n}}\right)=\operatorname{Pr}(-6.32 \leq Z \leq 6.32)=1.000$
(b)

$$
\begin{aligned}
\operatorname{Pr}(10-c \leq \bar{Y} \leq 10+c) & =\operatorname{Pr}\left(\frac{-c}{\sqrt{4 / n}} \leq \frac{\bar{Y}-10}{\sqrt{4 / n}} \leq \frac{c}{\sqrt{4 / n}}\right) \\
& =\operatorname{Pr}\left(\frac{-c}{\sqrt{4 / n}} \leq Z \leq \frac{c}{\sqrt{4 / n}}\right)
\end{aligned}
$$

As n get large $\frac{c}{\sqrt{4 / n}}$ gets large, and the probability converges to 1 .
(c) This follows from (b) and the definition of convergence in probability given in Key Concept 2.6.
2.17. $\mu_{Y}=0.4$ and $\sigma_{Y}^{2}=0.4 \times 0.6=0.24$
(a) (i) $P(\bar{Y} \geq 0.43)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \geq \frac{0.43-0.4}{\sqrt{0.24 / n}}\right)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \geq 0.6124\right)=0.27$
(ii) $P(\bar{Y} \leq 0.37)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \leq \frac{0.37-0.4}{\sqrt{0.24 / n}}\right)=\operatorname{Pr}\left(\frac{\bar{Y}-0.4}{\sqrt{0.24 / n}} \leq-1.22\right)=0.11$
b) We know $\operatorname{Pr}(-1.96 \leq Z \leq 1.96)=0.95$, thus we want n to satisfy $0.41=\frac{0.41-0.4}{\sqrt{0.24 / n}}>-1.96$ and $\frac{0.39-0.4}{\sqrt{0.24 / n}}<-1.96$. Solving these inequalities yields $n \geq$ 9220.
2.19. (a)

$$
\begin{aligned}
\operatorname{Pr}\left(Y=y_{j}\right) & =\sum_{i=1}^{l} \operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right) \\
& =\sum_{i=1}^{l} \operatorname{Pr}\left(Y=y_{j} \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right)
\end{aligned}
$$

(b)

$$
\begin{aligned}
E(Y) & =\sum_{j=1}^{k} y_{j} \operatorname{Pr}\left(Y=y_{j}\right)=\sum_{j=1}^{k} y_{j} \sum_{i=1}^{l} \operatorname{Pr}\left(Y=y_{j} \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right) \\
& =\sum_{i=1}^{l}\left(\sum_{j=1}^{k} y_{j} \operatorname{Pr}\left(Y=y_{j} \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right)\right. \\
& =\sum_{i=1}^{l} E\left(Y \mid X=x_{i}\right) \operatorname{Pr}\left(X=x_{i}\right) .
\end{aligned}
$$

(c) When X and Y are independent,

$$
\operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right)=\operatorname{Pr}\left(X=x_{i}\right) \operatorname{Pr}\left(Y=y_{j}\right),
$$

so

$$
\begin{aligned}
& \sigma_{X Y}=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right] \\
&=\sum_{i=1}^{l} \sum_{j=1}^{k}\left(x_{i}-\mu_{X}\right)\left(y_{j}-\mu_{Y}\right) \operatorname{Pr}\left(X=x_{i}, Y=y_{j}\right) \\
&= \sum_{i=1}^{l} \sum_{j=1}^{k}\left(x_{i}-\mu_{X}\right)\left(y_{j}-\mu_{Y}\right) \operatorname{Pr}\left(X=x_{i}\right) \operatorname{Pr}\left(Y=y_{j}\right) \\
&=\left(\sum_{i=1}^{l}\left(x_{i}-\mu_{X}\right) \operatorname{Pr}\left(X=x_{i}\right)\right)\left(\sum_{j=1}^{k}\left(y_{j}-\mu_{Y}\right) \operatorname{Pr}\left(Y=y_{j}\right)\right. \\
&= E\left(X-\mu_{X}\right) E\left(Y-\mu_{Y}\right)=0 \times 0=0, \\
& \quad \operatorname{cor}(X, Y)=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{0}{\sigma_{X} \sigma_{Y}}=0 .
\end{aligned}
$$

2. 21.

