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Imagine being shownN samples of random variables drawn independently from the same distribu
What can you say about the distribution? In general, of course, the answer is nothing, unless yo
some prior notions about what to expect. From a Bayesian point of view one needs ana priori
distribution on the space of possible probability distributions, which defines a scalar field theory
one dimension, free field theory with a normalization constraint provides a tractable formulation o
problem, and we discuss generalizations to higher dimensions. [S0031-9007(96)01804-2]
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As we watch the successive flips of a coin (or
meanderings of stock prices), we ask ourselves if wha
see is consistent with the conventional probabilistic mo
of a fair coin. More quantitatively, we might try to fit th
data with a definite model that, as we vary paramet
includes the fair coin and a range of possible biases.
estimation of these underlying parameters is the clas
problem of statistical inference or “inverse probability
and has its origins in the foundations of probability the
itself [1]. But when we observe continuous variables,
relevant probability distributions are functions, not fin
lists of numbers as in the classical examples of flipp
coins or rolling dice. In what sense can we infer th
functions from a finite set of examples? In particul
how do we avoid the solipsistic inference in which ea
data point we have observed is interpreted as the loca
of a narrow peak in the underlying distribution?

Let the variable of interest bex with probability distri-
butionQsxd; we start with the one dimensional case. W
are given a set of pointsx1, x2, . . . , xN that is drawn inde-
pendently fromQsxd, and are asked to estimateQsxd it-
self. One approach is to assume that all possibleQsxd are
drawn from a space parametrized by a finite set of c
dinates, implicitly excluding distributions that have ma
sharp features. In this case, it is clear that the numbe
examplesN can eventually overwhelm the number of p
rametersK [2]. Although the finite dimensional case
often of practical interest, one would like a formulati
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faithful to the original problem of estimating a functio
rather than a limited number of parameters.

No finite number of examples will determine unique
the whole functionQsxd, so we require a probabilistic de
scription. Using Bayes’ rule, we can write the probabil
of the functionQsxd given the data as

PfQsxd j x1, x2, . . . , xN g


Pfx1, x2, . . . , xN j QsxdgPfQsxdg

Psx1, x2, . . . , xN d
(1)


Qsx1dQsx2d · · · QsxN dPfQsxdgR

fdQsxdgQsx1dQsx2d · · · QsxN dPfQsxdg
, (2)

where we make use of the fact that eachxi is chosen
independently from the distributionQsxd, and PfQsxdg
summarizes oura priori hypotheses about the form o
Qsxd. If asked for an explicit estimate ofQsxd, one
might try to optimize the estimate so that the mean-squ
deviation from the correct answer is, at each pointx, as
small as possible. This optimal least-square estim
Qestsx; hxijd is the average ofQsxd in the conditional
distribution of Eq. (2), which can be written as

Qestsx; hxijd 
kQsxdQsx1dQsx2d · · · QsxN dls0d

kQsx1dQsx2d · · · QsxN dls0d , (3)

where byk· · ·ls0d we mean expectation values with resp
to thea priori distributionPfQsxdg. The prior distribution
© 1996 The American Physical Society 4693
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PfQsxdg is a scalar field theory, and then-point functions
of this theory are precisely the objects that determine
inferences from the data.

The restriction of the distributionQsxd to a finite di-
mensional space represents, in the field theoretic
guage, a sharp ultraviolet cutoff scheme. Several auth
have considered the problem of choosing among distr
tions with different numbers of parameters, which cor
sponds to assuming that the true theory,PfQsxdg, has a
hard ultraviolet cutoff whose unknown location is to b
set by this choice. As in field theory itself, one wou
like to have a theory in which the observable quantities
like your best estimateQestsx; hxijd—are independentof
the cutoff as the cutoff goes to infinity. Our Bayesian a
proach will provide this.

