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We compare the high perceptual efficiency exhibited by humans at a number of tasks in visual percep-
tion with that predicted by models of visual information processing, in particular the broad class of
“feature detector”” models, which we represent as an Ising spin system responding to a quasirandom
magnetic field. The observed excitatory-center, inhibitory-surround organization of the neural receptive

fields is seen to be desirable.

PACS numbers: 87.10.+e, 05.50.+q, 42.66.Si, 89.70.+c

The sensory systems of higher animals receive an enor-
mous amount of information from the environment. It
seems natural to assume that much of this “information”
is discarded by the nervous system as it extracts the
“meaningful” bits. This hypothesis is supported by the
qualitative description of sensory neurons as encoding
discrete features,' features which are presumably not
sufficient to fully reconstruct the input signal. The idea
of feature extraction has also led to practical algorithms
for electronic processing of images and sound. Several
recent experiments, however, suggest that there are
several tasks in visual perception where humans use all
or nearly all of the information available.>® We believe
that this evidence of optimal performance, while still
somewhat scattered, is providing an important clue about
the computational structure* of human vision. In this
note we make some first attempts at testing the classical
notion of feature detection against these more recent ob-
servations.

First recall what optimal performance means in the
simple task of detecting a known signal against a back-
ground of Gaussian noise. For definiteness consider only
black-and-white (including gray) pictures, described by
some scalar field in two dimensions ¢(x). A signal ¢o(x)
in a background of white noise defines an ensemble of
signals with probability distribution

Plo(x) [ 60(x)) =2 ~texp | = £ faxlo(x) — 000212
(1

where y ! measures the strength of the noise and Z is a
normalization constant. In a typical experiment an ob-
server will be asked to decide if the signal ¢o(x) is actu-
ally present in a particular image ¢(x). More precisely,’
on each trial of the experiment we randomly choose an
image ¢(x) either from the “signal” distribution
Plp(x) | ¢o(x)] or from the “noise” distribution
Plo(x) | po(x) =0I; the choice of signal versus noise is
also random and for simplicity we consider the case of
equal probabilities for these two alternatives. The ob-
server, having seen ¢(x), must choose between signal
and noise. The fraction of correct choices is maximized

if the observer bases the decision on the discriminant

Plo(x) | ¢o(x)]
Plo(x) | go(x)=0] |’

Aoptle(x)] =ln{ 2)
assigning ¢(x) to go(x) if Alp(x)]1 >0 and to ¢o(x) =0
if Al¢(x)] <0. This particular decision rule is termed
maximum likelihood and clearly makes use of all the
available information.

In signal detection theory,® a generalized signal-to-
noise ratio (SNR) is defined by

((A[pDg,— AlpD)g=0)?
{(B1) Dy +((B1) D gy =0} /2

d)?= 3)

9Dy = J Dor"9()1PIo(x) | 90(x)]

and ((61) %) =% — ()2, with Alp(x)] as defined in Eq.
(2). This definition evidently measures how far apart the
two probability distributions

P0300) = [ D950, Lo (IDPIOG) | 90G);

P90 =0)= [ D9 60.~Llp()1PLp(x) | 90=0]

are relative to the average of their two widths. In simple
situations, such as the signal in Gaussian white-noise
problem as described by Eq. (1), it is a standard exercise
to show that the maximum fraction of correct signal
versus noise discriminations is

P =2 [1+®(d'/2)], 4)
where ®(z) =(2/7) '? [§dx exp(— x?/2) and

(d')gpt——-yfdzx(b&(x). (5)

(d')? is optimal in the sense that all the information con-
tained in ¢(x) is utilized. (For this simple task, obvious-
ly, only the “power” in ¢g enters.) It is clear that d' cor-
responds to the usual notion of SNR. In more complex
problems, at least for small SNR, (d')? gives us a good
estimate of P. and hence the discrimination perfor-
mance. It is thus conventional to report the results of ex-
periments on human observers in terms of an apparent
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d', inverting Eq. (3). This may be used to define the ex-
perimental detection efficiency €exp=(d')&p/(d") 3 With
(d')%, as defined in Eq. (5). It is this quantity which has
been reported®? to range from 0.5 to 0.95 in tasks as
varied as simple signal-noise discrimination, detection of
symmetry in weakly correlated random-dot patterns, and
discrimination of density variations in random dots.

