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Abstract

We review some physical issues in the theory of reaction rates in proteins,
starting with the classic observations of DeVault and Chance on “electron
tunneling” in bacterial photosynthesis and their interpretation by Hopfield.
These ideas lead to a family of generalized spin-boson models for reaction
rates, and these models are used to explore the significance of quantum
effects and the possibility of “‘dynamical specificity” — extreme sensitivity of
the rate to changes in protein dynamics. We assess the success of these
models in rationalizing kinetic and spectroscopic data both on photosyn-
thetic electron transfer and on ligand binding to heme proteins, and conclude
with some open questions.

1. Introduction

One of the basic tasks facing each cell of an organism is the
control of chemical reaction rates. This task is accomplished
by coupling each reaction to a specific protein catalyst, and
the results are impressive: in the photosynthetic apparatus of
bacteria [1], for example, a group of three proteins is respon-
sible for ““arranging” a sequence of electron transfer reac-
tions whose rates span twelve orders of magnitude from
k ~ 102s7!' to k ~ 1s~'. The performance of proteins as
catalysts has traditionally been interpreted semi-empirically,
in terms of a variety of chemical factors that can be mimicked
in the reactions of smaller organic model compounds [2, 3].
But proteins are very large molecules, and there are surely
aspects of protein dynamics which cannot be modelled by
smaller structures; do these special dynamics contribute to
the efficiency and specificity of catalysis? This question, which
is of obvious biological interest, cuts across a variety of
physical issues: How do we describe manifest themselves in
spectroscopic experiments? What are the criteria for quantum
vs. classical behaviour in large molecules? Is there in fact any
physical basis for “dynamical specificity” in the determina-
tion and control of reaction rates?

In the last decade, two very different approaches to these
problems have developed. One approach, which we review
here, may be traced to Hopfield’s 1974 [4] analysis of the
DeVault—-Chance experiments [5, 6] on “electron tunneling”
in photosynthesis. An alternative viewpoint has grown lar-
gely out of experiments by the Illinois group [7-11] on the
binding of small ligands to myoglobin and related proteins.
These two approaches adopt qualitatively different descrip-
tions of protein dynamics with correspondingly different con-
clusions about which physical issues are relevant to under-

* Based in part on discussions at the NORDITA workshop on the Physics
of Biomolecules, Copenhagen, June 1985.

standing biomolecular function. Each set of issues is closely
related to theoretical problems of current interest in con-
densed matter physics. The goal of this short review is to
indicate — at least from one point of view — the relations
between these theoretical issues and emerging experiments. A
more biological perspective on these ideas is presented else-
where [12].

2. The DeVault—Chance reaction

Much of the interest in physical theories of protein reaction
rates can be traced to the experiment of DeVault and Chance
[5], who studied light-induced electron transfer in the photo-
synthetic bacterium Chromatium vinosum. Photon absorption
by a primary electron donor Pg, (P) triggers a sequence of
reactions resulting in the radical cation Pg;. A secondary
donor, cytochrome c (C), then fills the hole on Pg,; the key
observation of DeVault and Chance concerns the tem-
perature dependence of the reaction CP* — C*P, shown
in Fig. 1. At T > 100K we see the conventional Arrhenius
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Fig. 1. Temperature dependence of the reaction rate P*C — C*P in Chro-
matium vinosum. The data may be summarized by the low temperature rate,
k(T = 0) = 2.8 x 10*>s7!, the extrapolated infinite temperature rate,
k(T - o) = 7.8 x 10857, and the activation energy E, = 0.18eV such
that k(T > 150K) = k(T — oo)e 28" After refs. [5] and [6].
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behaviour, with k(T) ~ k(T - o0)e %" but for T <
100K the rate is temperature independent, k(T') ~ k(T = 0).

Temperature-independent reaction rates are suggestive of
tunneling processes, as had in fact been discussed in connec-
tion with photosynthesis for some time. The DeVault—-Chance
reaction was cited as evidence of electron tunneling in bio-
molecules, and analogies to electron tunneling across an
insulating barrier between two metals or superconductors
were pursued. These ideas were wrong because biomolecules,
unlike metals, are dominated by discrete, localized electronic
states. In the absence of an electronic continuum, electron
transfer must be coupled to other degrees of freedom to
guarantee irreversibility and dissipate the ~ 0.45eV energy
difference between initial and final states. Grigorov and Cher-
navskii [13] and Hopfield [4] independently suggested that the
relevant degrees of freedom are molecular vibrations, and
Hopfield showed how a theory of vibrationally assisted elec-
tron transfer could quantitatively account for the DeVault—
Chance data.

Hopfield’s semi-classical argument is schematized in Fig. 2.
We have two electronic states, identified with reactants (CP*)
and products (C*P). In addition there is some vibrational
coordinate of the molecule(s), and the energy of each elec-
tronic state depends on this coordinate. Finally there is a
small matrix element which connects the two states and an
energy gap which separates them. Classically the molecule
is described by a point moving on the potential surface;
conservation of energy then requires that the transition
between the two surfaces occur in the neighborhood of their
crossing — the “transition state”. The reaction rate is
proportional to the probability of finding the molecule on the
reactants’ surface at the crossing. At high temperature this
probability is ~e ***" and we find an Arrhenius tem-
perature dependence. At absolute zero thermal fluctuations
can never carry the vibrational coordinates up to the tran-
sition state, but quantum zero-point motion can. Quantum
fluctuations dominate thermal fluctuations at temperatures
below T, ~ hw/2kg, where w is the vibrational frequency, so
we except a temperature-independent reaction rateat 7 < T
and Arrhenius behaviour at T > T,.