The prior distribution,PfQsxdg, should capture our
prejudice that the distributionQsxd is smooth, soPfQsxdg
must penalize large gradients, as in conventional fi
theories. To have a field variablefsxd that takes on a
full range of real valuess2` , f , `d, we write

Qsxd 
1
,0

expf2fsxdg , (4)

where ,0 is an arbitrary length scale. Then we ta
f to be a free scalar field with a constraint to enfor
normalization of Qsxd. Thus fsxd is chosen from a
probability distribution

P,ffsxdg 
1
Z

exp

∑
2

,

2

Z
dxs≠xfd2

∏
3 d

∑
1 2

1
,0

Z
dx e2fsxd

∏
, (5)

where Z is a normalization constant and, is a length
scale that defines the hypothesized smoothness of
distribution Qsxd. We write P,ffsxdg to remind us that
we have chosen a particular value for,, and we will later
consider averaging over a distribution of,’s, Ps,d. The
objects of interest are the correlation functions

kQsx1dQsx2d · · · QsxN dls0d


Z

DfP,ffsxdg
NY

i1

1
,0

expf2fsxidg (6)


1

,N
0

1
Z

Z dl

2p

Z
Df expf2Ssf; ldg , (7)

where, by introducing the Fourier representation of
delta function, we define the action

Ssf; ld 
,

2

Z
dxs≠xfd2

1 i
l

,0

Z
dx e2fsxd 1

NX
i1

fsxid 2 il . (8)

We evaluate the functional integral in Eq. (7) in a sem
classical approximation, which becomes accurate asN
4694
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becomes large. Keeping only the configuration that
tremizes the action—the pure classical approximati
with no fluctuations—is equivalent to maximum likel
hood estimation, which chooses the distribution,Qsxd,
that maximizesPfQsxd j hxijg. In our case, integration
over fluctuations will play a crucial role in setting th
proper value of the scale,.

The classical equations of motion forf andl are

dSsf; ld
dfsxd


≠Ssf; ld

≠l
 0 , (9)

which imply

,≠2
xfclsxd 1 i

lcl

,0
e2fclsxd 

NX
i1

dsx 2 xid , (10)

1
,0

Z
dx e2fclsxd  1 . (11)

Integrating Eq. (10) and comparing with Eq. (11), w
find that ilcl  N, provided that ≠fsxd vanishes as
jxj ! ` [3]; as is often the case, the steepest desc
approximation to the integral requires us to deform
integral into the complexl plane. If the pointshxij are
actually chosen from a distributionPsxd, then, asN !

`, we hope thatfclsxd will converge to 2 lnf,0Psxdg.
This would guarantee that our average over all poss
distributionsQsxd is dominated by configurationsQclsxd
that approximate the true distribution. So we wr
fclsxd  2 lnf,0Psxdg 1 csxd and expand Eq. (10) to
first order in csxd. In addition we notice that the sum
of delta functions can be written as

NX
i1

dsx 2 xid  NPsxd 1
p

N rsxd , (12)

wherersxd is a fluctuating density such that

krsxdrsx 0dl  Psxddsx 2 x0d . (13)

The (hopefully) small fieldcsxd obeys the equation£
,≠2

x 2 NPsxd
§
csxd 

p
N rsxd 1 ,≠2

x ln Psxd , (14)

which we can solve by WKB methods because of
large factorN:

csxd 
Z

dx0 Ksx, x0d f
p

N rsx0d 1 ,≠2
x ln Psx0dg ,

(15)

Ksx, x0d ,
1

2
p

N
f,2PsxdPsx0dg21y4

3 exp

"
2

Z maxsx,x0d

minsx,x 0d
dy

s
NPs yd

,

#
. (16)
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Thus the “errors”csxd in our estimate of the distribution
involve an average of the fluctuating density over
region of (local) sizej , f,yNPsxdg1y2. The average
systematic error and the mean-square random error
easily computed in the limitN ! ` because this length
scale becomes small. We find

kcsxdl 
,

NPsxd
≠2

x ln Psxd 1 · · · , (17)

kfdcsxdg2l 
1
4

1p
NPsxd,

1 · · · , (18)

justifying our claim that the classical solution converg
to the correct distribution.

