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ABSTRACT Recent experiments indicate that the dark-adapted vertebrate visual system can count photons with a reliability
limited by dark noise in the rod photoreceptors themselves. This suggests that subsequent layers of the retina, responsible
for signal processing, add little if any excess noise and extract all the available information. Given the signal and noise
characteristics of the photoreceptors, what is the structure of such an optimal processor? We show that optimal estimates of
time-varying light intensity can be accomplished by a two-stage filter, and we suggest that the first stage should be identified
with the filtering which occurs at the first anatomical stage in retinal signal processing, signal transfer from the rod
photoreceptor to the bipolar cell. This leads to parameter-free predictions of the bipolar cell response, which are in excellent
agreement with experiments comparing rod and bipolar cell dynamics in the same retina. As far as we know this is the first

case in which the computationally significant dynamics of a neuron could be predicted rather than modeled.

INTRODUCTION

The laws of physics impose fundamental limits on the
performance of any device designed to sense the environ-
ment. Remarkably, a number of biological sensory sys-
tems reach these limits (1), the classic example being the
ability of both vertebrate and invertebrate visual systems
to count individual photons. Whereas it has long been
recognized that this ability places important constraints
on the mechanism of phototransduction (2), it has not
been widely appreciated that single photon counting also
requires efficient and reliable neural computation.

Many years ago Barlow (3) suggested that the reliabil-
ity of photon counting in the behavioral response of a
whole organism is limited by the rate at which the
photopigment rhodopsin is spontaneously isomerized due
to thermal noise. If correct, this hypothesis demands that
the neural processing of single-photon signals be reliable
in the extreme, because no significant noise must be added
to the photoreceptor signal as it passes through the many
layers of the visual system which contribute to stimulus
detection and identification. Spontaneous isomerizations
have been detected as a major noise source in recordings
of the current flowing through a single-rod photoreceptor
outer segment (4, 5). Comparison of these data with
behavioral estimates of the “dark noise” in the human
visual system lent strong support to Barlow’s hypothesis,
and recent measurements comparing the temperature
dependencies of behavioral and physiological dark noise
levels in the frog visual system leave little doubt about the
essential correctness of this idea (6, 7).

These observations strongly suggest that the reliability

of perception at low light levels is not limited by noise or
by inefficiencies in the computational hardware of the
visual system; rather the limit is set by noise in the
primary sensory input itself (1). To insure that this is the
case, signal processing and decision making processes in
the retina and beyond must add at most a negligible
amount of noise, and this processing must be such as to
extract essentially all of the available information.
Whereas more experiments are needed to confirm the
suggestion that the visual system performs an optimal and
nearly noiseless processing of single-photon signals, it
seems profitable to explore the consequences of this
hypothesis.

In this paper we present a theory for the design of a
processor that takes as input the photocurrents or photo-
voltages from a collection of rod cells and gives as output
an optimal estimate of the time-dependent light intensity.
We find that this optimal processor can, at low photon
fluxes, be naturally decomposed into two stages of fil-
tering, and we suggest that these may be identified with
the rod-bipolar and bipolar-ganglion cell signal transfer
stages in real retinae. This being said, the dynamics of the
hypothetical ‘bipolar cell’ response are completely deter-
mined by the signal and noise characteristics of the rods.
Parameter-free predictions derived on this basis are in
good agreement with recent experiments comparing rod
and bipolar cell voltage responses in the same organism
(8, 9). We discuss some implications of these results and
suggest opportunities for more direct tests of our predic-
tions.
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DESIGNING THE OPTIMAL FILTER

We pose the following problem: a collection of photorecep-
tors receives photons at a time-varying rate R(¢). This is
the rate of a random Poisson process, with the photons
themselves arriving at times ¢,; in principle we can also
consider non-Poisson light sources, but under natural
conditions we expect that dim sources will be Poisson.
These arrivals are signaled by current pulses of stereo-
typed waveform I,(¢ — ¢,), but these pulses are embedded
in a background of noise 6/(¢). We shall assume that the
current noise is Gaussian, but much of the formal
development can be generalized. Our task is to estimate
the stimulus waveform R(z) given an example of the
current trace

1) = Lt — 1) + 8I(). 1)

In what follows we give this estimation problem a probabi-
listic formulation, which allows us to use methods from
statistical mechanics as a guide to the solution. The result,
given in Egs. 5 and 6, is that the stimulus R(#) can be
estimated by passing the current I(¢) through a linear
filter. This conclusion is valid for small signals, and we
argue that it is relevant to the processing of linear-range
responses in the dark-adapted retina.