In general we do not expect that ¢(x) itself is repre-
sented in the nervous system. Instead there is some set
of variables {o,} which are related to the stimulus ¢(x)
by a distribution P(c | ¢) and hence to the true signal by

P(cl00) = [ Do (o] 9)PLo(x) | 001,

Both the character of the internal representation {o}—
e.g., discrete or continuous variables— as well as the rule
for transforming ¢— o [which is just P(o|¢)] must be
specified in any concrete model of the perceptual process.
Once we have this model, however, we can predict its
limiting performance at signal-noise discrimination, since
by the the arguments above the best that one can do is to

(@)? =fd2y d?z ¢0(y) 9o (2 ) Tr,{P[51nP/560(y)181nP/5¢0(2)} | 4, =0,

form

(6)

}"approx[{dﬂ}] =ln{ P[{G#} | ‘PO(X)] }

P[{O’u} ! 00(x) =01

and decide that the signal is present if Aapprox > 0. This
procedure allows us to characterize any approximate
model of perception by a value of d' computed with
Aapprox and hence by an efficiency e.

In general the calculation of perceptual efficiency can
only be done by rather tedious Monte Carlo simulations.
In the limit of small SNR, however, we can make some
analytical progress, and we know that this limit is (a) ac-
cessible experimentally and (b) exact for all SNR in the
optimal case of Eq. (4).

To reach this limit we expand

P(0|¢o)=P|+£¢o+;‘¢o dot+ - -
800

6°P
800600
here and in what follows, P always stands for P(o | ¢o).
We find easily that

)

provided that Tr,(8P/8¢¢) | =0 as in the examples below. The occurrence of InP may be handled by the replica trick,
InP =lim,—on ~'(P"—1), familiar from the theory of spin-glasses. Alternatively and more simply, we carry out the
variation of InP against ¢o and analytically continue 1/P as lim,_. oP" ",

d@)?= liillofd %y d’z 90(y)90(2) Tro{P" ™' (5P/8500) 5P/560} | g=o.

To proceed further we must give some specific exam-
ples for the representation ¢— o. Consider the feature-
detector theory! which originated in the neurophysiologi-
cal experiments of the 1950’s. Neurons in the visual sys-
tem are assumed to compute nonlinear functionals of the
image intensity and thus signal the presence of features
in the image. We attempt to capture the essence of this
theory by taking the simplest possibility for the feature
tokens: Ising spins o, located at x,, u=1, 2,...,N,
with o, = % 1, which track the sign of the filtered image,
so that

Plic} |o(x)1=TTe [a”fdzxf(x—x,,)tp(x) , 9
u

with 8(x) the unit step function. Thus, the Ising spins at
x, respond to a quasirandom ‘“magnetic” field ¢,
=fd?x f(x —x,)¢(x) fluctuating around some mean
¢0u=Jd*x f(x —x,)p0(x) determined by the image
¢o(x). Here f(x) represents the response function of a
feature-detector neuron located at x,. The response
function, with its typical excitatory center and inhibitory
surround, is often modeled® as the Laplacian of a Gauss-
ian V2G or as the difference of two Gaussians.

A classic feature-detector idea concerns the extraction
of edges,! contours of maximal gradients of ¢. This con-
cept was formalized by Marr and others as the location
of contours where some appropriately filtered version of

(®)

[

the image vanishes.” Since the “domain walls” between
spin-up and spin-down regions mark the zero-crossing
contours, this {o} representation contains more informa-
tion (but perhaps only a bit more) than a “sketch” based
on zero-crossing contours alone. We believe that this
Ising-type model is prototypical of a large family of
models which replace the continuous image ¢(x) by
discrete and local “feature tokens.” [More generally, we
can incorporate noise in the visual system by writing

I; (O’ l P ) = ne Bous, — ln2coshﬁ¢“’
u

where 8, a measure of noise in the visual system, may be
thought of as an inverse temperature. The Incosh term
required by normalization makes it difficult to evaluate
(d')%. Thus, we go to the zero-temperature or deter-
ministic limit. Of course, a nonzero temperature will
only reduce (d')? further.]

