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We de�ne predictive information Ipred(T) as the mutual information be-
tween the past and the future of a time series.Three qualitatively different
behaviors are found in the limit of large observation times T: Ipred(T) can
remain �nite, grow logarithmically, or grow as a fractional power law. If
the time series allows us to learn a model with a �nite number of param-
eters, then Ipred(T) grows logarithmically with a coef�cient that counts
the dimensionality of the model space. In contrast, power-law growth is
associated, for example, with the learning of in�nite parameter (or non-
parametric) models such as continuous functions with smoothness con-
straints. There are connections between the predictive information and
measures of complexity that have been de�ned both in learning theory
and the analysis of physical systems through statistical mechanics and
dynamical systems theory. Furthermore, in the same way that entropy
provides the unique measure of available information consistent with
some simple and plausible conditions, we argue that the divergent part
of Ipred(T) provides the unique measure for the complexity of dynam-
ics underlying a time series. Finally, we discuss how these ideas may be
useful in problems in physics, statistics, and biology.

1 Introduction

There is an obvious interest in having practical algorithms for predicting
the future, and there is a correspondingly large literature on the problem of
time-series extrapolation.1 But prediction is both more and less than extrap-

1 The classic papers are by Kolmogoroff (1939,1941)andWiener (1949),who essentially
solved all the extrapolation problems that could be solved by linear methods. Our under-
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olation. We might be able to predict, for example, the chance of rain in the
coming week even if we cannot extrapolate the trajectory of temperature
�uctuations. In the spirit of its thermodynamic origins, information theory
(Shannon, 1948) characterizes the potentialities and limitations of all possi-
ble prediction algorithms, as well as unifying the analysis of extrapolation
with the more general notion of predictability. Speci�cally, we can de�ne a
quantity—the predictive information—that measures how much our obser-
vations of the past can tell us about the future. The predictive information
characterizes the world we are observing, and we shall see that this char-
acterization is close to our intuition about the complexity of the underlying
dynamics.

Prediction is one of the fundamental problems in neural computation.
Much of what we admire in expert human performance is predictive in
character: the point guard who passes the basketball to a place where his
teammate will arrive in a split second, the chess master who knows how
moves made now will in�uence the end game two hours hence, the investor
who buys a stock in anticipation that it will grow in the year to come.
More generally, we gather sensory information not for its own sake but in
the hope that this information will guide our actions (including our verbal
actions). But acting takes time, and sense data can guide us only to the
extent that those data inform us about the state of the world at the time
of our actions, so the only components of the incoming data that have a
chance of being useful are those that are predictive. Put bluntly, nonpredictive
information is useless to the organism, and it therefore makes sense to isolate
the predictive information. It will turn out that most of the information
we collect over a long period of time is nonpredictive, so that isolating the
predictive information must go a long way toward separating out those
features of the sensory world that are relevant for behavior.

One of the most important examples of prediction is the phenomenon of
generalization in learning. Learning is formalized as �nding a model that
explains or describes a set of observations, but again this is useful only be-
cause we expect this model will continue to be valid. In the language of
learning theory (see, for example, Vapnik, 1998), an animal can gain selec-
tive advantage not from its performance on the training data but only from
its performance at generalization. Generalizing—and not “over�tting” the
training data—is precisely the problem of isolating those features of the data
that have predictive value (see also Bialek and Tishby, in preparation). Fur-
thermore, we know that the success of generalization hinges on controlling
the complexity of the models that we are willing to consider as possibilities.

standing of predictability was changed by developments in dynamical systems, which
showed that apparently random (chaotic) time series could arise from simple determin-
istic rules, and this led to vigorous exploration of nonlinear extrapolation algorithms
(Abarbanel et al., 1993). For a review comparing different approaches, see the conference
proceedings edited by Weigend and Gershenfeld (1994).
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Finally, learning a model to describe a data set can be seen as an encod-
ing of those data, as emphasized by Rissanen (1989), and the quality of
this encoding can be measured using the ideas of information theory. Thus,
the exploration of learning problems should provide us with explicit links
among the concepts of entropy, predictability, and complexity.

The notion of complexity arises not only in learning theory, but also in
several other contexts. Somephysical systems exhibit morecomplexdynam-
ics than others (turbulent versus laminar �ows in �uids), and some systems
evolve toward more complex states than others (spin glasses versus ferro-
magnets). The problem of characterizing complexity in physical systems
has a substantial literature of its own (for an overview, see Bennett, 1990).
In this context several authors have considered complexity measures based
on entropy or mutual information, although, as far as we know, no clear
connections have been drawn among the measures of complexity that arise
in learning theory and those that arise in dynamical systems and statistical
mechanics.