The complete semiclassical result is

kQsx1dQsx2d · · · QsxN dls0d ø

1
,N

R expf2Ssfcl; l  2iNdg , (19)

whereR is the ratio of determinants,

R 

∑
detf2,≠2

x 1 NQclsxdg
dets2,≠2

xd

∏21y2

. (20)

This has to be computed a bit carefully—there is
restoring force for fluctuationsl, but these can be
removed by fixing the spatially uniform component
fsxd, which enforces normalization ofQsxd [4]. Then
the computation of the determinants is standard [5],
we find

R  exp

∑
2

1
2

µ
N
,

∂1y2 Z
dx

q
Qclsxd

∏
, (21)

where as before we use the limitN ! ` to simplify
the result [6]. It is interesting to note thatR can also
be written as expf2s1y2d

R
dx j21g, so the fluctuation

contribution to the effective action counts the number
independent “bins” (of size,j) that describeQsxd.

Putting the factors together, we find that

kQsx1dQsx2d · · · QsxN dls0d ø
NY

i1

Psxid expf 2 Fsx1, x2, . . . , xN dg , (22)

where the correction termF is given by

Fshxijd 
1
2

µ
N
,

∂1y2 Z
dx P1y2sxde2csxdy2

1
,

2

Z
dxs≠x ln P 2 ≠xcd2 1

NX
i1

csxid .

(23)

The crucial point, which can be verified from the explic
solution in Eq. (16), is thatFshxijd is finite, even when
multiple points xi approach each other. Hence o
a

are
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estimate of the probability distribution from Eq. (3)
finite even when we ask aboutQsxd at the points where
we have been given examples: we are in one dimen
where ultraviolet divergences are not a problem.

Although our theory is finite in the ultraviolet, w
do have an arbitrary length scale,. This means tha
we define,a priori, a scale on which variations of th
probability Qsxd are viewed as “too fast.” One woul
rather let all scales in our estimate of the distribut
Qsxd emerge from the data points themselves. We
restore scale invariance (perhaps scale indifference
better term here) by viewing, itself as a paramete
that needs to be determined. Thus, as a last ste
evaluating the functional integral, we should integr
over ,, weighted by some prior distribution,Ps,d, for
values of this parameter. The hope is that this integ
will be dominated by some scale,,p, that is determined
primarily by the structure ofQsxd itself, at least in the
largeN limit. As long as oura priori knowledge about,
can be summarized by a reasonably smooth distribut
then, at largeN , ,p must be the minimum ofF, since this
is the only place where, appears with coefficients tha
grow as powers ofN. To see how this works we compu
the average value ofF and minimize with respect to
,. Up to constant factors, this amounts to balancing
, dependence of the kinetic energy against that of
fluctuation determinant. The result is

,p ~ N1y3

∑ R
dx P1y2R

dxs≠x ln Pd2

∏2y3

. (24)

Strictly, one should use a particular value ofF and not its
average, but fluctuations are of lower order inN and do
not change the qualitative result,p ~ N1y3.

If the fluctuation effects were ignored, as in maximu
likelihood estimation,, would be driven to zero an
we would be overly sensitive to the details of the d
points. This parallels the discussion of “Occam facto
in the finite dimensional case, where the phase sp
factors from integration over the parametershgmj serve
to discriminate against models with larger numbers
parameters [2]. It is not clear from the discussion
finite dimensional models, however, whether these fac
are sufficiently powerful to reject models with an infini
number of parameters. Here we see that, even in
infinite dimensional setting, the fluctuation terms a
sufficient to control the estimation problem and selec
model with finite,N-dependent, complexity.

Because we are trying to estimate a function, rat
than a finite number of parameters, we must allow o
selves to give a more and more detailed description of
function Qsxd as we see more examples; this is qua
fied by the scalejp on which the estimated distribution
forced to be smooth. With the selection of the optim
, from Eq. (24), we see thatjp ~ s,pyNd1y2 ~ N21y3.
The classical solution converges to the correct ans
4695



VOLUME 77, NUMBER 23 P H Y S I C A L R E V I E W L E T T E R S 2 DECEMBER 1996

c

e

t
a

r

ry
-
in
e

tiv
a

u

e

i

th

c

c
v
le

d
a
—

io

or-
ite
-
ess
tion

of
i-
of

the
re
”

ge
e
nt
r-

o-
or

n,
n

b-
at

al-
ta
sa-

l
-

of

s
-

arn-
and

-
n
V.

ion
e

with a systematic error, from Eq. (17), that vanishes
kcl ~ N22y3, while the random errors have a varian
[Eq. (18)] that vanishes with the same power ofN . We
can understand this result by noting that in a region
size jp there are, on average,Nex , NPsxdjp examples,
which scales asNex ~ N2y3; the random errors then hav
a standard deviationdcrms , 1y

p
Nex [7].

