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We present expressions for rates of radiationless transitions in two-level systems with ar-
bitrary coupling to a set of damped vibrational modes; calculations are limited to transitions
slower than vibrational relaxation. Explicit results are discussed within the harmonic ap-
proximation and Condon approximation; systematic methods are introduced for treating
non-Condon and anharmonic effects. Results relevant to experiment are (1) significant devi-
ations from the energy-gap law when a small number of vibrational modes is coupled to the
transition, (2) dependence of transition rate on homogeneous and inhomogeneous vibrational
linewidths, (3) nonexponential decay for transitions with vibrational frequency shifts, and (4)
persistence of electronic coherence for long times either at low temperature or when fre-
quency shifts are small. Our approach differs from previous work in the partitioning of the
Hamiltonian and in the methods of evaluating operator averages; these differences are dis-
cussed in relation to the adiabatic approximation and the irreversibility of the transition.

I. INTRODUCTION

The theory of phonon-assisted, or “vibronically
coupled,” radiationless transitions has been used to
treat a wide variety of phenomena, ranging from
internal conversion and intersystem crossing to ener-
gy and charge transfer; recent articles? have re-
viewed applications of radiationless transition theory
to condensed matter physics. A distinguishing
feature of these phenomena, in contrast to other
phonon-assisted processes, is that the electron-
phonon coupling may be large and is therefore treat-
ed nonperturbatively.

Calculations of radiationless transition rates in
vibronically coupled systems have proceeded by
averaging the vibrational-state to vibrational-state
transition probability over an appropriate ensemble.
Various methods have been introduced to evaluate
this average,>~> but explicit calculations for more
realistic Hamiltonians are often difficult.>® An al-
ternative approach, developed by Soules and Duke,’
is to write the transition rate as the spectral density
of a specific unitary operator. The spectral-density
method was used by Haken and Strobl® for a
phenomenological model in which the spectral func-
tions take a simple form. The Haken-Strobl model
has the advantage of exact solvability, but, as
Wertheimer and Silbey’ pointed out, it fails to satis-
fy detailed balance. Silbey and co-workers'°~!? ap-
plied the spectral-density method in the context of a
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reduced density-matrix formalism, which does obey
detailed balance. All of these methods require exter-
nal postulates, not contained in the Hamiltonian, to
guarantee irreversibility of the transition and con-
vergence of the integrals which define the transition
probability. For example, Kenkre, Knox, and co-
workers'>!* use a coarse-graining procedure, while
Silbey and co-workers restrict their calculations to
systems where the vibrational modes form a contin-
uum. The coarse-graining procedure has the disad-
vantage that the transition rate may depend upon
the coarse-grain scale, as is evident in the calcula-
tions of Jortner.!

We present a generalization of the canonical-
transformation and spectral-density method for
two-level systems, a method subject only to two ap-
proximations: perturbation theory in the electronic
matrix element and assumed slowness of the transi-
tion relative to vibrational relaxation. This ap-
proach is based on a division of phonon modes into
a “quantum system” and a heat bath, thus guaran-
teeing irreversibility and relating radiationless tran-
sition rates to experimentally observable vibrational
linewidths. Our approach also provides a tractable
calculational method for a wide range of model
Hamiltonians. We provide an explicit solution for a
two-level system in the harmonic and Condon ap-
proximations, and an effective procedure for the in-
clusion of anharmonic and non-Condon corrections.
Using these methods, we draw general conclusions
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regarding the dynamics of radiationless transitions
in the slow regime.

In the statistical limit of a large number of vibra-
tional modes with incommensurate frequencies, we
find that the transition rate is a Gaussian function
of the electronic energy gap; this “energy-gap law”
has been demonstrated by other workers under more
restrictive assumptions. The single-mode case, how-
ever, exhibits potentially narrow resonances; non-
Condon effects may also provide corrections to the
Gaussian form. These results may be significant in
the interpretation of observed deviations from the
energy-gap law.