An essential dif�culty in quantifying complexity is to distinguish com-
plexity from randomness. A true random string cannot be compressed and
hence requires a long description; it thus is complex in the sense de�ned
by Kolmogorov (1965; Li & Vit Âanyi, 1993; Vit Âanyi & Li, 2000), yet the phys-
ical process that generates this string may have a very simple description.
Both in statistical mechanics and in learning theory, our intuitive notions
of complexity correspond to the statements about complexity of the un-
derlying process, and not directly to the description length or Kolmogorov
complexity.

Our central result is that the predictive information provides a general
measure of complexity, which includes as special cases the relevant concepts
from learning theory and dynamical systems. While work on complexity
in learning theory rests speci�cally on the idea that one is trying to infer a
model from data, the predictive information is a property of the data (or,
more precisely, of an ensemble of data) themselves without reference to a
speci�c class of underlying models. If the data are generated by a process in
a known class but with unknown parameters, then we can calculate the pre-
dictive information explicitly and show that this information diverges loga-
rithmically with the size of the data set we have observed; the coef�cient of
this divergence counts the number of parameters in the model or, more pre-
cisely, the effective dimension of the model class, and this provides a link to
known results of Rissanen and others. Wealso can quantify the complexityof
processes that fall outside the conventional �nite dimensional models, and
we show that these more complex processes are characterized by a power
law rather than a logarithmic divergence of the predictive information.

By analogy with the analysis of critical phenomena in statistical physics,
the separation of logarithmic from power-law divergences, together with
the measurement of coef�cients and exponents for these divergences, allows
us to de�ne “universality classes” for the complexity of data streams. The
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power law or nonparametric class of processes may be crucial in real-world
learning tasks, where the effective number of parameters becomes so large
that asymptotic results for �nitely parameterizable models are inaccessible
in practice. There is empirical evidence that simple physical systems can
generate dynamics in this complexityclass, and there are hints that language
also may fall in this class.

Finally, we argue that the divergent components of the predictive in-
formation provide a unique measure of complexity that is consistent with
certain simple requirements. This argument is in the spirit of Shannon’sorig-
inal derivation of entropy as the unique measure of available information.
We believe that this uniqueness argument provides a conclusive answer
to the question of how one should quantify the complexity of a process
generating a time series.

With the evident cost of lengthening our discussion, we have tried to
give a self-contained presentation that develops our point of view, uses
simple examples to connect with known results, and then generalizes and
goes beyond these results.2 Even in cases where at least the qualitative form
of our results is known from previous work, we believe that our point of
view elucidates some issues that may have been less the focus of earlier
studies. Last but not least, we explore the possibilities for connecting our
theoretical discussion with the experimental characterization of learning
and complexity in neural systems.

2 A Curious Observation

Before starting the systematic analysis of the problem, we want to motivate
our discussion further by presenting results of some simple numerical ex-
periments. Since most of the article draws examples from learning, here we
consider examples from equilibrium statistical mechanics. Suppose that we
have a one-dimensional chain of Ising spins with the Hamiltonian given by

H D ¡
X

i, j
Jijsisj, (2.1)

where the matrix of interactions Jij is not restricted to nearest neighbors;
long-range interactions are also allowed. One may identify spins pointing
upward with 1 and downward with 0, and then a spin chain is equivalent
to some sequence of binary digits. This sequence consists of (overlapping)
words of N digits each, Wk, k D 0, 1 ¢ ¢ ¢ 2N ¡1. There are 2N such words total,
and they appear with very different frequencies n(Wk) in the spin chain (see

2 Some of the basic ideas presented here, together with some connections to earlier
work, can be found in brief preliminary reports (Bialek, 1995; Bialek & Tishby, 1999).
The central results of this work, however, were at best conjectures in these preliminary
accounts.
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Figure 1: Calculating entropy of words of length 4 in a chain of 17 spins. For
this chain, n(W0) D n(W1 ) D n(W3 ) D n(W7 ) D n(W12) D n(W14 ) D 2, n(W8 ) D
n(W9 ) D 1, and all other frequencies are zero. Thus, S(4) ¼ 2.95 bits.