Everything that we know about the signal is contained
in the conditional probability distribution P[R(D)|I(D)].
Note that because our random variables are functions of
time this is a distribution functional, and all integrals over
this distribution are functional integrals. To calculate this
distribution we use Bayes’ theorem,

PIIMOIR®WIPIR®)]

PIRWI|I(D)] = PII()] ’

where P[R(t)] is the a priori distribution defining the
probability of different signals occurring in a given
natural or experimental stimulus ensemble. We then
introduce the photon arrival times #,, because

PUWIRO] = [ Dy, PUOINPI{LIIRO),

where [ Dt is shorthand for integration over all photon
arrival times ¢, ¢, . . ., ty, and a sum over all photocounts
N. The distribution of arrival times P[{t“}lR(t)] is the
standard Poisson expression
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Finally, if the current noise 8/ is Gaussian, we can write

P11 =Z"exp{—;fdtfdt'
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with Z a normalization constant and S;(w) the current
noise power spectrum.

Putting the pieces together we define the generating
functional W[J(¢); I(t)] through

explWLJ(); 1)1} = [ DR [ D1, PIR®)]
- Pl R()PLI(0) {2, ] exp[ f de(r)R(r)]. 3)

It is then straightforward to show that the average
stimulus waveform R(Z), given that we have seen the
current signal /(?), is

(ROYy = [ DRR(®PIRMI()]
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Because this approach is similar to the functional integral
formulation of statistical mechanics or field theory (10),
we have several calculational techniques at our disposal.
In particular we are interested in the signal estimation
problem at very low light levels, where the currents I(z)
themselves are expected to be small. Thus, we carry out a
perturbation expansion in I to find

(R()) ) = constants + fd-rF(r)I(t —D 4y, 5

do I3(w)
P = [ e s . ©

where Sz (w) is the power spectrum of fluctuations in the
photon arrival rate R(¢), Io(w) is the Fourier transform of
the single photon current pulse, In(w) = [ dte'I,(t), and
I'§(w) is its complex conjugate.

Egs. 5 and 6 define the design of a filter that would
operate on the photoreceptor currents and produce an
optimal estimate of the photon arrival rate as a function of
time. This result is the leading term of a perturbation
series at small currents, which can in fact be viewed as a
double expansion. One condition is that we are looking at
the limit in which the optimal estimator is a linear filter.
We feel that this is an appropriate limit both because
there is a well-defined range of linear response for most
cells in the retina, and because a realistic consideration of
nonlinearity would require data on deviations from linear-
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ity in the photoreceptor response itself. Although many of
the relevant experiments have been done (e.g., with
different amplitude flashes), a complete characterization
of nonlinear responses in the photon-counting regime does
not exist. A second condition for the validity of our results
is that the signal-to-noise ratio must be low. This is always
the case at very low light levels, so that a dark-adapted
retina is in fact adapted to processing of signals at low
signal-to-noise ratio.

To summarize, Eqs. 5 and 6 determine the optimal
estimator of photon arrival rate in the dark-adapted
retina under conditions of linear response. We shall see
that these ideas are in fact applicable to the understand-
ing of retinal responses in this limit.