We treat cases in which vibrational relaxation is
much faster than transition rates, so that the vibra-
tions remain in thermal equilibrium during a reac-
tion. Vibrational operators in the Hamiltonian
therefore become stochastic, time-dependent func-
tions, whose properties are determined from the
equilibrium phonon Green’s functions. In turn, a
Hamiltonian with stochastic coefficients can be
solved with perturbation theory in analogy to the
theory of relaxation in magnetic resonance. Relaxa-
tion theory establishes that the expectation values of
the operators describing the two-level system follow
the Bloch equations and allows time constants—T;
and T,—to be written as Fourier transforms of
correlation functions derived from the stochastic
coefficients. The distinction between adiabatic and
nonadiabatic regimes is not relevant in this method,
and therefore our results are valid in both cases.

We discuss relaxation theory in Sec. II and
develop a model Hamiltonian in Sec. III. In Sec. IV,
we develop a unitary transformation of the entire
Hamiltonian that casts it into the form used in Sec.
II. We then calculate reaction rates for several spe-
cial cases in Sec. V and conclude with a general dis-
cussion of the consequences of this method.

II. RELAXATION

The theory of relaxation in two-level systems'®!’

is based on a Hamiltonian of the form
H=5€0,+H,(t)o,+H,(o, +H,(Do, , (1)

where Pauli matrices are used to describe the two-
level system. We assume the measurement operator
to be o; thus, an experiment consists of measuring
the time dependence of {(o,). € is an energy split-
ting between the eigenstates of o, in the absence of
relaxation. The H;(¢) are stochastic functions of
time, or more rigorously, coordinates of some “loss
mechanism” for the two-level system for which
<H ,(t) ) = O.

If the loss mechanism remains in equilibrium
throughout the change of electronic state, and if

measurements are on a time scale long relative to the
correlation times of the H;(z), the expectation values
of the o operators obey the Bloch equations

(0y)=— (;’;> +€(o,) , (2a)
. (o,)

(5,)=— Tyz —€{oy), (2b)
<(}z>=_<"’—>;-1°1°°—). (20)

To lowest order in perturbation theory, 7'y and T,
are given by

1
Tiz#[2ku(0)+k,x(e')+kyy(e’)] , 4)
2

k(€)= f_ww dr(H;(0H(t +7))

6’
—i—T

7 (5

X exp

Note that Ty and T, depend only on the autocorre-
lations of the H;(¢), even if the cross correlations are
nonzero, and even if the H;(¢) do not commute. In
Sec. IV we transform our model Hamiltonian into a
form analogous to Eq. (1) and then provide a
method for calculating the correlation functions ap-
pearing in Eq. (5).

III. MODEL HAMILTONIAN

The measurement operator will not encompass all
system degrees of freedom, so that a general Hamil-
tonian can be written as

H,(3,%) V(B,%)
H=| - I N (6)
V(p,X) Hy(P,X)

where X and P are the coordinates and momenta of
the remaining degrees of freedom. The operator ¥
can be made Hermitian by a choice of wave-function
phase. We refer to the two-level system as the elec-
tronic coordinate, to X as the nuclear coordinates,
and to the part of the “first-order” Hamiltonian, Eq.
(6), that commutes with the measurement operator
as the “zeroth-order” Hamiltonian H,.

Nuclear vibrations—when measured by infrared
absorption or Raman spectroscopy—display finite
linewidths, and therefore appear damped. We in-
clude damping explicitly by separating the nuclear
coordinates into two groups: a small group that will
be treated quantum mechanically, and will continue
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to be designated by X and P, and a large group that
will be treated as a heat bath. Only the temperature
of the heat bath and its coupling to the quantum vi-
brations need be specified.

Following Senitzky,'® the Hamiltonian can be
written as

H= j€0,+V(,X)0x+5(1+0,)H . (5,%)

+5(0—0)H_(3,X)+B'T+Hp,

where 04 = (ax io,); f)'-l:" describes the coupling
between the heat-bath Hamiltonian H,, and the
quantum vibrations; and %eoz allows for an overall
energy difference between electronic states.
H, (H_) is the effective vibrational Hamiltonian
when the electronic subsystem is in the + (—) state.
It is the difference between H, and H _ that pro-
vides for coupling between the reaction (transition
between electronic states) and the nuclear vibrations.
The following four approximations will be made:

(1) the slow approximation, in which the quantum
vibrational modes are assumed to remain in thermal
equilibrium with the heat bath as the reaction
progresses. _

(2) a first-order perturbative approximation in ¥,
whose validity depends upon the relative values of ¥V
and €. _

(3) the Condon approximation, in which V(X,P)
is assumed to be independent of X and P.