Figure 1 for details). If the number of spins is large, then counting these
frequencies provides a good empirical estimate of PN (Wk), the probabil-
ity distribution of different words of length N. Then one can calculate the
entropy S(N) of this probability distribution by the usual formula:

S(N) D ¡
2N ¡1X

kD0

PN(Wk) log2 PN(Wk) (bits). (2.2)

Note that this is not the entropy of a �nite chain with length N; instead, it
is the entropy of words or strings with length N drawn from a much longer
chain. Nonetheless, since entropy is an extensive property, S(N) is propor-
tional asymptotically to N for any spin chain, that is, S(N) ¼ S0 ¢ N. The
usual goal in statistical mechanics is to understand this “thermodynamic
limit” N ! 1, and hence to calculate the entropy density S0. Different sets
of interactions Jij result in different values of S0, but the qualitative result
S(N) / N is true for all reasonable fJijg.

We investigated three different spin chains of 1 billion spins each. As
usual in statistical mechanics, the probability of any con�guration of spins
fsig is given by the Boltzmann distribution,

P[fsig] / exp(¡H/ kBT), (2.3)

where to normalize the scale of the Jij we set kBT D 1. For the �rst chain,
only Ji,iC1 D 1 was nonzero, and its value was the same for all i. The second
chain was also generated using the nearest-neighbor interactions, but the
value of the coupling was reset every 400,000 spins by taking a random
number from a gaussian distribution with zero mean and unit variance.
In the third case, we again reset the interactions at the same frequency,
but now interactions were long-ranged; the variances of coupling constants
decreased with the distance between the spins as hJ2

iji D 1/(i ¡ j)2. We plot
S(N) for all these cases in Figure 2, and, of course, the asymptotically linear
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Figure 2: Entropy as a function of the word length for spin chains with different
interactions. Notice that all lines start from S(N) D log2 2 D 1 since at the values
of the coupling we investigated, the correlation length is much smaller than the
chain length (1 ¢ 109 spins).

behavior is evident—the extensive entropy shows no qualitative distinction
among the three cases we consider.

The situation changes drastically if we remove the asymptotic linear con-
tribution and focus on the corrections to extensive behavior. Speci�cally, we
write S(N) D S0 ¢N C S1(N), and plot only the sublinear component S1(N) of
the entropy. As we see in Figure 3, the three chains then exhibit qualitatively
different features: for the �rst one, S1 is constant; for the second one, it is
logarithmic; and for the third one, it clearly shows a power-law behavior.

What is the signi�cance of these observations? Of course, the differences
in the behavior of S1(N) must be related to the ways we chose J’s for the
simulations. In the �rst case, J is �xed, and if we see N spins and try to predict
the state of the N C 1st spin, all that really matters is the state of the spin
sN; there is nothing to “learn” from observations on longer segments of the
chain. For the second chain, J changes, and the statistics of the spin words
are different in different parts of the sequence. By looking at these statistics,
one can “learn” the coupling at the current position; this estimate improves
the more spins (longer words) we observe. Finally, in the third case, there are
many coupling constants that can be learned. As N increases, one becomes
sensitive to weaker correlationscaused by interactions over larger and larger
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Figure 3: Subextensive part of the entropy as a function of the word length.

distances. So, intuitively, the qualitatively different behaviors of S1(N) in the
three plotted cases are correlated with differences in the problem of learning
the underlying dynamics of the spin chains from observations on samples
of the spins themselves. Much of this article can be seen as expanding on
and quantifying this intuitive observation.

3 Fundamentals

The problem of prediction comes in various forms, as noted in the Intro-
duction. Information theory allows us to treat the different notions of pre-
diction on the same footing. The �rst step is to recognize that all predictions
are probabilistic. Even if we can predict the temperature at noon tomorrow,
we should provide error bars or con�dence limits on our prediction. The
next step is to remember that even before we look at the data, we know
that certain futures are more likely than others, and we can summarize this
knowledge by a prior probability distribution for the future. Our observa-
tions on the past lead us to a new, more tightly concentrated distribution:
the distribution of futures conditional on the past data. Different kinds of
predictions are different slices through or averages over this conditional
distribution, but information theory quanti�es the “concentration” of the
distribution without making any commitment as to which averages will be
most interesting.
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Imagine that we observe a stream of data x(t) over a time interval ¡T <
t < 0. Let all of these past data be denoted by the shorthand xpast. We are
interested in saying something about the future, so we want to know about
the data x(t) that will be observed in the time interval 0 < t < T0; let these fu-
ture data be called xfuture. In the absence of any other knowledge, futures are
drawn from the probability distribution P(xfuture), and observations of par-
ticular past data xpast tell us that futures will be drawn from the conditional
distribution P(xfuture|xpast). The greater concentration of the conditional dis-
tribution can be quanti�ed by the fact that it has smaller entropy than the
prior distribution, and this reduction in entropy is Shannon’s de�nition of
the information that the past provides about the future. We can write the
average of this predictive information as

Ipred(T , T 0 ) D
½
log2

µ P(xfuture|xpast)

P(xfuture)

¶ ¾
(3.1)

D ¡hlog2 P(xfuture)i ¡ hlog2 P(xpast)i
¡ £¡hlog2 P(xfuture, xpast)i

¤
, (3.2)

where h¢ ¢ ¢i denotes an average over the joint distribution of the past and
the future, P(xfuture, xpast).