(a)

$$
\begin{aligned}
E(X-\mu)^{3} & =E\left[(X-\mu)^{2}(X-\mu)\right]=E\left[X^{3}-2 X^{2} \mu+X \mu^{2}-X^{2} \mu+2 X \mu^{2}-\mu^{3}\right] \\
& =E\left(X^{3}\right)-3 E\left(X^{2}\right) \mu+3 E(X) \mu^{2}-\mu^{3}=E\left(X^{3}\right)-3 E\left(X^{2}\right) E(X)+3 E(X)[E(X)]^{2}-[E(X)]^{3} \\
& =E\left(X^{3}\right)-3 E\left(X^{2}\right) E(X)+2 E(X)^{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
E(X-\mu)^{4} & =E\left[\left(X^{3}-3 X^{2} \mu+3 X \mu^{2}-\mu^{3}\right)(X-\mu)\right] \\
& =E\left[X^{4}-3 X^{3} \mu+3 X^{2} \mu^{2}-X \mu^{3}-X^{3} \mu+3 X^{2} \mu^{2}-3 X \mu^{3}+\mu^{4}\right] \\
& =E\left(X^{4}\right)-4 E\left(X^{3}\right) E(X)+6 E\left(X^{2}\right) E(X)^{2}-4 E(X) E(X)^{3}+E(X)^{4} \\
& =E\left(X^{4}\right)-4[E(X)]\left[E\left(X^{3}\right)\right]+6[E(X)]^{2}\left[E\left(X^{2}\right)\right]-3[E(X)]^{4}
\end{aligned}
$$

2.23. X and Z are two independently distributed standard normal random variables, so

$$
\mu_{X}=\mu_{Z}=0, \sigma_{X}^{2}=\sigma_{Z}^{2}=1, \sigma_{X Z}=0 .
$$

(a) Because of the independence between X and $Z, \operatorname{Pr}(Z=z \mid X=x)=\operatorname{Pr}(Z=z)$, and $E(Z \mid X)=E(Z)=0$. Thus

$$
E(Y \mid X)=E\left(X^{2}+Z \mid X\right)=E\left(X^{2} \mid X\right)+E(Z \mid X)=X^{2}+0=X^{2} .
$$

(b) $E\left(X^{2}\right)=\sigma_{X}^{2}+\mu_{X}^{2}=1$, and $\mu_{Y}=E\left(X^{2}+Z\right)=E\left(X^{2}\right)+\mu_{Z}=1+0=1$.
(c) $E(X Y)=E\left(X^{3}+Z X\right)=E\left(X^{3}\right)+E(Z X)$. Using the fact that the odd moments of a standard normal random variable are all zero, we have $E\left(X^{3}\right)=0$. Using the independence between X and Z, we have $E(Z X)=\mu_{Z} \mu_{X}=0$. Thus $E(X Y)=E\left(X^{3}\right)+E(Z X)=0$.
(d)

$$
\begin{aligned}
\operatorname{cov}(X Y) & =E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[(X-0)(Y-1)] \\
& =E(X Y-X)=E(X Y)-E(X) \\
& =0-0=0 \\
\operatorname{corr}(X, Y) & =\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{0}{\sigma_{X} \sigma_{Y}}=0 .
\end{aligned}
$$

2.25. (a) $\sum_{i=1}^{n} a x_{i}=\left(a x_{1}+a x_{2}+a x_{3}+\cdots+a x_{n}\right)=a\left(x_{1}+x_{2}+x_{3}+\cdots+x_{n}\right)=a \sum_{i=1}^{n} x_{i}$
(b)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}+y_{i}\right) & =\left(x_{1}+y_{1}+x_{2}+y_{2}+\cdots x_{n}+y_{n}\right) \\
& =\left(x_{1}+x_{2}+\cdots x_{n}\right)+\left(y_{1}+y_{2}+\cdots y_{n}\right) \\
& =\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

(c) $\sum_{i=1}^{n} a=(a+a+a+\cdots+a)=n a$
(d)

$$
\begin{aligned}
\sum_{i=1}^{n}\left(a+b x_{i}+c y_{i}\right)^{2} & =\sum_{i=1}^{n}\left(a^{2}+b^{2} x_{i}^{2}+c^{2} y_{i}^{2}+2 a b x_{i}+2 a c y_{i}+2 b c x_{i} y_{i}\right) \\
& =n a^{2}+b^{2} \sum_{i=1}^{n} x_{i}^{2}+c^{2} \sum_{i=1}^{n} y_{i}^{2}+2 a b \sum_{i=1}^{n} x_{i}+2 a c \sum_{i=1}^{n} y_{i}+2 b c \sum_{i=1}^{n} x_{i} y_{i}
\end{aligned}
$$

2.27
(a) $E(u)=E[E(u \mid X)]=E[E(Y-\hat{Y}) \mid X]=E[E(Y \mid X)-E(Y \mid X)]=0$.
(b) $E(u X)=E[E(u X \mid X)]=E[X E(u) \mid X]=E[X \times 0]=0$
(c) Using the hint: $v=(Y-\hat{Y})-h(X)=u-h(X)$, so that $E\left(v^{2}\right)=E\left[u^{2}\right]+E\left[h(X)^{2}\right]-$ $2 \times E[u \times h(X)]$. Using an argument like that in (b), $E[u \times h(X)]=0$. Thus, $E\left(v^{2}\right)=$ $E\left(u^{2}\right)+E\left[h(X)^{2}\right]$, and the result follows by recognizing that $E\left[h(X)^{2}\right] \geq 0$ because $h(x)^{2} \geq 0$ for any value of x.