(4) the harmonic approximation, in which H
and H_ describe simple harmonic oscillators with
different frequencies or equilibrium positions or
both.

IV. TRANSFORMATION
OF THE HAMILTONIAN

A transformation U that casts the model Hamil-
tonian into a form that can be used in relaxation
theory can be developed as follows. The part of the
zeroth-order Hamiltonian that contains vibrational
operators is

Hp,= %(1+02)H++%(1—02)H_
+3 T+Hyp , (8)

a,T(Ru—l—SU )aj + %a,-

:F:=K:exp lz

ij

Ru Mj +a;

S TRy
k

u 2 leRkj

in which H_ and H _ are expressible in terms of Zz']-T
and @;, defined by

172
(wj+p;io,)
G=3 | Aplo) X+ Agory) |—2TBI72
e 2
1 172
idi; (0P | —— :
+ iy (0P 2w, +py0) l
9)

X, Py, and Ay are the position, momentum, and po-
sition shift of the kth atom, w; is the average fre-
quency of the jth mode, p; is the difference in the
Jjth vibrational frequency between the two electronic
states, and 4 expresses the normal mode structure
(i.e., combinations of coordinates that define the
normal modes).

In the slow approximation, the vibrational coordi-
nates move in obedience to H phs obtained from Eq.
(8) by replacing o, with (az) Correspondingly, we
define operators a; and al ; by replacing az with
(0;) in Eq. (9) and define U such that Ua;U —aj
U commutes with o, but not with o, or o_. Thus
the transformed Hamiltonian may be written

UHU'=o,[e/2+D(a
+VF a_+th~(az)D ata), (10

ata)]+ VFo

where
—(o,))D(a",a)=UH ,U'—H,,

V= UVUT and Fa+—U0+UT, so that V has the
same form as V but with @ replaced by a, and
F=U(o,—+ nu' (o,—>—1). Note that in the
Condon approximation ¥V is a ¢ number.

It is useful to construct F in its normally ordered
form, denoted :F:; similar considerations apply to U
or to ¥V as would be necessary for explicit treatment
of non-Condon models. This is done by first
evaluating the commutator of F with a;, and then
solving the equations'®

9:F: t;  O:F:
Fia;]=— and [:F:a;]= (11)
(Fuag)= ¢ and [F3a/1= 5
We obtain
ER TkJ aJ

Mj

]: , (12)
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where R;;, T;;, and 7; are given by

172
Ry= 3 w0 DA (0, + Do~ D57 (G0, eosh [ fj}jﬁj:;;ﬁfj’;’;’li /}, (13)
T;j=R;j(cosh—sinh) , (14)
n;=[(w;+p;{0o,))/2#]'
X %Ajk((aﬂ)((zfz)—l)Ak
—n§IAj,,(<Uz>)A,,7I(Uz—>+l)Alk(o,—>——l) Z;—;’;Z ({o,) + DA, (15)

The constant K may be determined from the condition of unitarity.
By comparing Eqgs. (1) and (10), the stochastic coefficients can be identified. From these identifications we
obtain,?® with € =e+2(D),

1 _2 r- i€ o)t toypt

=7 [ dren | =i [(VOF@F VIO + o v 0F 0)) (16)
_l”zifw dT[(D(T)D(0)>—<D>2]+‘—1 . 17)
T, # 7J-o 2T,

To evaluate these formulas we require a method of computing correlation functions, such as
(FT(r)V(r)V(0)F(0)), which in the Condon approximation reduces to V*(F'(r)F(0)). The expectation
value of a single normally ordered operator, such as (:F (aT,a):), can be computed by c-number integra-
tions,'»?! provided the generating function (e =6 ¢ ~6?) is known,

(Flaar)= [dPad%e €7 (e~ F(a',a): . (18)

Note that @ =(a’,a) and E =(&',£) are real numbers, not operators, and :F(a',a): has the same functional form
as :F( aT,a):, with o and @ replaced by @’ and a, respectively.
This technique can be extended to products of normally ordered operators,