When the reaction occurs as a result of zero-point motion
we actually are observing vibrational tunneling, since the
transition state is in a forbidden region for a classical system
with the zero-point energy #w/2. Thus the onset of tem-
perature independence at T < T, reflects a crossover to tun-
neling as originally suggested, but the tunneling is in the
vibrational sector — the coordinates of atomic nuclei rather
than electrons. Do the electrons tunnel at all? The electronic
dynamics are summarized by the energy gap ¢ and the matrix
element V. If the donor and acceptor sites are far apart then
V is probably controlled by electron motion in a classically
forbidden region, and the dynamics of this electron tunneling
contribute an overall factor ~ V'? to the rate but are irrelevant
for temperature dependence. Unless one can experimentally
test calculations of the matrix element V itself it is unlikely
that “electron tunneling” could be proven.

We can give a very different description of the model in
Fig. 2. This is a theory of two electronic states interacting
with a single phonon mode with phonon energy hw. To
dissipate the electronic energy gap ¢ we must emit N ~ &/hw
phonons, and since we are adopting a semi-classical picture
we don’t worry that this is not exactly an integer; at finite
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Fig. 2. A semi-classical picture of electron transfer as described in the text.
The transition occurs at the crossing of the two potential surfaces (the
“transition state”), and we explicitly note that this point can be reached by
quantum zero-point motion, but this requires motion in a classically forbid-
den region tunneling.

temperature we can absorb m and emit N + m phonons.
Each absorption or emission process contributes a dimen-
sionless electron-phonon coupling S defined below, Bose—
Einstein factors for stimulated and spontaneous emission,
and combinatorial factors since we don’t care about the order
of events. This leads us to guess

k ~ (___)C—S(2ﬁ+l) i SmsN+m

LoV )l @" @+ )V,

(0]
where 7i = (¢~ %" _ 1)~!is the thermal mean number of
phonons e~ *®*! normalizes the probabilities for phonon
emission and absorption, and (——) is everything we left out.
Remarkably, in terms of temperature dependence eq. (1)
misses very little: it indicates a T-independent rate for
fi < 1 and asymptotes to Arrhenius behaviour with E, =
(¢ — Shw)’/4Shw at i > 1. Thus we can understand the
Arrhenius law as a result of stimulated phonon emission, with
no reference to the transition state!

If the activation energy calculated by counting multi-
phonon absorption and emission processes is to agree with
the semi-classical picture then the electron—phonon coupling
must be

SI/Z —

1 / displacement between reactants and products
2 \R.M.S. zero — point displacement fluctuations/

@

To get a feeling for orders of magnitude, consider the lowest
stretching mode of an alpha-helical protein segment. Based
on computer simulations [14] and Brillouin scattering experi-
ments, [15] this mode may be understood by taking the helix
to be a uniform elastic rod of Young’s modulus ¥ = 2 x
10" N/m’, density ¢ = 1.3 x 10°kg/m’, and area 4 = 5 x
107" m’. The vibrational frequency is @ = (¥/g)"? L', with
L the length of the helix; in conventional units we have
hw ~ 20em~' (10A/L). The zero-point motion (fluctu-
ation in helix length) for this mode is 00;, = h/2(eAL)yow ~
(0.046 A)? independent of L. Strong electron-phonon coupling
(S ~ 1) can thus be achieved with extremely small structural



changes (AQ ~ 0.1A) between reactants and products; dis-
placements of this order are observed crystallographically
upon oxidation of cytochrome ¢ [16], one of the participants
in the DeVault-Chance reaction.

Qualitatively these arguments allow us to understand cross-
over from temperature independence to Arrhenius behaviour
in terms of strong coupling between the electronic states of
proteins and some important phonon mode. Can we make a
quantitative theory and address some of the issues sum-
marized in the Introduction?

3. Generalized spin-boson models

We start simply by taking Fig. 2 literally. A single normal
coordinate Q with frequency w is coupled to a two-state
system or effective spin £ such that the equilibrium position
of Q depends on the electronic state; spin up will be identified
with the reactants, spin down with the products. Adding the
energy gap and the matrix element, we have the Hamiltonian
H = 2o+ Vo + 110" + 0'(Q — 1 go)) ©
This model still does not describe irreversible approach of o,
to its equilibrium value; rather eq. (3) predicts that energy
flows coherently back and forth between electron and
phonon degrees of freedom. A related pathology is that at
least for small V the spectral functions of Q — which are
measured in infrared or Raman spectroscopy — are infinitely
sharp. At the very least we must add to our model some
degrees of freedom which are responsible for vibrational
relaxation of Q, and it will be these “heat bath coordinates”
which ultimately absorb the excess electronic energy.

The simplest description of vibrational relaxation is that Q
is subject to linear frequency-dependent damping y(£2). By
this we mean that the classical Langevin equation of motion
for Q is

2
d——thz(t) + f%%i()y(()) jdt’ e =091 + 0*Q(2)
= F(1) + 6F(), 4)

where F(?) is an externally applied force and 6F(?) is chosen
from a stationary Gaussian ensemble of functions with spec-
tral density

Se(@2) = [dt e (GF(t + DOF()) = 2ksT Re 3(9).

®)

Following Senitzky [17], we can construct a microscopic
model of dissipation by coupling Q to some generalized coor-
dinate of the heat bath, so that

£
2

+ 0X + Hyu(X). (6)

The dynamics of this model reproduces these of eq. (4) if X(?)
responds linearly to its conjugate force and if the response
function (determined by the details of Hy,y) is chosen as
7(2) = i2y(9). Since we are only concerned with linear
response of the bath we are free to use any description of the
bath coordinates which generates the correct dissipative coef-
ficient; as emphasized by Caldeira and Leggett [18] this

H = 20, + Vo, + 0" + 0*(Q — }g0.)]
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implies that we can model the bath as a collection of har-
monic oscillators:*

€ .
H - E o, + Vax + %[Q2 + wz(Q _%goz)z]

1 .
+ -2-2#: X: + op(X, — C, 0, M
where the dissipative coefficient is identified as
2
(C,,) ®)