RELATING THE OPTIMAL FILTER TO
RETINAL ARCHITECTURE

In the preceding section we have derived the optimal
estimate of time-varying light intensities given that we
observe the currents produced by an array of photorecep-
tors. Here we should point out that in the retina, second-
order cells do not have access to the photocurrents, only to
the photovoltages. We have chosen to formulate our
theory in terms of currents, however, because the current
signals and noise in individual rods are statistically
independent. In contrast, because the rod cells are cou-
pled, voltage noises of neighboring cells are correlated. To
discuss the estimation of photon flux in diffuse stimuli we
would need to know the voltage noise averaged over a
number of receptors, or equivalently the low spatial
frequency spectral density of the noise. Intracellular
experiments, however, monitor the voltage noise at a
single node in the rod network, which is an integral over
all spatial frequencies. It is most convenient, then, to
discuss the problem in terms of rod currents and imagine
that our filters are phenomenological transimpedances
between the rod cell and some hypothetical cell whose
voltage represents an estimate of the time-varying light
intensity.

We have chosen what is arguably the simplest of
problems in computational vision: estimate the photon
flux to a collection of uniformly illuminated receptors
under conditions where the receptor responds linearly.
Nonetheless this task is nontrivial, as expected from the
classic literature on the recovery of linearly encoded
signals in noise (11). Here we have two noise sources, one,
the current fluctuations across the receptor cell mem-
brane (which itself can be decomposed; see below), and
the other, the random arrival of the photons at the
receptor. It is interesting to note that our general ap-
proach to the estimation problem not only predicts the
form of the linear filter which provides optimal estimates

at low photon fluxes, it also defines (by extending the
perturbation expansion) the conditions under which lin-
ear filtering ceases to be the optimal strategy.

The optimal filter F(w) is naturally broken into two
stages. One, I §() /S (w), is matched to the rod cell signal
and noise characteristics independent of the stimulus
characteristics. The other, Sg(w), depends explicitly on
stimulus ensemble. More generally, if we were to design a
filter that estimates some more complex functional of the
light intensity, it would turn out that the first stage of
filtering remains necessary and unchanged, although the
second stage of filtering will be different and in general
nonlinear. The same first stage of filtering appears if we
design, for example, the optimal estimator of rigid mo-
tions across the visual field (Rieke, F., D. Warland, R. R.
de Ruyter van Steveninck, and W. Bialek, manuscript in
preparation).

These considerations indicate that the first stage filter
acts as a universal preprocessor of the rod output. In
contrast, this first stage of filtering must be followed by
different devices to deal with different computational
problems. Therefore, we suggest that this first stage of
filtering should be identified with the first anatomical
stage in visual signal processing, the transmission of
signals from the rods to the bipolar cells. Specifically, we
propose that the output of the first stage filter be identified
with the intracellular voltage response of the bipolar cell.
This response is then completely determined by the filter
characteristic I §(w)/S;(w), and by the response of the rod
cell itself, I(w).

If we attempt to build the filter I§(w)/S;(w), we
immediately face a problem: in general, this filter is
acausal and, hence, not physically realizable. Such acau-
sality is a general feature of optimal estimation problems
(11) and arises because the photoreceptor itself is causal,
so that photon arrival at time ¢, influences the current
I(t > t;). Conversely, observations of the current at time ¢
inform us about photon arrivals at times earlier than t.
This means that if we want to estimate the light intensity
at a given instant of time, we would need access to the
currents some time in the future, which is of course
impossible.

Acausality means that we have to wait for some time to
make the optimal estimate. More precisely, if observa-
tions of the current at time ¢ contribute significantly to our
estimate of the light intensity at time ¢+ — 7, the optimal
reconstruction of the intensity must lag the true signal by
at least 7 seconds. If the impulse response of the optimal
filter is acausal (nonzero at negative times) but restricted
to a compact time interval, then one can simply shift this
impulse response to positive times by introducing a delay
and smoothing out the behavior near ¢t = 0.

If we examine the filter in the frequency domain then
the shifting in time does not change the amplitude of the
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frequency response, only the phase. But a causal system of
given amplitude characteristic has a minimum phase shift
at each frequency (11); we must, thus, introduce enough
delay to generate this minimum phase characteristic, and
this in turn determines by how much our reconstruction
will lag the true signal. If we introduce no phase shifts
then we have an acausal filter that is physically unrealiz-
able. If we introduce more than the minimum phase shift
then the response of the filter is delayed by more than is
necessary to insure causality: our estimates of the stimu-
lus lag the real stimulus by an excessively long time.

