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ABSTRACT. The classical secretary problem involves sequentially interviewing a pool of n appli-
cants with the aim of hiring exactly the best one in the pool—nothing less is good enough. The
optimal decision strategy is easy to describe and the probability of success is 1/e. In this paper,
we consider a minor variant of this classical problem. We wish to pick not the best but the sec-
ond best (the best is going to Harvard). In this case, an explicit solution can be given both for
the optimal strategy and the associated optimal success probability. The probability of success is
k0(n− k0)/(n(n− 1)) where k0 = bn/2c. Clearly, as n goes to infinity, the probability of success
tends to 1/4. Apparently, it is easier to pick the best than the second best.

1. INTRODUCTION.

The secretary problem (first popularized by Martin Gardner [4]) is a classical problem in optimal
selection. Dynkin [2] and, in slightly different form, Chow et al. [1] were the first to give rigorous
treatments. The problem is described as follows. A manager wishes to hire a secretary. An ad is
posted and n applicants apply. The candidates are interviewed in random order—nothing is known
about their qualifications prior to showing up for the interview. At the conclusion of the interview,
the manager must decide either to hire this applicant or not. The decision cannot be postponed
until the manager has seen more applicants. The decision regarding each candidate must be made
as the candidate is being interviewed. There are no second chances. If the manager exhausts all
candidates and doesn’t hire anyone, not even the last applicant, then the process is considered a
failure. Furthermore, if the manager hires someone but that person turns out not to be the absolute
best of all n candidates, then that, too, will be considered a failure. The only successful outcome is
to hire one candidate and that one must be the best of the bunch. All other outcomes are considered
equally bad—failures. This is the secretary problem.

The problem became famous when it was first proposed because it turns out that the manager’s
optimal strategy is truly elegant. Here’s the optimal strategy. The manager should interview the
first n/e applicants (where e = 2.71828 . . .) and reject them categorically. In modern terms, this
is called the exploration part of the process. The manager is simply trying to calibrate the quality
of the pool of applicants. Obviously, the manager hopes that the best candidate is not among this
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initial pool for, in that case, the hiring process will be a failure. Anyway, after rejecting the first
n/e applicants, the manager will hire the first subsequent applicant who is superior to all who have
come before. Of course, even in this decision, there is the risk that the best is yet to come and so
the process could still end in failure. Nonetheless, this is the optimal strategy. It is well-known that
the probability of success is approximately 1/e and converges to this value as n goes to infinity.

Over the years, many variants of the secretary problem have been formulated and solved. Gusein-
Zade [5] studied the problem of picking one of the k best out of n and Vanderbei [7] considered the
problem of picking all of the k best out of n. Freeman [3] provides a review of the many variants
that were developed by that time.

2. THE POSTDOC PROBLEM.

In 1980, E.B. Dynkin proposed (to the author) the problem of picking exactly the second best
candidate. The motivating story was adapted to this problem: we are trying to hire a postdoc and
we are confident that the best applicant will receive and accept an offer from Harvard.

We model this as a sequential (online) decision problem. For k = 0, 1, . . . , n, let vk denote the
probability of success using the optimal strategy assuming that k candidates have already been
interviewed and so far none of them have been hired. Our goal is to write and then solve the
Hamilton-Jacobi-Bellman (HJB) equation for v. In order to write the HJB equation, we need two
precomputed sequences.

We assume that we interview the candidates one at a time and make our decision on the spot. But,
even after a decision is made, we continue to interview the remaining candidates simply to see if
we indeed made the correct choice. Suppose after interviewing k candidates, one of those k has
been selected and the selected candidate is second best among the k seen so far. Let gk denote the
probability that this currently-second-best candidate will still be second-best after we have seen all
n candidates. It is easy to give a formula for gk. Consider what can happen when the (k + 1)-st
applicant is interviewed. It could be the new best, or the new second best, or etc., or the new last
best (i.e., worst). There are k + 1 relative positions it could acquire. Since we have no a priori
knowledge about this (or any) candidate, he/she is equally likely to fall into any of these k+1 slots
in the ranking. Hence, with probability 2/(k + 1), this new applicant will be either first or second
best among the k + 1 seen so far. In this case, the applicant who has already been hired will drop
to third place and the hiring process will have been a failure. On the other hand, with probability
(k − 1)/(k + 1), this newly interviewed applicant will be worse than the one we’ve actually hired
and so the hired candidate will remain in second place. Hence,

gk =


k − 1

k + 1
gk+1, 2 ≤ k < n,

1, k = n.
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This equation is trivial to solve:

gk =
k − 1

k + 1

k

k + 2

k + 1

k + 3
· · · n− 3

n− 1

n− 2

n
gn

=
k(k − 1)

n(n− 1)
. (1)

Now, suppose that after interviewing k applicants, one has been hired and this one is currently
the best of those seen so far (we are hoping there is still one better applicant among those not yet
interviewed). Let fk denote the probability that the hired applicant will be ranked second best after
seeing all applicants. As before, consider the next candidate. He/she is going to be either the best
so far, in which case the hired candidate will drop to second place, or not, in which case the hired
candidate remains best among those seen so far. Hence, we can write

fk =


k

k + 1
fk+1 +

1

k + 1
gk+1, 1 ≤ k < n,

0, k = n.