D) = (Cilm ) e o

The Hamiltonian of eq. (7) is a special case of the spin-
boson model which has recently been extensively studied in
connection with macroscopic quantum phenomena.” In
contrast to the macroscopic case, we are primarily concerned
with systems in which ¢ > kT, V, ho, and where the spectral
density of Bose variables retains a resolvable feature at w
rather than being smooth from Q2 — 0 to some cutoff
Q. > . Furthermore, eq. (7) is but the simplest example of
a whole family of generalized spin-boson models for reaction
rates in proteins: not only can several normal modes of the
molecule be displaced in the transition from reactants to
products, these modes can change frequency and rediag-
onalize, and even their couplings to the heat bath may depend
on the electronic state. These additional effects result in
spin-boson couplings quadratic in the Bose operators (i.e.,
~0.0,0;) rather than linear coupling (~0,0) as in the
standard model; while such terms arise naturally in a mol-
ecular context (vibrational spectra of reactants and products
are usually different!), they do not seem to have any simple
macroscopic analog. Some progress in defining and solving
these more general models has been made, but here we focus
primarily on the simplest case, eq. (7).

We should say at the outset that the dynamics generated
by eq. (7) are not completely understood. Everything dis-
cussed here is true for “small ¥’ (perturbatively),! and there
are several arguments available for how small is small —
some of these arguments are themselves approximate, how-
ever, and the situation is not completely clear.

After all this prologue, we obtain the order V' rate con-
stant k for |, = 1) — |0, = |) from eq. (7) by a simple
argument [25]. First transform to “physical phonons” —
elementary excitations whose energy (at ¥ = 0) is indepen-

* Strictly speaking, Caldeira and Leggett argued for a much more general
representation of the bath, still in terms of oscillators but with non-linear
couplings to Q. Our case is their “strictly linear dissipation”, which is
much simpler. An alternative argument for this description of dissipation
in biomolecules is given in ref. [19].

Some recent papers are refs. [20-23]. For a systematic review see Leggett
et al. [24].

This is often called the “non-adiabatic” limit, since for small ¥ the Born—
Oppenheimer (adiabatic) approximation to eq. (3) breaks down. We
eschew this terminology because the criteria for Born-Oppenheimer
breakdown are in general different from the criteria for perturbative
calculation of the rate constant [25]. Furthermore, there are situations [26]
in which the rate is non-perturbative in ¥ but the dynamics of eq. (7) do
not correspond to damped motion on the ground adiabatic potential
surface of eq. (3). Finally, when an effective two-level system is obtained
by truncating the full molecular electronic Hamiltonian, the validity of the
adiabatic approximation for the model Hamiltonian may have nothing to
do with the validity of the Born-Oppenhemier approximation for the real
molecule.

-

-+
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dent of o,:
Q->0+1%1go. x,—-x,+3C,go0.,.
This transformation is carried out with
0, . .
U = exp {+ i£20 +3, C,,x#)}
and gives
U*HU = Zo. + 1[0 + 0’0’
1 ;

+ 5; [%; + ol(x, — C,0)"]

+ V(0. F+ a_F*), ©)
where

F = exp {+ i£0+ zﬂc”xu)}.
This Hamiltonian is equivalent to a spin one-half in a static
magnetic field (~ ¢) along 7 and a fluctuating magnetic field
(~VF)in the X — ¥ plane. If we are interested in dynamics
on time scales much longer than the correlation time for the
fluctuating field — if the reaction rate is much slower than the
vibrational relaxation rate — then the conventional theory of
relaxation in magnetic resonance applies, and fore > V (F >
we have
k 2 V2 +iet/h +

= 5 [ de et (F+ (1) F(0)). (10)

The correlation function {F* () F(0)) can be related to the
response functions of Q by standard methods, and we find

2172 7' (2)
k=7fdtexp{+1~5_1—JT51n(Q)

4

1) _.gde
T i@ + o ' JZn [T = cos ()]
y 7' () o* coth (h€2)2kyT) an
Q | -2 - i) + PP
with y'(2) = Re y(£2). Note that even for Ohmic dissipation

[(£2) = y, a constant] there are no divergences at either high
or low frequency, although we shall see that other things go
wrong in this case. The dimensionless coupling S = g*w/h.

Several approaches to evaluating the integral in eq. (11)
may be found in the literature Straightforward power-series
expansion in g* ~ S gives us a rigorous version of eq. (1),
with separate terms for each of the possible multiple phonon
absorption and emission events. This expansion allows us to
look very carefully at a highly non-classical effect, namely the
resonant dependence of the reaction rate on the ratio ¢/hw.
When this quantity is close to an integer the rate is enhanced:;
when it is “far” from integral the rate is suppressed. A very
different approximation allows us to see the smooth part of
k(¢), although it discards the resonances entirely, and this is
a short-time expansion of the exponent in eq. (11). If this
expansion is carried to O(c*) we find that k(¢) is Gaussian;
this is called the “‘energy-gap law” and is the basis for analysis
of a wide variety of data on electronic transitions in molecules
and solids [27]. Each of these approaches given sensible
results only if y(2) — 0as 2 — oo, that is if the dynamics of
the heat bath have some finite correlation time.

If a large number of modes are independently coupled to
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the reaction then the single correlation function {F* (z) F(0)>
is replaced by a product I, {F, (1) F,(0)) of correlation func-
tions, one from each mode. Under these conditions we can
use the central limit theorem to justify the short-time expan-
sion and hence the energy-gap law provided that certain
convergence criteria are met [25]. These conditions are equiv-
alent to demanding that y(£2) vanish sufficiently rapidly as
Q2 — o0, as above.