Lo _i€ o T B , ,
(Filal,a))Fyal,an)) = [ dadige= E T (¢ 1% M TR TR By (o)) Fyap,an):
' (19)

where a; =a(t}), etc. The two-time generating function may be evaluated by a cumulant expansion; in the har-
monic case, this has only two terms because the operators are Gaussian variables. The terms in the cumulant
expansion are the irreducible Green’s functions'®!%?? for the operators a' and a. If 7=t,—t, and
o'=w+p{a,), these are

(aya,)=(ala})=0, (20)

(ala;)z(v-{—l)exp(ia)’T—y[Tl ), 21

(a;raz)———Vexp(—ico’T—ﬂrf ), (22)
where

v=(™ T _1)-1, (23)

From these expressions it may be shown that

_ilt_' _.’aT—. ’ ’ T % ’ 158
(e 1% T mi0242, ‘5202>=CXP[—V(§1§1+§2§2)—(V+1)§1§29m7_7w—Vglgze_m”‘ym]- (24)
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For the harmonic and Condon approximations, 1 2V2
the above method is sufficient to cast the calculation T, f drexp{ i [e/h+(v+ bl
of relevant correlation functions into two c-number
Gaussian integrals over N four-dimensional vari- +9%x +y —2v—1)}

ables, where N is the number of vibrational modes.
Non-Condon effects can be easily incorporated by
writing V(a',a)in normally ordered form and using
igaj e ! €49, ).

l+§(x+y-—2§—l)
a new generating function (e

This results in two c-number mtegrals over eight- (25)
dimensional variables. At least one integral is

Gaussian, and by power series expanding V the other 1 _ 2&25(74. 1+ L , (26)
may always be written as a sum of moments of T, 14 2Ty
Gaussian integrals.

The Gaussian character of the above generating B=%ln Lt , 27
functions stems from the harmonic approximation. @+p
If anharmonic effects are to be incorporated, _ , 172 By B
higher-order Green’s functions contribute higher cu- n=Amo’ /2o, )1 —ef) = (14D,
mulants to the generating functions. It should be (28)
stressed, however, that the only modification needed _ .,

x =@+ Dexplio't—y|7|), (29)

in the above method is in the generating function.
In particular, the calculation of F need not be y=vexp(—io'T—y|T]) . (30)
changed, although it may be convenient to do so.

V. SPECIAL CASES We calculqte t.he integral in Eq (25)_by power
series expanding in x and y, and directly integrating
the resulting exponentials in 7 to obtain a sum of

A. Single vibrational mod .
ingie vibrationat mode Lorentzmns If the effective energy gap

When a system contains only a single vibrational €=e+(V4+7 )pﬁ is an integer multiple of fiw’, we
mode and the frequency shift p/w’ is small, then in can use a Bessel function identity to sum the dom-
the harmonic and Condon approximations, we find inant terms,

|
- ' /28’
1 4P2—S@+D (54 € P 1 » - "
P s 1-Zovsn) [, dz27 Te jpr {252[97+ D]'?)

1
+§[V(V+1)]1/2 fo dzz ¢ oy 1 {282[7(7+ 1]

1
4 5[‘_}(1_/+1)]—1/2 fo dz I jgey o1 (2S2[VF+ 1] |, (31

where S =72, I is a modified Bessel function, and z is a dummy variable.??

To obtain the rate constant when the vibrational line is inhomogeneously broadened on a time scale faster
than T, Eq. (25) must be convolved with the vibrational line shape; if this is Gaussian, the following result ob-
tains, neglecting terms in p/w’,

172 € /2%
‘ v41

2, —S(2v+1) '
L _4Ve o t T (2S[9(+ D]V, (32)

v

2

where ¢’ >>7 is the inhomogeneous linewidth. -

These results cannot be extended analytically to nonintegral values of €' /7iw’, because f _d€ T7'(€) cal-
culated from Eq. (31) would differ from the same quantity correctly calculated from Eq. (16) This limitation
can be overcome by the following stratagem. Viewed as a function of €, T1!is a sum of Lorentzians, whose
peak positions are integral multiples of #iw’, and whose widths depend on y. We approximate the sum of all
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Lorentzians with fixed peak position as a Gaussian whose variance will be determined such that
T7'de'=4nV?/4%, as can be directly calculated from Eq. (16) in the Condon approximation. For example,

in the inhomogeneous case (neglecting terms in p/w’),

"2 fico'

’