Each of the terms in equation 3.2 is an entropy. Since we are interested
in predictability or generalization, which are associated with some features
of the signal persisting forever, we may assume stationarity or invariance
under time translations. Then the entropy of the past data depends only on
the duration of our observations, so we can write ¡hlog2 P(xpast)i D S(T),
and by the same argument ¡hlog2 P(xfuture)i D S(T0 ). Finally, the entropy
of the past and the future taken together is the entropy of observations on
a window of duration T C T0 , so that ¡hlog2 P(xfuture, xpast)i D S(T C T0 ).
Putting these equations together, we obtain

Ipred(T, T0 ) D S(T) C S(T0 ) ¡ S(T C T0 ). (3.3)

It is important to recall that mutual information is a symmetric quantity.
Thus, we can view Ipred(T, T0 ) as either the information that a data segment
of duration T provides about the future of length T0 or the information that
a data segment of duration T0 provides about the immediate past of dura-
tion T. This is a direct application of the de�nition of information but seems
counterintuitive. Shouldn’t it be more dif�cult to predict than to postdict?
One can perhaps recover the correct intuition by thinking about a large en-
semble of question-answer pairs. Prediction corresponds to generating the
answer to a given question, while postdiction corresponds to generating
the question that goes with a given answer. We know that guessing ques-
tions given answers is also a hard problem3 and can be just as challenging

3 This is the basis of the popular American television game show Jeopardy! widely
viewed as the most “intellectual” of its genre.
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as the more conventional problem of answering the questions themselves.
Our focus here is on prediction because we want to make connections with
the phenomenon of generalization in learning, but it is clear that generat-
ing a consistent interpretation of observed data may involve elements of
both prediction and postdiction (see, for example, Eagleman & Sejnowski,
2000); it is attractive that the information-theoretic formulation treats these
problems symmetrically.

In the same way that the entropy of a gas at �xed density is proportional
to the volume, the entropy of a time series (asymptotically) is proportional to
its duration, so that limT!1 S(T)/T D S0; entropy is an extensive quantity.
But from Equation 3.3, any extensive component of the entropy cancels in
the computation of the predictive information: predictability is a deviation
from extensivity. If we write S(T) D S0T C S1(T), then equation 3.3 tells
us that the predictive information is related only to the nonextensive term
S1(T). Note that if we are observing a deterministic system, then S0 D 0, but
this is independent of questions about the structure of the subextensive term
S1(T). It is attractive that information theory gives us a uni�ed discussion
of prediction in deterministic and probabilistic cases.

We know two general facts about the behavior of S1(T). First, the correc-
tions to extensive behavior are positive, S1(T) ¸ 0. Second, the statement
that entropy is extensive is the statement that the limit

lim
T!1

S(T)

T
D S0 (3.4)

exists, and for this to be true we must also have

lim
T!1

S1(T)
T

D 0. (3.5)

Thus, the nonextensive terms in the entropy must be subextensive, that is,
they must grow with T less rapidly than a linear function. Taken together,
these facts guarantee that the predictive information is positive and subex-
tensive. Furthermore, if we let the future extend forward for a very long
time, T0 ! 1, then we can measure the information that our sample pro-
vides about the entire future:

Ipred(T) D lim
T0!1

Ipred(T, T0 ) D S1(T). (3.6)

Similarly, instead of increasing the duration of the future to in�nity, we
could have considered the mutual information between a sample of length
T and all of the in�nite past. Then the postdictive information also is equal to
S1(T), and the symmetry between prediction and postdiction is even more
profound; not only is there symmetry between questions and answers, but
observations on a given period of time provide the same amount of infor-
mation about the historical path that led to our observations as about the
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future that will unfold from them. In some cases, this statement becomes
even stronger. For example, if the subextensive entropy of a long, discon-
tinuous observation of a total length T with a gap of a duration dT ¿ T is
equal to S1(T) C O(dT

T ), then the subextensive entropy of the present is not
only its information about the past or the future, but also the information
about the past and the future.