The energy-gap law gives the same form for the reac-
tion rate as Hopfield’s semi-classical analysis schematized in
Fig. 2. We can make a more systematic approximation by
noting that eq. (11) is of the form

k=2V

[ dr eisom, (12)
so that as # — 0 the integral is dominated by 7’s near saddle
points 75, §'(ts) = 0. This calculation again hinges on the
behaviour of y(£2 — o0): in the absence of a high-frequency
cutoff S(r) cannot be analytically continued into the complex
t-plane, which means that we cannot deform the contour of
integration to pass through 1. If we introduce a cutoff the
approximation can be made to work and the leading terms
are essentially cutoff-independent. With this caveat, the
saddle-point method gives a remarkably good picture of k (),
including both the smooth energy-gap law results and the
quantum resonances; details of the saddle point calculations
and a comparison with direct numerical integration will be
given elsewhere.

If the phonon mode is underdamped the integral in eq. (11)
has multiple saddle points spaced approximately by At, ~
2n/w. Focusing on 7 — the saddle point closest to the origin
— we find the energy-gap law with quantum corrections,

kKO®%) ~ Ae S

G~ (e — Shw)? (e — Shw)®
2S(hw)* (27 + 1) 6S(hw)’ (27 + 1)°
x B+ Qi+ 12+

A ~ QVHB)[2S(hw)* i + 1) + - -

where these and all other results are for y(w)/w < 1.

To understand this as a semi-classical expansion note that
& 4 = Shw, and kT are energies which are finite as & — 0,
while of course hw is not. We have

=4 (- (ho 2+...

4T 484 kyT \ kyT ’
so that these first quantum corrections to the energy-gap law
are significant for

3. \I2
22

What does this mean? Suppose that we can go into the
molecule and change only quantum energies ~ # while keep-
ing classical energies ~ /, ¢, kyT fixed. Then the rate constant

17

(13)

lim G ~

hw—0

hw/ksT

changes by
A(hw) |e — /1|3 ’
Al
|Adn ] ~ “(hw) 2477k, T
When

A(hw) (¢ — A)?

hoofkyT (ho) ~ 27kgT

34\
2(;25) . 1t bl~



so a given fractional change in the quantum energy has the
same significance as the same fractional change in tem-
perature. Obviously these effects are of greatest interest when
¢ > A, otherwise the criterion for quantum effects to be
significant in k¥ (¢) is just hw/kyT ~ 1.

Additional saddle points give smooth functions k" (e)
multiplied by ~ cos (2nne/hw). The inclusion of saddle points
further and further away from t = 0 thus gives us a picture
of k(e) at increasingly higher resolution (as we expect from
time-energy uncertainty) and at improved resolution “rip-
ples” are evident at energy gaps which meet the quantum
resonance condition. At T = 0 terms ~ cos (2nns/hw) are
attenuated by ~ exp (— 2nnye/hw?), so the significance of the
quantum effects depends both on a conventional “classical-
ness” parameter ¢/hw and on a purely dynamical parameter
y/w: for appropriate dynamics quantum effects can be signifi-
cant even if the energy quanta are very small.

The precise criterion for attenuation of the quantum rip-
ples at finite temperature is complicated to exhibit in closed
form. If we expand in ¢ — 4, as in eq. (13), the lowest
order result is an attenuation of terms ~ cos (2nne/hw) by
~ exp (—2nnSykyT/hw?), so the reaction is fully classical
only if 2nS (yks T/hw?) > 1. If we imagine that the structural
change between reactants and products consists of a ~ 0.3 A
lengthening of a ~ 10 A segment of alpha helix, then from
above we have i ~ 20cm~'and S ~ 10, so that quantum
effects are significant at 300K unless y > 6 x 10°s™". In
fact,y < 10°s~' has been directly observed [15] at 300K for
hw ~ 0.3cm™' acoustic modes of alpha helical polymers.*
Thus even though k3T ~ 10hw and the structural changes
are ~ ten times the quantum zero-point motion, the molecule
need not behave classically! This conclusion is closely related
to the fact that measurements on a mechanical system at
frequency w can be limited by quantum noise even when
ksT > hw provided that the damping 7 is sufficiently small
[29]. We emphasize that these comments refer to what is
possible; whether these extreme quantum effects are signifi-
cant for the functional behaviour of particular proteins
remains to be seen.

To summarize, the basic semi-classical result

212
T RS (o) R + D7

kS.C

x exp [— (e — Shw)*/2S(hw)* (27 + 1)] (14)

* Clearly the frequency dependence of vibrational relaxation rates is of
critical importance in applying the Brillouin scattering results of ref. [15]
to more typical globular proteins. In particular, Kosic et al. [28] have
found very strong frequency and temperature dependences of phonon
lifetimes in amino acid crystals, and they use this result to argue that long
phonon lifetimes are impossible in proteins at interesting temperatures.
The Brillouin scattering results on both dry and hydrated helices suggest
that the dominant relaxation pathways are internal to the polymer,
presumably the breakup of one phonon into two. For quasi-one-
dimensional structures like the alpha helix the frequency and temperature
dependence of this relaxation rate is much less severe than that described
by Kosic et al. Normal mode calculations on the small protein BPTI [43]
show the density of vibrational states has a very weak frequency depen-
dence at low frequency, which again suggests that two-phonon breakup
will be rather weakly frequency and temperature dependent. From these
and other arguments [19] we see no reason to doubt that the long phonon
lifetimes observed in model systems may be relevant to globular proteins.
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provides the skeleton on which we hang all the quantum
corrections. These consist both of deviations from the energy-
gap law in the “wings” of the Gaussian and of ripples which
come from resonance effects. The quantum effects allow the
rate constant to depend on the vibrational frequency even
when all classical energies are held fixed, which means that
quantum mechanics provides a pathway for control of the
reaction rate not present in the classical limit.

Even in the classical limit the reaction rate can be extre-
mely sensitive to dynamical parameters of the molecule. Thus
when o changes (e.g., from molecule to molecule in an
inhomogeneously broadened ensemble — see below) 4 =
Shw will change unless the frequency shift was produced
purely by an effective mass added to that mode alone. If the
system operates in the tail of the energy-gap law — so the
activation energy is much larger than kzT — small changes in
A have enormous effects on the rate constant.