In what follows we will construct optimal causal filters
simply by finding the minimum phase filter with ampli-
tude characteristic

[13(w)/S;(w)].

This filter has the smallest delay consistent with causality,
so we pay the smallest penalty relative to the ideal acausal
reconstruction. Further, minimum-phase filters have phys-
ically realizable inverse filters, which means that we are
not throwing away any information in our filtering proce-
dure.

We conclude this section with some discussion of the
term “optimal.” Clearly the definition of optimal estimate
in the problem we posed at the beginning of this section is
not unambiguous. We have chosen to discuss the device
which estimates the average signal waveform, although
we might also have considered the most likely waveform
or some more complicated weighted average. Each of
these estimates is optimal according to some definition;
we might seek the minimum least-square error, the most
reliable identification of brief transients, etc. Under some
conditions reasonable variations in this definition of
optimality do not result in large differences in the struc-
ture of the optimal estimate, as discussed recently in
connection with the problem of decoding neural spike
trains (12).

Even if we believe from the outset that the visual
system performs an optimal computation, it may be
difficult to discern the definition of optimality which has
been forced upon the system by evolution; we may expect
that different optimization principles are relevant for
different organisms. In this first effort we have tried to
adopt a simple and easily implemented version of the
optimality hypothesis, within which the design of the
optimal processor is especially straightforward. This means
that we can easily compare the predicted processing
algorithm with the characteristics of real cells.

COMPARISON WITH EXPERIMENT

To make these ideas concrete we make use of the data on
rod photocurrents and noise in Bufo marinus taken by

Baylor and co-workers (4). All of the cells exhibit very
similar signal and noise properties, and in one particular
cell the single-photon current pulse is of the form I,(¢) =
Ae~*(1 — e™*)3, so that

Ala

To(w) = i (1 —iw/na)

)]
The current noise consists of two components, one of
which corresponds to the spontaneous occurrence of
discrete photonlike events and, hence, has a power spec-
trum proportional to |Ty(w)|% In a single cell this noise
source is not Gaussian, but if we consider a bipolar cell
which integrates over ~50 rods (8,9) the Gaussian
approximation is quite adequate. In addition there is a
continuous component of the noise, which appears to be
filtered through only two of the four time constants
appearing in I,. Quantitatively, therefore,

S,
[1 + (w/20)2][1 + (w/4a)?]

Sl(w) =

M
T+ (@/nd’

(®)

with S./S,; = 0.245. The filter we would like to build is
then

I(w)

G(w) - Sl(w)

m:_, (1 — iw/na)
1+ (S./SHI + (/a1 + (w/3)?]”

&)

which is acausal because it has poles appearing in
conjugate pairs and, hence, in both halves of the complex
w plane. The corresponding causal, minimum-phase filter
can be constructed analytically by converting each conju-
gate pair of poles into a double pole in the lower half
plane, and we find

mi_, (1 — iw/na)

G —_—
(@) (w — wy + iV)Hw + wy + i7)?’

(10)

with w, = 0.938« and vy = 2.425a. The response of our
hypothetical bipolar cell is obtained by passing the
photocurrent impulse response I, through this filter.
Interestingly this serves simply to cancel the numerator in
Eq. 10. Finally we transform back to the time domain to
obtain the predicted impulse response of the bipolar cell,

Vbipolar(t > 0) « exp (—+2) [sin (wo?) — wot cos (wet)], (11)

where by causality Vi, (£ < 0) = 0. Note that because
v » w, the oscillations expected from the sin and cos terms
are essentially unobservable.

Ideally we would like to compare our predictions with
recordings of bipolar cell responses in the Bufo retina
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under conditions as close as possible to the rod current
experiments; alas such data are not available. In the tiger
salamander Ambystoma tigrinum we have data on rod
and bipolar-cell voltages taken from the same retina
during the course of one experiment (8, 9). To make a
meaningful comparison we, thus, convert the rod current
impulse response of reference S into a voltage impulse
response using the data and model of reference 13. In Fig
1 a we show the predicted bipolar cell response together
with the rod voltage response.