If we have been observing a time series for a (long) time T, then the total
amount of data we have collected is measured by the entropy S(T), and at
large T this is given approximately by S0T. But the predictive information
that we have gathered cannot grow linearly with time, even if we are making
predictions about a future that stretches out to in�nity. As a result, of the
total information we have taken in by observing xpast, only a vanishing
fraction is of relevance to the prediction:

lim
T!1

Predictive information
Total information

D
Ipred(T)

S(T)
! 0. (3.7)

In this precise sense, most of what we observe is irrelevant to the problem
of predicting the future.4

Consider the case where time is measured in discrete steps, so that we
have seen N time pointsx1, x2, . . . , xN. How much have we learned about the
underlying pattern in these data? The more we know, the more effectively
we can predict the next data point xNC1 and hence the fewer bits we will
need to describe the deviation of this data point from our prediction. Our
accumulated knowledge about the time series is measured by the degree to
which we can compress the description of new observations. On average,
the length of the code word required to describe the point xNC1, given that
we have seen the previous N points, is given by

(̀N) D ¡hlog2 P(xNC1 | x1, x2, . . . , xN)i bits, (3.8)

where the expectation value is taken over the joint distribution of all the
N C 1 points, P(x1, x2, . . . , xN, xNC1). It is easy to see that

(̀N) D S(N C 1) ¡ S(N) ¼ @S(N)

@N
. (3.9)

As we observe for longer times, we learn more, and this word length de-
creases. It is natural to de�ne a learning curve that measures this improve-
ment. Usually we de�ne learning curves by measuring the frequency or

4 We can think of equation 3.7 asa law of diminishing returns. Although we collect data
in proportion to our observation time T, a smaller and smaller fraction of this information
is useful in the problem of prediction. These diminishing returns are not due to a limited
lifetime, since we calculate the predictive information assuming that we have a future
extending forward to in�nity. A senior colleague points out that this is an argument for
changing �elds before becoming too expert.
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costs of errors; here the cost is that our encoding of the point xNC1 is longer
than it could be if we had perfect knowledge. This ideal encoding has a
length that we can �nd by imagining that we observe the time series for an
in�nitely long time, ìdeal D limN!1 (̀N), but this is just another way of
de�ning the extensive component of the entropy S0. Thus, we can de�ne a
learning curve

L (N) ´ (̀N) ¡ ìdeal (3.10)

D S(N C 1) ¡ S(N) ¡ S0

D S1(N C 1) ¡ S1(N)

¼ @S1(N)

@N
D

@Ipred(N)

@N
, (3.11)

and we see once again that the extensive component of the entropy cancels.
It is well known that the problems of prediction and compression are

related, and what we have done here is to illustrate one aspect of this con-
nection. Speci�cally, if we ask how much one segment of a time series can
tell us about the future, the answer is contained in the subextensive behavior
of the entropy. If we ask how much we are learning about the structure of
the time series, then the natural and universally de�ned learning curve is re-
lated again to the subextensive entropy; the learning curve is the derivative
of the predictive information.

This universal learning curve is connected to the more conventional
learning curves in speci�c contexts. As an example (cf. section 4.1), consider
�tting a set of data points fxn, yng with some class of functions y D f (xI ®),
where ® are unknown parameters that need to be learned; we also allow for
some gaussian noise in our observation of the yn. Here the natural learning
curve is the evolution of Â

2 for generalization as a function of the number of
examples. Within the approximations discussed below, it is straightforward
to show that as N becomes large,

D
Â

2(N)
E

D
1

s2

D£
y ¡ f (xI ®)

¤2E
! (2 ln 2) L (N) C 1, (3.12)

where s
2 is the variance of the noise. Thus, a more conventional measure

of performance at learning a function is equal to the universal learning
curve de�ned purely by information-theoretic criteria. In other words, if a
learning curve is measured in the right units, then its integral represents the
amount of the useful information accumulated. Then the subextensivity of
S1 guarantees that the learning curve decreases to zero as N ! 1.