How does this story change when we consider molecules
with many vibrational modes? As noted above, there are
some conditions under which the accuracy of the semi-
classical approximation imroves as we add more modes. This
is only true, however, in the limit of asymptotically large
numbers of modes; with a small number of modes the addit-
ion of one more introduces new quantum effects associated
with resonances at multiples of the new phonon energy. Since
data is scarce, our strategy in rationalizing experiments on
proteins is to start with a single-mode model and build up.
Caveat emptor.

4. The data revisited

In the fully semi-classical limit of eq. (14), the rate constant
is determined by four parameters: the electronic energy gap &
and matrix element V, the vibrational frequency w and the
coupling S. As noted in Fig. 1, the DeVault—Chance data can
be summarized by three parameters, and we will take
¢ = 0.45eV from electrochemical experiments [1]. All the
parameters of the model can thus be determined (Table I),
although two very different coupling constants are in fact
consistent with the data.

Are the parameters of Table I reasonable? Certainly
hw ~ 200cm~' is a region where modes involved in active
site dynamics have been identified in Raman spectra of cyto-
chrome ¢ and related proteins [30]. From the discussion
above S ~ 6 corresponds to structural changes ~0.25A
between reactant and products, which is what one sees crys-
tallographically [16]; S ~ 60 (the other possibility) would
seem unlikely in light of these data. It should be emphasized
that the crystallographic results came as something of a
surprise, since most analyses of cytochrome electron transfer
based on chemical analogies had suggested much larger “con-
formational changes”, and unrefined crystal structures ten-
ded to support this conclusion.

Table 1. Parameters for a quasi-harmonic theory of the
DeVault— Chance reaction

Parameter Undercoupled case Overcoupled case
L 0.45eV 0.45eV

ha 185cm™! 193cm™'

S 6.1 60.8

vV 8 x 107%eV 1.4 x 107%eV
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Hopfield [31] pointed out that these theories of electron
transfer have an unambiguous spectroscopic signature — in
addition to the normal reaction, which is a radiationless
transition, there should be a radiative transition in which
photon absorption is associated with prompt electron trans-
fer. This absorption takes place between the two electronic
states which represent reactants and products, so that the
position and shape of this “charge-transfer band” depend on
the same electron—phonon couplings that control the reaction
rate. This band has been found [32, 33] for the DeVault—
ted Chance reaction, and its properties are those expected
from theory with the “undercoupled” (S ~ 6) parameters of
Table I.

The search for the charge-transfer band is the first instance
in which the dynamical theory of reaction rates in proteins
has been put to an unambiguous and non-trivial test. It is
somewhat remarkable that — for the DeVault—Chance reac-
tion — the very simplest example of the general theory allows
us to rationalize the functional (i.e., kinetic) behaviour of a
protein in terms of a dynamical model which is in turn con-
sistent with direct and indirect spectroscopic tests, and even
the once puzzling structural data fit neatly into the picture.
There are several indications that the simplicity will not
extend to all reactions, even in bacterial photosynthesis, as
will become evident below.

The basic pattern of temperature independence at low
temperature and activated kinetics at high temperature can
also be seen in the binding of small ligands [oxygen (0,),
carbon monoxide (CO), . . .] to heme proteins [hemoglobin
(Hb), myoglobulin (Mb), . . .], but these reactions exhibit
many new features. The binding of CO to Mb [7], for example,
can apparently be resolved into several steps, of which the
first involves the ligand breaking through the solvation shell
of the protein and the last can be isolated by looking only at
temperatures 7 < 160K, where the CO is trapped in the
neighborhood of the active site (heme pocket). Experimen-
tally these reactions can be initiated by flash photolysis from
the liganded (Mb - CO) state, and the progress of the rebind-
ing reaction (return of the ligand to the active site iron) can
be followed spectroscopically over a wide range of time
scales. The most striking observation is that the time course
of the rebinding reaction is not exponential. Although no
single rate constant describes the rebinding, we can arbitrarily
define a “rate” as the inverse of time required for the reaction
to reach 25% completion [8]. A plot of the logarithm of this
rate vs. 1/T gives results qualitatively similar to those for the
DeVault-Chance reaction, but the temperature dependence
continues to lower temperature, T, ~ 20K.

Non-exponential kinetics can be explained by (1) each
molecule is non-exponential and all molecules are identical,
or (2) each molecule is exponential but different molecules
have different rate constants. “Each molecule is exponential”
means that it has a constant probability per unit time of
reacting and hence no memory of the time at which photoly-
sis occurred; if we give a periodic series of flashes there will
be no memory of when the first flash occurred and therefore
the kinetics will be periodic. Experimentally one sees the
predicted periodicity [7]. No finite experiment can prove that
each molecule is exactly exponential, but the available data
place stringent bounds on the extent of non-exponential
behaviour in single molecules [34].

To summarize, the data indicate that heme proteins in
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frozen solution exhibit a temperature dependent distribution
of reaction rates P (k| T), so that experiments on an ensemble
of molecules yield the non-exponential reaction time course

NeT) = jo‘” dk P(k|T)e"~. (15)

The question raised by this result is clear: What is the physical
origin of the rate constant distibution? This is a biologically
interesting question because freezing the solution has appar-
ently trapped myoglobin molecules into states or environ-
ments which endow the protein with different functional
behaviour, i.e., different reaction rates. If we have a workable
theory of how protein function is controlled we must be able
to explain how the presumably subtle differences among
molecules of the experimental ensemble can generate reaction
rates which differ by many orders of magnitude.