This equation is also easy to solve. Let hk = fk/k. Then, using the explicit formula for gk, the
equation for hk is especially simple:

hk = hk+1 +
1

n(n− 1)
.

Hence, using hn = 0, we get

hk =
n− k

n(n− 1)

and therefore

fk =
k(n− k)

n(n− 1)
, 1 ≤ k ≤ n. (2)

3. THE VALUE FUNCTION

Now suppose that we have interviewed k applicants and have rejected all of them. The value
function vk, k = 0, 1, . . . , n, is defined as the probability, using the best possible strategy, of
eventually hiring someone who turns out to be the second-best candidate.

According to the principle of dynamic programming, it suffices to do the right thing at each stage.
So, suppose that k applicants have been interviewed and no one has been hired so far. Consider
the (k + 1)-st candidate. With probability (k − 1)/(k + 1) this new interviewee will be worse that
the best and second-best seen so far. Hence, there is no reason to hire this candidate. In this case,
we proceed to stage k + 1 also with no one hired.
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Suppose, however, that the (k + 1)-st candidate is actually better than all k seen so far. Now we
have a choice: we could hire this candidate and hope that he/she drops to second-best after all have
been seen or we could pass on this candidate and proceed to the (k + 1)-st stage without making
a hire. If we hire, the probability of success is fk+1. If we pass, the probability of success is vk+1.
We should pick the larger.

Finally, suppose that the (k + 1)-st candidate is second best among all seen so far. Again, we have
a choice: hire this candidate and hope that he/she remains second-best until the end or pass on this
candidate and proceed to the (k + 1)-st stage without making a hire. If we hire, the probability of
success is gk+1. If we pass, the probability of success is vk+1.

Putting these possibilities together, we get the following Hamilton-Jacobi-Bellman (HJB) equation
for vk:

vk =



max(vk+1, fk+1), k = 0,

k − 1

k + 1
vk+1 +

1

k + 1
max(vk+1, fk+1) +

1

k + 1
max(vk+1, gk+1), 1 ≤ k < n,

0, k = n.

Let k0 = min{k | 2k ≥ n− 1}. It is easy to check that k0 = n/2 if n is even and k0 = (n− 1)/2
if n is odd. The following theorem gives the specific formula for vk.

Theorem 1. The value function is given by

vk =


k(n− k)

n(n− 1)
, k0 ≤ k ≤ n,

k0(n− k0)

n(n− 1)
, 0 ≤ k < k0.

(3)

Proof. Clearly (3) is correct for k = n as the formula reduces to vn = 0. Suppose that the formula
is correct for a fixed k > k0. We shall prove that it is also correct for k − 1. First note that,
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according to the induction hypothesis, vk = fk. Also, vk ≤ gk since k ≥ k0. Hence

vk−1 =
k − 2

k
vk +

1

k
max(vk, fk) +

1

k
max(vk, gk)

=
k − 2

k
vk +

1

k
vk +

1

k
gk

=
(k − 1)(n− k)

n(n− 1)
+

(k − 1)

n(n− 1)

=
(k − 1)(n− (k − 1))

n(n− 1)
.

Now, suppose that (3) is correct for a specific 2 ≤ k ≤ k0. By induction, we need to check it for
k − 1. In this case, we claim that vk ≥ fk and that vk ≥ gk and hence

vk−1 =
k − 2

k
vk +

1

k
max(vk, fk) +

1

k
max(vk, gk)

=
k − 2

k
vk +

1

k
vk +

1

k
vk

= vk

=
k0(n− k0)

n(n− 1)
.

Hence, it suffices to check the two claimed inequalities.

The first claim is that vk ≥ fk. This inequality is equivalent to

k0(n− k0) ≥ k(n− k).

Let p denote the polynomial given by p(x) = x(n − x). This quadratic has its maximum at
x = n/2. Since, k ≤ k0 ≤ n/2, it follows that p(k) ≤ p(k0), which is the first claim.

The second claim is that vk ≥ gk, which is equivalent to

k0(n− n0) ≥ k(k − 1).