Different quantities related to the subextensive entropy have been dis-
cussed in several contexts. For example, the code length (̀N) has been
de�ned as a learning curve in the speci�c case of neural networks (Opper
& Haussler, 1995) and has been termed the “thermodynamic dive” (Crutch-
�eld & Shalizi, 1999) and “Nth order block entropy” (Grassberger, 1986).
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The universal learning curve L (N) has been studied as the expected instan-
taneous information gain by Haussler, Kearns, & Schapire (1994). Mutual
information between all of the past and all of the future (both semi-in�nite)
is known also as the excess entropy, effective measure complexity, stored in-
formation, and so on (see Shalizi & Crutch�eld, 1999, and references therein,
as well as the discussion below). If the data allow a description by a model
with a �nite (and in some cases also in�nite) number of parameters, then
mutual information between the data and the parameters is of interest. This
is easily shown to be equal to the predictive information about all of the
future, and it is also the cumulative information gain (Haussler, Kearns, &
Schapire, 1994) or the cumulative relative entropy risk (Haussler & Opper,
1997). Investigation of this problem can be traced back to Renyi (1964) and
Ibragimov and Hasminskii (1972), and some particular topics are still being
discussed (Haussler & Opper, 1995; Opper & Haussler, 1995; Herschkowitz
& Nadal, 1999). In certain limits, decoding a signal from a population of N
neurons can be thought of as “learning” a parameter from N observations,
with a parallel notion of information transmission (Brunel & Nadal, 1998;
Kang & Sompolinsky, 2001). In addition, the subextensive component of
the description length (Rissanen, 1978, 1989, 1996; Clarke & Barron, 1990)
averaged over a class of allowed models also is similar to the predictive
information. What is important is that the predictive information or subex-
tensive entropy is related to all these quantities and that it can be de�ned for
any process without a reference to a class of models. It is this universality
that we �nd appealing, and this universality is strongest if we focus on the
limit of long observation times. Qualitatively, in this regime (T ! 1) we
expect the predictive information to behave in one of three different ways,
as illustrated by the Ising models above: it may either stay �nite or grow to
in�nity together with T; in the latter case the rate of growth may be slow
(logarithmic) or fast (sublinear power) (see Barron and Cover, 1991, for a
similar classi�cation in the framework of the minimal description length
[MDL] analysis).

The �rst possibility, limT!1 Ipred(T) D constant, means that no matter
how long we observe, we gain only a �nite amount of information about
the future. This situation prevails, for example, when the dynamics are too
regular. For a purely periodic system, complete prediction is possible once
we know the phase, and if we sample the data at discrete times, this is a �nite
amount of information; longer period orbits intuitively are more complex
and also have larger Ipred, but this does not change the limiting behavior
limT!1 Ipred(T) D constant.

Alternatively, the predictive informationcan be small when the dynamics
are irregular, but the best predictions are controlled only by the immediate
past, so that the correlation times of the observable data are �nite (see, for
example, Crutch�eld & Feldman, 1997, and the �xed J case in Figure 3).
Imagine, for example, that we observe x(t) at a series of discrete times ftng,
and that at each time point we �nd the value xn. Then we always can write
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the joint distribution of the N data points as a product,

P(x1, x2, . . . , xN) D P(x1)P(x2 |x1)P(x3 |x2, x1) ¢ ¢ ¢ . (3.13)

For Markov processes, what we observe at tn depends only on events at the
previous time step tn¡1, so that

P(xn |fx1·i·n¡1g) D P(xn |xn¡1), (3.14)

and hence the predictive information reduces to

Ipred D
½
log2

µP(xn |xn¡1)
P(xn)

¶¾
. (3.15)

The maximum possible predictive information in this case is the entropy of
the distribution of states at one time step, which is bounded by the loga-
rithm of the number of accessible states. To approach this bound, the system
must maintain memory for a long time, since the predictive information is
reduced by the entropy of the transition probabilities. Thus, systems with
more states and longer memories have larger values of Ipred.

More interesting are those cases in which Ipred(T) diverges at large T. In
physical systems, we know that there are critical points where correlation
times become in�nite, so that optimal predictions will be in�uenced by
events in the arbitrarily distant past. Under these conditions, the predictive
information can grow without bound as T becomes large; for many systems,
the divergence is logarithmic, Ipred(T ! 1) / ln T, as for the variable Jij,
short-range Ising model of Figures 2 and 3. Long-range correlations also
are important in a time series where we can learn some underlying rules.
It will turn out that when the set of possible rules can be described by
a �nite number of parameters, the predictive information again diverges
logarithmically, and the coef�cient of this divergence counts the number of
parameters. Finally, a faster growth is also possible, so that Ipred(T ! 1) /
Ta, as for the variable Jij long-range Ising model, and we shall see that this
behavior emerges from, for example, nonparametric learning problems.