What happens in higher dimensions? If we keep
free field theory then we will have problems with ultr
violet divergences in the various correlation functions
the fieldfsxd. BecauseQsxd  s1y,d expf2fsxdg, ultra-
violet divergences inf mean that we cannot define a no
malizable distribution for the value ofQ at a single point
in the continuum limit. In terms of information theo
[8], if functions Qsxd are drawn from a distribution func
tional with ultraviolet divergences, then even specify
the functionQsxd to finite precision requires an infinit
amount of information.

As an alternative, we can consider higher deriva
actions in higher dimensions. All the calculations
analogous to those summarized above, so here we
only the results. If we write, inD dimensions,Qsxd 
s1y,D

0 d expf2fsxdg, and choose a prior distribution

Pffsxdg 
1
Z

exp

∑
2

,2a2D

2

Z
dDxs≠a

x fd2

∏
3 d

∑
1 2

1

,D
0

Z
dDx e2fsxd

∏
; (25)

then to insure finiteness in the ultraviolet we m
have 2a . D. The saddle point equations lead to
distribution that smooths the examples on a scalej ,
s,2a2DyNQd1y2a , and the fluctuation determinant mak
a contribution to the action~

R
dDxfNQsxdy,2a2D gDy2a.

Again we find the optimal value of, as a compromise
between this term and the kinetic energy, resulting in,p ~

NDys4a22D2d. Then the optimal value ofj becomesjp ~

N21ys2a1Dd, so that the estimated distribution is smooth
volumes of dimensionjD

p that containNex , NQjD ,
N2ays2a1Dd examples. Then the statistical errors in
estimate will behave as

dcrms ~ dQyQ , N21y2
ex , N2m, (26)

with the “error exponent”m  ays2a 1 Dd. Note that
since2a . D, the exponent1y4 , m , 1y2. The most
rapid convergence,m  1y2, occurs if Qsxd is drawn
from a family of arbitrarily smooth (a ! `) distribu-
tions, so we can choose fixed, small bins in which to ac
mulate the samples, leading to the naive1y

p
N counting

statistics. If we assume that our prior distribution fun
tional is local, thena must be an integer and we can ha
m ! 1y4 only as D ! `, so that the slowest possib
convergence occurs in infinite dimension.

The fact that higher dimensional functions are more
ficult to learn is often called the “curse of dimension
ity.” We see that this is not just a quantitative problem
unless we hypothesize that higher dimensional funct
4696
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are drawn from ensembles with proportionately higher
der notions of smoothness, one would require an infin
amount of information to specify the function at finite pre
cision. Once we adopt these more stringent smoothn
hypotheses, however, the worst that happens is a reduc
in the error exponentm by a factor of 2.

Is there a more general motivation for the choice
action in Eq. (25)? First, this action gives the max
mum entropy distribution consistent with a fixed valueR

dDxs≠a
x fd2, and by integrating over, we integrate over

these fixed values. Thus our action is equivalent to
rather generic assumption that probability distributions a
drawn from an ensemble in which this “kinetic energy
is finite. Second, addition of a constant tofsxd can be
absorbed in a redefinition of the arbitrary,0, so it makes
sense to insist onf ! f 1 const as a symmetry. Fi-
nally, addition of other terms to the action cannot chan
the asymptotic behavior at largeN unless these terms ar
relevant operators in the ultraviolet. Thus many differe
priors PfQsxdg will exhibit the same convergence prope
ties, indexed by a single exponentmsad.

We thank V. Balasubramanian, R. Koberle, S. Om
hundro, and W. Smith for helpful discussions and f
comments on the manuscript.
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