We emphasize that the predicted bipolar cell dynamics
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FIGURE1 Theoretical and experimental responses in rod and bipolar

cells. (a) Prediction of hypothetical bipolar cell voltage from Eq. 11 of
the text, and rod voltage computed from data in references 5 and 13. (b)
Measured voltage responses in a rod and an on-center bipolar cell from
the tiger salamander (8, 9). Linear range responses are recorded to 20
ms flashes of 500 nm light, presented as circular spots 600 um in
diameter centered on each cell. Rod-cell data are taken with an intensity
that bleaches 2 Rhodopsin per rod, bipolar cell data are taken at ~0.5
Rh*/rod. Each trace is the average of 10 intracellular records, which are
then normalized; peak voltage excursions are 0.5 mV (rod) and 0.8 mV
(bipolar).

is not a model of this cell. Given the measured character-
istics of the rod cells, summarized by Eqgs. 7 and 8 above,
the bipolar cell response (Eq. 11) is completely deter-
mined by the principle of optimal computation. We draw
attention to the two main features of the predicted bipolar
cell responses, features which are echoed in the observed
responses as shown in Fig. 1 b:

(@) During the rising phase of the responses the
bipolar cell response is predicted to lead the rod voltage,
peaking roughly 10% earlier, in reasonable agreement
with the experiment. The detailed prediction is, however,
sensitive to the behavior of rod current signals and noise at
high frequencies, where there is some variability from
experiment to experiment (5). In addition, the short time
behavior of the rod voltages in the salamander is signifi-
cantly affected by the rod cell capacitance, which was
neglected in the analysis of the rod network in Bufo.
Despite these difficulties, it is clear that the basic predic-
tion of a slightly quicker rise for the bipolar cell is
confirmed.

(b) The bipolar cell voltage decays more rapidly than
the rod cell voltage, so that the bipolar response is
essentially complete whereas the rod response is still
nearly half-maximal. Quantitatively, the full width at
half maximum of the bipolar response is predicted to be
~35% less than that of the rod cell, and we observe ~40%.
Similarly, the bipolar cell voltage falls to <25% of its
maximum at times where the rod voltage is greater than
half maximal. This quickening of the bipolar cell response
relative to that of the rod means that the rod-bipolar
transfer is at least in part a high-pass filter, as can be seen
directly in the frequency domain (9). We recall that our
theory is valid only for the case of linear responses in a
dark-adapted retina. In fact the data of Fig. 1 b were
taken in this limit (8, 9).

It is well known that rod voltage responses are faster
than rod current responses, so that the rod network itself
acts as a high-pass filter. We see from Fig. 1, however,
that the extent of high-pass filtering required to convert
the rod current into the bipolar cell voltage is still greater
than that provided by the rods themselves. The apparent
filter characteristics of the voltage-to-voltage transfer
presumably reside in the rod-bipolar synapses, and the
bipolar cell dendrites and soma.

In all this discussion we have been comparing sala-
mander experiments with a theory that takes its parame-
ters from data on a toad. This is dangerous, of course, but
we know that the kinetics of the salamander photocur-
rents is similar in form to that of the toad (unpublished
observations ). A potentially more serious objection to our
comparison is that rod cells seem to be significantly slower
under the conditions of current recordings than under the
conditions of voltage recordings, as may be seen by
comparing references 4 and 13. This difficulty prevents us
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from placing Figs. 1 a and b, on the same absolute time
scale, but the main predictions regarding the quickening
of the bipolar response relative to that of the rod will not
be affected. We could try to bridge this gap by treating
the time scale a~! (cf. Eq. 7) as a free parameter, but then
we are reduced to curve fitting. If we allow ourselves this
freedom we can achieve an almost perfect superposition of
theoretical and experimental curves, as may be seen by
carefully comparing Figs. 1, a and b. To give a decisive
test of our predictions we must do careful measurements
of rod voltage noise under the same conditions where we
give a complete characterization of the rod network,
because together these results can be used to infer the
independent current signal and noise spectra. Such exper-
iments are currently being analyzed (Rieke, F., and W.
Bialek, manuscript in preparation).