4 Learning and Predictability

Learning is of interest precisely in those situations where correlations or
associations persist over long periods of time. In the usual theoretical mod-
els, there is some rule underlying the observable data, and this rule is valid
forever; examples seen at one time inform us about the rule, and this infor-
mation can be used to make predictions or generalizations. The predictive
information quanti�es the average generalization power of examples, and
we shall see that there is a direct connection between the predictive infor-
mation and the complexity of the possible underlying rules.
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4.1 A Test Case. Let us begin with a simple example, already referred to
above. We observe two streams of data x and y, or equivalently a stream of
pairs (x1, y1), (x2, y2), . . . , (xN, yN ). Assume that we know in advance that
the x’s are drawn independently and at random from a distribution P(x),
while the y’s are noisy versions of some function acting on x,

yn D f (xnI ®) C gn, (4.1)

where f (xI ®) is a class of functions parameterized by ®, and gn is noise,
which for simplicity we will assume is gaussian with known standard devi-
ation s. We can even start with a very simple case, where the function class
is just a linear combination of basis functions, so that

f (xI ®) D
KX

m D1
am wm (x). (4.2)

The usual problem is to estimate, from N pairs fxi, yig, the values of the
parameters ®. In favorable cases such as this, we might even be able to
�nd an effective regression formula. We are interested in evaluating the
predictive information, which means that we need to know the entropy
S(N). We go through the calculation in some detail because it provides a
model for the more general case.

To evaluate the entropy S(N), we �rst construct the probability distribu-
tion P(x1, y1, x2, y2, . . . , xN, yN). The same set of rules applies to the whole
data stream, which here means that the same parameters ® apply for all
pairs fxi, yig, but these parameters are chosen at random from a distribution
P (®) at the start of the stream. Thus we write

P(x1, y1, x2, y2, . . . , xN, yN)

D
Z

dK
aP(x1, y1, x2, y2, . . . , xN, yN |®)P (®), (4.3)

and now we need to construct the conditional distributions for �xed ®. By
hypothesis, each x is chosen independently, and once we �x ®, each yi is
correlated only with the corresponding xi, so that we have

P(x1, y1, x2, y2, . . . , xN, yN |®) D
NY

iD1

£
P(xi) P(yi | xiI ®)

¤
. (4.4)

Furthermore, with the simple assumptions above about the class of func-
tions and gaussian noise, the conditional distribution of yi has the form

P(yi | xiI ®) D
1

p
2p s2

exp

2

4¡
1

2s2

³
yi ¡

KX

m D1
am wm (xi)

2́3

5 . (4.5)
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Putting all these factors together,

P(x1, y1, x2, y2, . . . , xN, yN )

D

" NY

iD1
P(xi)

# ³ 1
p

2p s2

´N Z
dK

a P (®) exp

"
¡

1
2s2

NX

iD1
y2

i

#

£ exp

"
¡N

2

KX

m ,ºD1
Amº(fxig)am aº C N

KX

m D1
Bm (fxi, yig)am

#
, (4.6)

where

Amº(fxig) D
1

s2N

NX

iD1
wm (xi)wº(xi) and (4.7)

Bm (fxi, yig) D
1

s2N

NX

iD1
yiwm (xi). (4.8)

Our placement of the factors of N means that both Amº and Bm are of order
unity as N ! 1. These quantities are empirical averages over the samples
fxi, yig, and if the wm are well behaved, we expect that these empirical means
converge to expectation values for most realizations of the series fxig:

lim
N!1

Amº(fxig) D A1
mº D

1

s2

Z
dxP(x)wm (x)wº(x), (4.9)

lim
N!1

Bm (fxi, yig) D B1
m D

KX

ºD1
A1

mº Naº, (4.10)

where N® are the parameters that actually gave rise to the data stream fxi, yig.
In fact, we can make the same argument about the terms in P

y2
i ,

lim
N!1

NX

iD1
y2

i D Ns
2

" KX

m ,ºD1
Nam A1

mº Naº C 1

#
. (4.11)

Conditions for this convergence of empirical means to expectation values
are at the heart of learning theory. Our approach here is �rst to assume that
this convergence works, then to examine the consequences for the predictive
information, and �nally to address the conditions for and implications of
this convergence breaking down.

Putting the different factors together, we obtain

P(x1, y1, x2, y2, . . . , xN, yN ) f!
" NY

iD1
P(xi)

# ³ 1
p

2p s2

´N Z
dK

aP (®)

£ exp
£¡NEN(®I fxi, yig)

¤
, (4.12)
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where the effective “energy” per sample is given by

EN(®I fxi, yig) D
1
2

C
1
2

KX

m ,ºD1

(am ¡ Nam )A1
mº

(aº ¡ Naº). (4.13)

Here we use the symbol f! to indicate that we not only take the limit of
large N but also neglect the �uctuations. Note that in this approximation,
the dependence on the sample points themselves is hidden in the de�nition
of N® as being the parameters that generated the samples.