4V28 —S(2v+1)
,},fﬁZ

V1
v

_71

2

where o is the standard deviation of the Gaussian.
We find

o=2y'/S . (34)
B. Statistical limit

When there exists a large number of independent
vibrational modes, the integrand in Eq. (5) factors
into a product of correlation functions, one for each
mode,

2
—1—=2 f_: dTexp

14
T #

€
—i—T
#i

J

(35)

If the modes have incommensurate frequencies, T
can be evaluated by the central limit theorem.?* The
result is Gaussian, with a mean and variance given
by the sum of means and sum of variances, respec-
tively, of the Fourier transforms of the individual
correlation functions. Thus

47 V? o
#V 27s P

91InC;(7)
M=—iZ
J

_ (e/h—M)?
2s

1
T,

J ) (36)

=0
and (37)
azlan(r)
S =

J

=0

Within the Condon and harmonic approxima-
tions, the central limit theorem can still be applied
even if the modes are not independent. From above,
the correlation function can be written as an integral
over N dummy variables, with N proportional to the
number of modes; in the harmonic and Condon ap-
proximations this integral is Gaussian. It is always
possible to bring an N-dimensional Gaussian in-
tegral into a product of N Gaussian integrals by a
change of variables, and in these new variables the
correlation function factors as in Eq. (35). Thus the
above method still applies. The Gaussian depen-
dence of the reaction rate on the energy gap is called
the energy-gap law.?> This result may be extended
to those non-Condon models in which the matrix
element has an exponential or Gaussian dependence

172

(€' /fi—now')?

L{2S[%(v+1)]"*}exp | — 07
o

, (33)

r
on the phonon creation and annihilation operators,

but in the general non-Condon case there will be
corrections to the Gaussian form.

V1. DISCUSSION

A. Validity of the slow regime

As a reaction proceeds, energy is transferred from
an electronic degree of freedom into quantum vibra-
tions, which, in turn, are relaxed by a heat bath. If
v is the ensemble-averaged phonon population of a
quantum mode with frequency o, and ¥ its equilibri-
um value, then from conservation of energy

. _ e ;.

VZV(V_V)'F%‘(C}) , (38)
where 7 is the vibrational relaxation rate; the devia-
tion from equilibrium Av=v—% 1is therefore
Av=(€'/#w)/yT,. T; depends on v, so that the
condition for a slow transition is
T, Av 1 ¢ 9dInT,

— - . 39
> v T1 ’}/Tl fiw dv ( )

1

For example, at high temperature, 7| <exp(E %
kpT), and v=kpT /#iw, so that a slow reaction im-
plies

’

€
kpT

Ef

kpT

YTy >> (40)

Thus the criteria for treating reactions as “slow” are
more stringent than y7T'; >> 1.

B. Heat-bath approximation

The separation of vibrational modes into quantum
vibrations and a heat bath should be contrasted with
that of other workers,%2® who treat all vibrational
modes identically. In the absence of a heat bath, one
must retain, in principle, anharmonic interactions
between modes to account for the equilibration of
the system and to ensure the convergence of the in-
tegrals which define the transition rate. In practice,
irreversible depletion of the final modes is provided
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for by fiat, and convergence of the integrals is
achieved by coarse graining. This procedure intro-
duces an arbitrary coarse-graining parameter into
the expression for the reaction rate.

In contrast, our approach uses the fact that in
condensed matter, there is almost always a portion
of the system, such as a lattice or solvent, which
may be identified as a heat bath. We then use the
experimentally measurable vibrational relaxation
rate as the parameter which guarantees convergence
and introduce no arbitrary parameters.

It is important to note that the reaction rate is in-
versely related to the vibrational relaxation rate. In-
creasing the vibrational relaxation rate lowers the
density of accepting states, which, according to
Fermi’s golden rule, produces a smaller transition
rate. It is clearly not true that if the vibrational re-
laxation rate is much faster than the reaction rate,
then vibrational relaxation can be neglected.