We have seen that reaction rates can depend sensitively on
protein vibrational frequencies, both in the classical limit and
as a result of quantum effects. Molecules in solution often
have a distribution of vibrational frequences, and in some
cases the width of this distribution can be understood [35]
in terms of interactions with the ‘““solvent shell” around the
solute molecule — each solvent molecule in the shell contri-
butes to a sovlent shift of the vibrational frequency, and the
number of molecules in the shell fluctuates as they exchange
with the bulk. For proteins the size of myoglobin there are
~ 100 “bound waters” in the solvation shell [36, 37], and at
room temperature [38] they exchange among the available
sites at ~ 10°s™". This time scale is long compared to the
vibrational relaxation times of most Raman or infrared-
active modes, so these spectroscopies see an inhomogeneously
broadened ensemble, but most chemical reactions are suf-
ficiently slow that one observes a rate constant averaged over
the ensemble. The situation changes dramatically if the sol-
vent is frozen or otherwise solidified (e.g., by embedding
in the plastic PVA), at which point the time for exchange
among solvent binding sites can become macroscopically
long. Under these conditions the reaction proceeds at a rate
k(w) for molecules with vibrational frequency w, but the
distribution of w is essentially static. We will observe the
non-exponential reaction time course

N@) = [do P@)e @, (16)
where P(w) is the (normalized) inhomogeneous lineshape. If
a large number of solvent molecules contribute to the broad-
ening then P(w) is Gaussian with mean @ and standard
deviation Aw.

We have tried [19] to interpret the Mb—CO data in terms
of eq. (16) — essentially we are asserting that “dynamical
specificity”, an extreme dependence of the reaction rate on
vibrational frequency, in fact occurs in the system and that
freezing the solution allows us to see more of this specificity
by stopping the protein from averaging over its frequency
distribution. Again we try a single mode model, and by
analogy with the DeVault-Chance reaction we see that tem-
perature dependence down to T ~ 20K requires Aw ~
20cm~". A candidate for such a low-frequency mode is the
breathing of the F alpha helix — this segment contains the
only covalent link to the active site iron, and it is known
from crystallography that ligand binding induces structural
changes throughout the F helix [36]. From the experiments
and simulations discussed above we can make rough esti-



. .
16° (180K 140K 120K .

1
& 16° 16*  1w0° 102 10 1 10 10

Time {(sec)

Fig. 3. A single mode simulation of the last step in CO binding to Mb, as
described in the text. Data points from ref. [7] and theoretical lines from
ref. [19].

mates of the properties of this mode; we take hw = 20cm ™",
hy = 0.01cm~', and note that very large coupling constants
(S ~ 50) are consistent with the crystallographic data —
even larger coupling constants may be relevant since we are
approximating all the structural changes by motion along a
single mode. To complete our model we need the energy gap,
which we take as ¢ = 0.9¢eV from ref. [7], the matrix element
I — which sets the absolute scale of the reaction time course
but is not involved with either temperature dependence or
non-exponentiality — and the inhomogeneous linewidth Aw.
In practice the only two parameters which must be fit to the
temperature-dependent time course are S and Aw.

The results of this single-mode simulation are shown in
Fig. 3, with § = 170, V' = 1.1ecm™', and hAw = 1.6cm™".
A simple dynamical model again provides a successful ration-
alizing of the kinetic data; the essential feature of this ration-
alization is strong coupling to a low frequency (~ 20 cm™Y)
vibrational mode. Recent experiments [39] on Mb - CO have
shown that the means-square displacement of the iron atom,
as inferred from the recoil-free fraction in the Mossbauer
spectra, exhibits a temperature dependence from 4K to 100 K
consistent with strong coupling to a single mode at 25cm™".
A 25cm™! mode is also visible in the temperature dependence
of the electric field gradient at the iron nucleus (quadrupole
splitting), so this mode can apparently modulate the crystal
field and hence couple to spin changes as required for ligand
binding.

The low frequency mode which is essential to our analysis
of the kinetic data may also be relevant to anomalies in the
Mossbauer spectra of myoglobin at higher temperature. In
addition to the usual Mossbauer process — which is a
“yacuum-to-vacuum” transition — there are quasi-elastic
processes which involve the coherent absorption and emiss-
ion of equal numbers of phonons so that there is no net recoil
but only a broadening of the line by ~y, the vibrational
relaxation rate. Again using the “typical” alpha helix para-
meters discussed above, we found [19] that this mechanism
could generate the observed [40, 41] broad-line components
of the Mossbauer spectrum in the 2 200K range. The more
recent low temperature experiments directly measure an
essential parameter of this description, namely the mag-
nitude of coupling between the low frequency mode and iron
atom displacement, and this measurement is in good agree-
ment with our theoretical estimate. Taken together, the
“high”- and low-temperature Mossbauer data — which
might have been expected to probe dynamical processes on
very different time/energy scales — can be understood sur-
prisingly well in terms of a very simple model of active site
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dynamics, one in which the low energy excitation spectrum is
dominated by single narrow phonon mode at hw ~ 25cm™".
This picture could be tested much more quantitatively if the
broad-line components were detected in Mb + CO or Mb - O,,
where the careful low-temperature experiments have been
done and where there are no complications due to spin
degrees of freedom.

Further analysis of the low temperature Mossbauer data
[39] allows us to draw some remarkable if tentative con-
clusions. Specifically, the 25 cm ™' mode in Mb - CO saturates
~29% of the relevant sum rule for iron atom motion in one
dimension. A second mode at 220cm™' (also identified in
Raman spectra [42] as the stretching of the active site iron
against the His of the F Helix) was detected by its contibution
to the temperature dependence of the 2nd-order Doppler
shift, and this saturates ~ 65% of the relevant sum rule. Most
importantly, no other significant discrete modes were found,
and with some care stringent bounds could probably be
placed on the contribution of a continuum background. This
is astounding because the density of states of the molecule as
whole almost assuredly does not have such sharp features —
see for example the normal mode calculations on the small
protein BPTI [43] and the neutron scattering spectra of hexo-
kinase [44]. Other modes likely to couple to the iron atom are
motion of the C and O relative to Fe (577cm ™' and 512cm™")
[45] and motion of Fe relative to the heme nitrogens (con-
troversial, but probably ~ 300-500cm "), but all of these are
above the energy range which can be probed by temperature-
dependent Mdssbauer spectroscopy; again the key result is
the apparent existence of sharp features in the low energy
region. It would seem that the protein must be “engineered”
so that active site dynamics are dominated such narrow
spectal features — or equivalently by a small number of
modes — rather than by the featureless continuum. This
situation, for which the Mdssbauer data provide the first
evidence, is exactly what we require for maximum “dynami-
cal specificity” in the sense outlined above.