We already have shown that k0(n− k0) ≥ k(n− k). Hence, it suffices to show that

k(n− k) ≥ k(k − 1).

For k 6= 0, this inequality is equivalent to k ≤ (n+ 1)/2 and hence it holds for any k ≤ k0.

Finally, we must check v0. Since, v1 ≥ f1, it follows that v0 = v1. �

The value function determines not only the probability of success, v0, but also the optimal strategy
that achieves this probability. Specifically, the strategy is determined by noting which number
achieves the maximum in the last two terms of the HJB equation.
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Theorem 2. The value function vk, 0 ≤ k ≤ n, satisfies the following equalities and inequalities:

vk > fk, for k < k0,

vk = fk, else

and, for n even,

vk > gk, for k ≤ k0,

vk < gk, else,

whereas, for n odd,

vk > gk, for k ≤ k0,

vk = gk, for k = k0 + 1,

vk < gk, else.

Proof. The proof follows trivially from the previous Theorem. �

The previous theorem determines the optimal strategy. Because of the various equalities, there are
many situations of indifference. For example, for k ≥ k0, we can either accept or reject a candidate
that if best-so-far. We end by stating one optimal strategy that is easy to remember:

Reject the first k0 applicants. After that hire the first second-best-so-far applicant
that comes along.

Using such an optimal strategy, the probability of successfully hiring the second-best applicant is

v0 =
k0(n− k0)

n(n− 1)
≈ 1/4.

Figure 1 shows a plot of fk, gk, and vk for an even value of n while Figure 2 shows a similar plot
for an odd value.

4. DIGGING DEEPER.

Suppose, instead of the second best, we wish to select the m-th best out of n. This problem can
be attacked in a manner analogous to that of the previous section. Indeed, let fj,k denote the
probability of ending up with the m-th best choice given that this person is currently known to be
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FIGURE 1. A plot of fk, gk, and vk for n = 10.

the j-th best of out the first k interviewed. It is easy see that

fj,k =


k − j + 1

k + 1
fj,k+1 +

j

k + 1
fj+1,k+1, j ≤ k < n,

1, j = m, k = n,

0, j 6= m, k = n.

Clearly, fm+1,k = 0 for all k.

Theorem 3. For j ≤ m,

fj,k =

(
k
j

)(
n−k
m−j

)(
n
m

) j

m
.
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FIGURE 2. A plot of fk, gk, and vk for n = 11.

Proof. Backward induction on j and k proves that fj,k is unique. Hence, it suffices to check that
the formula given actually satisfies the defining equation. We compute

k − j + 1

k + 1
fj,k+1 +

j

k + 1
fj+1,k+1

=
k − j + 1

k + 1

(
k+1
j

)(
n−k−1
m−j

)(
n
m

) j

m
+

j

k + 1

(
k+1
j+1

)(
n−k−1
m−j−1

)(
n
m

) j + 1

m

=

(
k
j

)(
n−k−1
m−j

)(
n
m

) j

m
+

(
k
j

)(
n−k−1
m−j−1

)(
n
m

) j

m

=

(
k
j

)(
n−k
m−j

)(
n
m

) j

m

= fj,k.
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�

As before, let vk denote the optimal probability of success given that k candidates have been
interviewed and rejected. The HJB equation for vk is

vk =
k −m+ 1

k + 1
vk+1 +

m∑
j=1

1

k + 1
max(vk+1, fj,k+1).

Unfortunately, except for the cases m = 1 (the traditional secretary problem), m = 2 (the pick
the second-best problem), and, by symmetry, m = n and m = n− 1, no other cases have explicit
solutions.

They are, however, easy to compute numerically. The problem of picking the median candidate
from an odd-sized pool seems particularly interesting.

5. CONCLUSIONS.

We have given an explicit solution to the problem of finding the second-best from a pool of n
“postdoc” applicants. It turns out that this problem has a more explicit solution than the traditional
secretary problem. Specifically, the optimal strategy is to reject the first half of the applicants
and then to accept the first second-best-so-far applicant that arrives after rejecting the first half.
The probability of success using this strategy is about 1/4. Apparently, it is harder to select the
second-best from a pool of applicants than it is to select the best.

Of course, the result in this paper raises the question: what about picking the 3rd best, or the 4th
best, or, more generally, the k-th best. We leave these investigations to future work.

Acknowledgements. The author would like to thank Eugene Dynkin for suggesting this problem
to him thirty-two years ago (the problem was solved in a few days but only written up for publica-
tion now). The author would also like to thank XXX for reading a draft of this paper and providing
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The author recently learned that the second-best problem was solved by John Rose [6].
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