C. Validity of perturbation theory

The condition that a perturbation series converge
is that the ratio of successive terms be much smaller
than unity. For the theory presented here, a rough
argument is as follows. The first term in the reac-
tion rate expansion is the product of (¥ /%) and a
single integral over a two-time correlation function.
This results in (¥ /#)? times a characteristic correla-

Reactants
ZEROTHORDER

e ¥ Products
S
I (a)

FIRST ORDER

Energy

Energy

Reactants Products

(b)

VB X

FIG. 1. Energy surfaces for the model Hamiltonian of
Eq. (7) in the Condon approximation and for a single har-
monic phonon mode. (a) Adiabatic approximation to the
zeroth-order surfaces. (b) Adiabatic approximation to the
first-order surfaces. ‘“Nonadiabatic” transitions are those
which occur beiween the approximate first-order surfaces,
while the radiationless transitions discussed in the text
take place between exact zeroth-order surfaces.

tion time 7., and in the limit of first-order perturba-
tion theory, represents the reaction rate T7'. The
second term is the product of (¥ /#)* and a triple in-
tegral over a four-time correlation function, result-
ing approximately in (V /#)*r2. Thus the expansion
parameter is (¥ /#)r., and the validity condition is
I1>>(V/#fi)r., or 1 <<TV/#. Given T, the appli-
cation of perturbation theory therefore requires ¥ to
be greater than a minimum value #%/T;.

D. Adiabatic approximation

The division?” of reactions into adiabatic and
nonadiabatic regimes—which are often identified on
the basis of large or small V, respectively—is based
on the use of an adiabatic (or Born-Oppenheimer)
approximation®® to the first-order Hamiltonian; Fig.
1 shows the adiabatic energy surfaces for our first-
order Hamiltonian with a single harmonic vibration.
In our view, however, reactions are defined by tran-
sitions between exact eigenstates of the zeroth-order
Hamiltonian, which is determined by the experimen-
tal apparatus, and not between adiabatic states of
the first-order Hamiltonian. The adiabatic approxi-
mation is simply not relevant. The magnitude of V
is important in our calculation—it determines the
validity of perturbation theory—but the conditions
of validity for adiabatic approximations and pertur-
bation theory are different.

E. Coherence

Loss of vibrational coherence (y) and electronic
coherence (T,) occurs on different time scales, and
there is no general rule governing their relation. In
the absence of vibrational frequency changes be-
tween the two electronic states, 7,=2T,, so that
electronic coherence persists for the full time course
of the radiationless transition. Frequency changes
can reduce T, considerably, but we always have
T,=2T, in the low-temperature limit [cf. Eq. (26)].
This result, in conjunction with the condition for va-
lidity of perturbation theory, shows that
T,V /#fi>>1. Thus at low temperature or when fre-
quency changes are very small, electronic coherence
persists for many cycles of the “exchange time”
#/V; this result is independent of other features of
the model and is in agreement with experiment.?’

F. The energy-gap law

A number of workers?>3°~32 have found that, in
some approximation, the transition probability has a
Gaussian dependence on the electronic energy gap €.
This is the energy-gap law®>* and is the basis for
the interpretation of a large body of data on radia-
tionless transitions.>*
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In the case of a single vibrational mode, we have
shown that the energy-gap dependence of the transi-
tion rate has considerable structure and is not well
approximated by a Gaussian. This structure arises
from resonances between the electronic energy gap
and integer multiples of the vibrational frequency
and is not an interference effect as may occur with
several modes.*> Abram and Silbey'? have noted the
existence of these resonances, but a proper treatment
must involve explicit consideration of vibrational re-
laxation, as given here. Note that the widths of the
resonances can be smaller than the width of the
relevant vibrational line [Eq. (34)].

In the limit that a large number of vibrational
modes are independently coupled to the electronic
transition, the energy-gap law is an exact quantum-
mechanical result, independent of any semiclassical
approximation. We have found that the statistical
derivation of the energy-gap law may be extended to
an arbitrary transition within the harmonic and
Condon approximations and that non-Condon ef-
fects may generate polynomial corrections to the
Gaussian. For the general case of anharmonic,
non-Condon systems, we have not found any simple
behavior in the statistical limit; therefore the validi-
ty of the energy-gap law remains unclear.

G. Time course of the transition

In the presence of frequency changes, the reaction
rate may depend explicitly on (o,), producing a
nonexponential decay. The decay rate may either
increase or decrease as the reaction progresses, de-
pending on whether the frequencies increase or de-
crease. This should be distinguished from the
nonexponential decay produced by inhomogeneous
broadening, which always produces a reaction rate
that decreases with reaction progress.
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