5. Outlook

The analyses of the DeVault-Chance reaction and Mb - CO
binding reviewed here are encouraging. They indicate that
generalized spin-boson Hamiltonians have a chance to
describe important dynamical factors in the control of reac-
tion rates in proteins and to provide a framework within
which increasingly sophisticated spectroscopic data can be
assimilated and related to the functional behaviour of these
molecules. It is not at all clear, however, that the basic
assumptions behind these models have been put to a serious
test. These key assumptions are (1) that a small number of
electronic states are sufficient for the description of interest-
ing chemical reactions and (2) that all non-electronic degrees
of freedom may be described by a set of weakly interacting,
damped phonon modes; in the analysis above we have used
rather more stringent versions of these assumptions, but this
is not essential. We consider these ideas in turn:

(1) Truncation of the full molecular electronic Hilbert
space to a small, discrete subspace is a tricky business. Sethna
[46] was probably the first to emphasize the dangers of the
truncation approximation for tunneling of impurities in solids.
Macroscopic quantum mechanics problems have provided
the motivation for careful justification of this approximation
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in selected cases [24, 47, 48], although as emphasized by
Chakravarty and Kivelson [47] these arguments demonstrate
only that the truncated model generates the correct ther-
modynamics and not necessarily the correct real-time evol-
ution; even disregarding this caveat it does not seem that the
arguments in the literature are sufficient to justify or invali-
date truncation in cases of relevance to biomolecules. Part of
the problem is that the electronic configurations of interest
are far from single-particle states — the different spin states
of the iron atom in the reactants and products of the Mb - CO
reaction, for example, are clearly strongly correlated multi-
electron states.

The theoretical question of whether truncation of the elec-
tronic Hamiltonian provides a viable approximation scheme
is related to a practical question about the interpretation of
temperature dependent reaction rates. Specifically, we have
considered here truncated models in which the phonons
couple only to o,, and in these models the reaction rate
factors (at least perturbatively) into a constant ‘“‘electronic
factor” ~ ¥? and a temperature dependent multi-phonon
density of states. If truncation fails — or if rigorous trunc-
ation schemes lead to a coordinate-dependent matrix element
V(Q) — the factorization fails, and this means that most of
our intuition about transition states and activation energies
goes out the window. Again, there are fairly solid results in
the cases of interest for macroscopic quantum mechanics [24],
where such “non-Condon effects” have been shown to be
neglibible. These arguments do not seem to tell us very much
about the problems in biomolecules, and in the case of elec-
tron transfer some simple models suggest that non-Condon
effects could be quite substantial [41].

It should be evident that the whole question of trunc-
ation in the electronic dynamics is open. No available results
should be construed as invalidating this approximation, so it
seems that truncation provides a good starting point for data
analysis, but we are far from understanding its limitations.
Would the breakdown of this approximation have clear
experimental signatures?

(2) The description of protein dynamics within a single
electronic state by a small set of weakly interacting, damped
phonon modes is the subject of considerable controversy.
Specifically, the Illinois group [7-11] has suggested that the
myoglobin data should be interpreted in terms of a qualitat-
ively different physical picture — the “conformational sub-
states” model, in which the dynamics are dominated by dif-
fusive hopping among different locally stable structures,
rather than coherent vibrations around a single equilibrium
structure as in the models considered here. Space does not
permit a detailed comparison of these two points of view: we
have tried to do this in ref. [12]. As emphasized by Stein [50]
and by Ansari et al. [11], if the substates model is qualitatively
correct then the physical issues in protein dynamics are
closely related to physical issues in the dynamics of glasses
and spin glasses — disordered systems. If the “quasi-
harmonic” models discussed here are qualitatively correct,
then as we have indicated the relevant issues are related to
macroscopic quantum mechanics and the dynamics of crys-
talline solids — ordered systems. Clearly there are some
philosophical questions — are biological systems ordered or
disordered? — but perhaps these are best left to the reader.

Raman and infrared spectroscopies (and to some extent
the temperature dependence of the recoil-free fraction in
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Méssbauer spectroscopy) probe primarily the single-phonon
density of states. The interesting phenomena — chemical
reactions, optical absorption — are multi-phonon processes.
The essence of the models discussed here is that single
phonon spectra can be used to understand multi-phonon
events, and very different multi-phonon events can be related
to one another. Do we have any experimental evidence which
bears directly on these points?

In the case of the DeVault-Chance reaction we have two
multi-phonon processes which can be compared, the (dark)
electron transfer and the charge-transfer absorption band.
The consistency of these two phenomena with the same
quasi-harmonic model Hamiltonian is evidence that phonon-
phonon interactions are qualitatively insignificant on the
energy scales of relevance to the biological function of these
molecules.

In the case of myoglobin, Méssbauer, Raman, and infra-
red spectroscopies define a discrete set of modes (at 25, 220,
512, 577, 1944cm™") which are certainly involved in active
site dynamics, and most importantly the Mdssbauer results
provide evidence against significant coupling to modes with
25 < ho < 220cm™". For T < 160K, where the final step
of ligand binding is well isolated, this means that if a quasi-
harmonic model is correct all of the temperature dependence
in the ligand binding rate must be carried by the 25cm™"
mode. While the single mode simulations [19] of Fig. 3 are
consistent with this idea, they do not provide a stringent test.
The key is to do a realistic multi-mode simulation, and work
toward this goal is in progress.