We can directly combine Egs. (8) and (9) to find

n+l1

] . 1 a a —_ a)2
@)= lim e, I1 7 [ Do°TTo(o,000e =09
x [yf¢‘¢o] [)’f¢2¢0}. (10)
Note the replica index a which runs from 1 to n+1.
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Thanks to the replica trick, the trace over spin states can
now be taken. Obviously,

Tr.JII16Co,02) =IT [TT6Gs) +TT0(—02) |. (11)
u a mn a a

Multiplying this expression out, we find a sum of terms
of the form IT.I1,6(c,02), where we have introduced a
set of signs €, = * 1. The signs at different sites are now
coupled while the ¢’s with different replica indices factor
nicely. Thus, we have

d)?= 1@023"—‘@ =Y.C%B, 12)

B=7 —1f$¢l:lﬁ)mdwuf:°‘;—t;;exp [izy:tu(w,,—e,,%)]exp[—‘zlf(p?

where the Y symbol ranges over the 2V ways in which
the signs €, can be assigned. We have written

8=2"" [ DoIT6(e,0,)e ~7/2I¥ (13a)
m

and
=z [ DoTT6(e,0,.0e =219y [ o0,
m

In this case the replica limit can evidently be taken
without any fuss. Using an integral representation of the

(13b)

| step function we find

N/2

oo oo dt 1
= d 4 2.t - tJ, veuly | =
l;Ij; wuf_w 1 eXp [1§ uWu 27%@1 uJ uv€ ] 27

(detK) I/ZHJ; dw,exp { - %Ze#wﬂKwevwv].
P uv

(14)

Here J,,=J(x,—x,) =fd*x f(x —x,) f(x —x,) and K is the inverse of J. This describes a rather peculiar system in
which fields w, whose values are restricted to be positive interact with each other via an interaction €,K,,,€,, with the €’s
alternately making each interaction ferromagnetic or antiferromagnetic. C is given similarly. We finally have

@)=3 {DIL.f5dw,expl — (y/2) ZewKewl yXandonKanexwit
DIL.Jcdw,expl — (y/2) ZewKew] ’

(15)

where D = (y/27)V/2(detk) /2.

Note that (d')? has the form (d')?=yfd’x
xd? ¢o(x)G(x,y)¢0(y) as is required by dimensional
analysis. Comparing with the optimal d' in Eq. (5), we
see that the efficacy of feature detection is measured by
how closely G(x,y) reproduces the delta function. More
precisely, considering G(x,y) as a kernel with eigenval-
ues A and eigenfunctions y; (x) we can write

2
(d')2=7fdkp(l)k [fdzxdyo(x)w(x) (16)

as an integral over the eigenvalue spectrum (described
by the density). If the integral is dominated by the larg-
est eigenvalue, we see that roughly it is the overlap of ¢g
with a “canonical” image y;(x) that counts. In general,
however, the integral will not be so dominated.

We see no way of doing the integral over w, in gen-
eral. The following approximation helps to indicate what
may be going on. With the normalization [d2x f*(x)
=1 we can write J,,=8,,+A,,, where A,, is a sym-
metric matrix with diagonal elements zero. Evaluating
(d')? perturbatively in A, we find the kernel

Glep) =T f(x—x)f = xo) lém—zAM,+ e ]
T Ao V.4

In the *“local” limit 4A— 0, we have G(x,y)=/x)
xX3f(x—x)f(y —x,). If the f’s form a complete set
then this most closely approaches a delta function, max-
imizing d'. Thus in this limit the maximum efficiency is
2/n=0.64. .., which is excluded experimentally.?? We
conclude that off-diagonal terms in J,,,, corresponding to
overlaps of the “receptive fields” of neighboring cells, are
essential for understanding the observed efficiency of hu-
man perception. Further, these overlaps must be nega-
tive to enhance d’', which necessitates an antagonistic
center-surround type of organization as found experi-
mentally at various levels of the visual system. !