DISCUSSION

In the last decade the subject of neural computation has
blossomed into a large literature which crosses traditional
boundaries among biology, physics, mathematics, and
engineering. In those studies which concentrate on biol-
ogy, one can discern two quite distinct traditions. One
approach tries to motivate plausible models for the
elements of neural computation, simplified neurons and
synapses, and then studies the computational abilities
which emerge when such elements are connected. Exam-
ples of this tradition can be found in the analysis of
collective computation in highly interconnected networks
(14, 15), and in the study of neural circuits which
generate rhythmic behaviors (16, 17). An alternative
approach is to focus on some computational task which
the organism must face and then explore the minimal
mechanisms that can extract signals of relevance to this
task. An example of this approach is the study of
correlation detection as a strategy for movement estima-
tion (18, 19). :

In this work we have suggested an approach to visual
computation that we believe to be subtly different from
these two traditions. In studying the processing of single-
photon signals we have a very important piece of data,
namely that this processing appears to be nearly optimal.
We suggest that this optimality may be promoted to a
design principle which can predict the functional dynam-
ics of cells in the processing pathway. As a preliminary
test of this principle we find the semiquantitative agree-
ment between theory and experiment illustrated in Fig. 1
to be encouraging. As far as we know, there is no other
case in which it has been possible to predict the dynamic
response of a neuron from some design principle such as
the idea of optimal computation proposed here.

We emphasize once more that our approach does not
result in a model for the bipolar cell, but rather in a
prediction of its response properties. As a result we can be
wrong, and such errors cannot be fixed by curve-fitting.
Failure of the optimality principle to correctly predict the
computational abilities of cells in a processing pathway
implies either that the postulated optimization principle is
not relevant or that there are biological constraints which
prevent optimization. Either of these possibilities is inter-
esting, especially if one can quantify (as for photon
counting) the approach to optimality in the system as a
whole.

Our emphasis on optimal computation would be mis-
placed if the vertebrate retina provided an isolated exam-
ple of this concept. In fact there is evidence of optimal
processing in a number of visual tasks. In the fly retina it
has been possible to compare effective contrast noise
levels in photoreceptors and second-order cells, and one
finds that at least over a limited frequency band no
information is lost in this first stage of signal transfer (de
Ruyter van Steveninck, R., personal communication). It
is interesting that the temporal filtering which occurs
between these two cells is similar to that found for the
analogous rod bipolar signal transfer in vertebrates as
discussed here. For the fly a picture of optimal processing
would fit well with the optimality of photoreceptor optics
in compound eyes (20).

Turning to more complex signal processing problems,
recent evidence indicates that a movement-sensitive neu-
ron in the fly visual system encodes all of the information
available about rigid movements across the visual field,
being limited only by the signal-to-noise ratio of the
photoreceptors themselves (21-23). These observations
provide a second opportunity to design the optimal
processor and compare its dynamics with that observed
for a real neuron. Finally, as emphasized by Barlow (24,
25), there is growing evidence that human observers can
perform optimally or near-optimally at a number of
perceptual tasks, including more complex Gestalt tasks
such as recognition of symmetry. Perhaps theoretical
methods along the lines presented here and in references
25 and 26 can be used to predict the character of neural
computations which underlie such optimal performance.
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Note added in proof: The in situ analysis of signals and noise in rods of
the salamander retina has now been completed, allowing a fully
quantitative and parameter-free test of the ideas presented here. The
agreement between theory and experiment is excellent. A preliminary
account will be given by Rieke, F., W. G. Owen, and W. Bialek. 1991.
Optimal filtering in the salamander retina. In Analysis and Modeling of
Neural Systems 1. F. H. Eeckman, editor. Kluwer Academic Publishers,
Norwell, MA. An overview of these and related results is given in
reference 28. A full account is in preparation.
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