For systems with well resolved optical absorption spectra
we can test the quasi-harmonic approximation by trying to
reconstruct the absorption spectrum from phonon energies
and electron-phonon couplings measured in Raman scatter-
ing; ideally this should be done as a function of temperature,
to determine whether temperature-dependent spectrum shifts
can be understood in terms of increasing phonon populations
rather than more non-linear effects (e.g., a glass transition)
(11, 50]. We note that for the visual pigment rhodopsin and
for the primary donor of photosynthesis, understanding the
optical absorption spectra is of more than academic inter-
est. The possibility of “Raman reconstruction” of absorption
spectra has received considerable attention in the literature
[51], but there remain signficant theoretical problems in
extracting the relevant information from the Raman specta.
This is an area in which interaction between theory and
experiment is already quite good; understanding will hope-
fully soon progress to the point where the very detailed
experiments currently feasible can be used to test models of
protein dynamics rather than our calculational abilities.

Whatever model may provide an appropriate descrip-
tion of protein dynamics, there are a number of remarkable
phenomena which provide clear theoretical challenges. Since
much discussion has been focussed on a relatively narrow set
of experiments, it seems appropriate to conclude with some
indication of the wonders which the biological world presents:

(1) Anomalous temperature dependence. The relatively
simple pattern of temperature dependence observed by
DeVault and Chance is apparently understandable in terms
of very simple models. At least two other electron transfer
steps in the photosynthetic reaction center* have temperature-

* Several reports have appeared very recently [52-55].



independent rates at below some T, but slow downat T > Tj;
one of these reactions shows clear non-exponential decays,
with the degree of non-exponentiality dependent upon the
functional state of the reaction center. Although a variety of
scenarios for this temperature dependence have been pro-
posed, we do not feel that any of these can be considered
convincing and certainly none has been put to a decisive test.
The existence of this anomalous behaviour puts us on our
guard about the indiscriminate use of the Arrhenius law in
biomolecules. In the case of myoglobin, for example, the
temperature dependent distribution of reaction rates at
T > 40K has been modeled [7-11] as a temperature inde-
pendent distribution of activation energies through k& ~
A ¢ 5T This procedure can be made to work, but there is
no direct evidence that each molecule in the ensemble obeys
this relation; this is important because considerable signifi-
cance has been attached [56] to the prefactor 4 which can be
extraced from such an analysis. Although the story told in
this review began nearly twenty years ago with the study of
temperature dependent reaction rates, it is evident that we
still do not fully understand how to go beyond the Arrhenius
law in the analysis of experiments.

(2) Spin-phonon dynamics. Many biomolecules have metal
atoms in non-trivial magnetic configurations which are import-
ant for biological function. In myoglobin Mdssbauer results
[39] show that the crystal field at the active site iron in
Mb - CO is strongly modulated by a phonon mode at iw =
25cm~', which is comparable to the width of the spin-two
quintent in free Mb [57] or in the photolyzed state [58]
(Mb - - - CO)%_,. This means that we can have resonantly
enhanced spin—phonon interactions, and hence that the usual
perturbative adiabatic elimination arguments [59] for the
spin-Hamiltonian formalism may fail; this is another instance
in which biomolecules present a very well understood prob-
lem from condensed matter in a new and ill-understood
parameter regime. It is tempting to suggest that spin-phonon
interaction may help us understand the remarkably broad
zero-field transitions in free Mb [60], or help resolve the
significant problems which arise in the analysis of high mag-
netic field Mdssbauer spectra in Mb and Hb [61]. Since ligand
binding to the heme proteins is accompanied by spin state
changes at the iron atom, it would be difficult to conclude
that we understand the reaction rate until we have a convinc-
ing analysis of these experiments which directly probe the
spin degrees of freedom.

Photosynthesis provides another example in which spin
dynamics are of functional significance. Magnetic field effects
in the primary electron donor/ acceptor pair have been exten-
sively studied [62, 63], and there have been attempts to relate
(following Anderson’s [64] theory of superexchange) the para-
meters which describe these effects to the more fundamental
electronic matrix elements which control the electron transfer
rate. While this works for one later step in the photosynthetic
pathway [65] it fails for the primary step [66]. One way out of
this dilemma is to postulate an intermediate acceptor, but the
evidence for such an intermediate in the sence required to
explain the magnetic effects is not what it used to be [67].
Another possibiltiy is that electron-phonon coupling (which
was neglegible in the solid-state problem originally con-
sidered by Anderson) can significantly modify the relation
between magnetic interactions and electronic matrix elements
[68]. Although experiments on magnetic field effects in photo-
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synthesis have progressed to considerable sophistication,
these basic physical issues in the interpretation of such experi-
ments remain to be understood.*

(3) Ultrafast reactions. The initial events of photosynthesis
[1] and vision [69] occur on a picosecond time scale; the very
low quantum yields for fluorescence from rhodopsin [70] and
the broad holes which can be burned [71] in the spectrum of
the primary donor of bacterial photosynthesis are suggestive
of even faster events. This time scale is comparable to the
vibrational relaxation times measured for chlorophyll in solid
matrices (for example), so that during these events the mol-
ecules involved are not necessarily at the temperature of their
environment. Depending in detail on some of the parameters
for these reactions it is even possible that they occur before
the relaxation mechanisms have a chance to destroy quantum
mechanical coherence, which would have significant experi-
mental (and conceptual) consequences [68, 72]. Again this is
an example where a familiar process (photon-induced elec-
tronic transitions) have been driven, presumably by evol-
utionary pressure, into a regime where our intuition does not
help us; serious theoretical issues must be resolved before we
even know the correct language to describe these events. The
impressive pace of spectroscopic and structural experiments
on these systems — and many other biophysical systems not
discussed — provides, as we hope has become clear, excellent
opportunities for interaction between theory and experiment.
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