Detailed analysis of Eq. (17) to determine the condi-
tions for e— 1 seems unprofitable, since this result is
only valid at small 4. An alternative approach is to as-
sume that the decision variable kapprox[{o}] is some gen-
eral linear function Aapprox =Zug,,cr,‘, with the coefficients
gy chosen to maximize d'. This corresponds to a literal
notion of feature detection as a strategy in signal
detection—the presence or absence of the signal is
judged by a tallying of the presence or absence of the
features coded by {o,}. With this approach we can make
considerable progress. In the limit of small ¢¢ as above

(17L| we find the maximum d' (optimizing g,) to be

@)=y fax [ dy 000000 2 Zf =58 " & =0, (18)

where the matrix S,, =Tr,(c,0,P[{c,} | 9o=01) can be expressed in terms of formulas like Eq. (14), but with integrals
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over only two variables w, since we need to keep track
only of one pair of spins. As a result the problem can be
solved exactly, to give

1+J,,

4.
S ==t
w = 1an 1—J,

}—1. 19)

In the limit J,,=§,,+A,,, A<K1, we recover Eq. (17)
exactly, thus strongly suggesting that simple linear com-
binations of spins provide all of the information for sig-
nal detection available in the set {c,} in the local limit.

Sk)=

If J (k) were small for all k, we would apparently reach
optimal performance, (d')%=vyfd**k(2z) ~*|do(k)|?
[Eq. (4)]. The normalization condition fd2k(27) 2
xJ(k)=fd*x f2(x) =1 forces S(k) to be larger than
(2/7)J (k) and hence the detection efficiency is less than
unity, as it must be.

What is remarkable is how close we can come to op-
timality. As an example we consider approximating
J (k) by Gaussians of width (Ak)? centered at + ko,

j(k) =Ale —(k—ko)z/Z(Ak)z+e —(k+ko)2/2(Ak)2],
as would be the case if the response function is the
Laplacian of a Gaussian.® The constant A is determined
by the normalization [d2k(2z) ~2J(k)=1. For Ak
< ko, we have 4 ~n(Ak) ~2, and after some algebra we
find S(ko)~Q2/m)A(1+ & + - -+ ). We conclude that
for signals whose power is concentrated near ko, this
system can achieve a detection efficiency ¢
~(1+ 35 + -+ ) 7! within a few percent of unity for
some optimal ¢o. Recall that the coefficients g, were
chosen to optimize performance. This result corresponds
well with expectations from theorems on the information
content of zero crossings in narrow-band signals.’

To summarize, we have shown explicitly how feature-
detector models can be tested against the observed near
optimality of human performance at specific perceptual
tasks. To the extent that perceptual efficiency is under-
standable in these models it appears that an antagonistic
center-surround organization of the receptive fields is
essential. It appears possible to get the most out of a
feature-detector scenario even with relatively simple
linear processing of the detector outputs, and within this
scheme we have found expressions for the perceptual
efficiency which are easily evaluated for specific models.
In particular, the limit of “spatial frequency detec-
tion”—very-narrow-bandwidth receptive fields— seems
to allow efficiencies within a few percent of unity, in
marked contrast to the untenable broadband (J,,~3§,,)
result of e=2/x. It is tempting to conclude that a realis-
tic feature-detector model of the visual system exists

We can also study the performance of the “linear
combination” model in the continuum limit, where

Suv— S(x, —x,) and sums over lattice sites become in-
tegrals. After some calculation we find
2 Jk)

@)= (k)|? (20)
(2 )2 815205

where J(k)=|f(k)|? is positive definite and we have
the transform convention f(k)=fd’xe ~**f(x). Ex-
panding Eq. (19), we have

J(k)+‘f(2 )2f(2 )2J(q).7(q’).7(k—q—q')+--- } Q1)
n

somewhere between these limits. It may be safer to con-
clude that simple signal-detection tasks do not provide a
definitive test of the feature-detector concept. We are
currently studying the performance of these models at
more complex tasks.
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