The integral that we need to do in equation 4.12 involves an exponential
with a large factor N in the exponent; the energy EN is of order unity as
N ! 1. This suggests that we evaluate the integral by a saddle-point
or steepest-descent approximation (similar analyses were performed by
Clarke & Barron, 1990; MacKay, 1992; and Balasubramanian, 1997):

Z
dK

aP (®) exp
£¡NEN (®I fxi, yig)

¤

¼ P (®cl) exp
µ

¡NEN(®clI fxi, yig) ¡
K
2

ln
N
2p

¡
1
2

ln det FN C ¢ ¢ ¢
¶

, (4.14)

where ®cl is the “classical” value of ® determined by the extremal conditions

@EN(®I fxi, yig)
@am

­­­­
aDacl

D 0, (4.15)

the matrix FN consists of the second derivatives of EN,

FN D @
2EN (®I fxi, yig)

@am @aº

­­­­
aDacl

, (4.16)

and ¢ ¢ ¢ denotes terms that vanish as N ! 1. If we formulate the problem
of estimating the parameters ® from the samples fxi, yig, then as N ! 1,
the matrix NFN is the Fisher information matrix (Cover & Thomas, 1991);
the eigenvectors of this matrix give the principal axes for the error ellipsoid
in parameter space, and the (inverse) eigenvalues give the variances of
parameter estimates along each of these directions. The classical ®cl differs
from N® only in terms of order 1/N; we neglect this difference and further
simplify the calculation of leading terms as N becomes large. After a little
more algebra, we �nd the probability distribution we have been looking
for:

P(x1, y1, x2, y2, . . . , xN, yN)

f!
" NY

iD1
P(xi)

#
1

ZA
P ( N®) exp

µ
¡

N
2

ln(2p es
2) ¡

K
2

ln N C ¢ ¢ ¢
¶

, (4.17)
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where the normalization constant

ZA D
p

(2p )K det A1. (4.18)

Again we note that the sample points fxi, yig are hidden in the value of N®
that gave rise to these points.5

To evaluate the entropy S(N), we need to compute the expectation value
of the (negative) logarithm of the probability distribution in equation 4.17;
there are three terms. One is constant, so averaging is trivial. The second
term depends only on the xi, and because these are chosen independently
from the distribution P(x), the average again is easy to evaluate. The third
term involves N®, and we need to average this over the joint distribution
P(x1, y1, x2, y2, . . . , xN, yN). As above, we can evaluate this average in steps.
First, we choose a value of the parameters N®, then we average over the
samples given these parameters, and �nally we average over parameters.
But because N® is de�ned as the parameters that generate the samples, this
stepwise procedure simpli�es enormously. The end result is that

S(N) D N
µ
Sx C

1
2

log2

±
2p es

2
²¶

C
K
2

log2 N

C Sa C
«
log2 ZA

¬
a

C ¢ ¢ ¢ , (4.19)

where h¢ ¢ ¢ia means averaging over parameters, Sx is the entropy of the
distribution of x,

Sx D ¡
Z

dx P(x) log2 P(x), (4.20)

and similarly for the entropy of the distribution of parameters,

Sa D ¡
Z

dK
aP (®) log2 P (®). (4.21)

5 We emphasize once more that there are two approximations leading to equation 4.17.
First, we have replaced empirical means by expectation values, neglecting �uctuations as-
sociated with the particular set of sample points fxi, yig. Second, we have evaluated the
average over parameters in a saddle-point approximation. At least under some condi-
tions, both of these approximations become increasingly accurate as N ! 1, so that
this approach should yield the asymptotic behavior of the distribution and, hence, the
subextensive entropy at large N. Although we give a more detailed analysis below, it is
worth noting here how things can go wrong. The two approximations are independent,
and we could imagine that �uctuations are important but saddle-point integration still
works, for example. Controlling the �uctuations turns out to be exactly the question of
whether our �nite parameterization captures the true dimensionality of the class of mod-
els, as discussed in the classic work of Vapnik, Chervonenkis, and others (see Vapnik,
1998, for a review). The saddle-point approximation can break down because the saddle
point becomes unstable or because multiple saddle points become important. It will turn
out that instability is exponentially improbable as N ! 1, while multiple saddle points
are a real problem in certain classes of models, again when counting parameters does not
really measure the complexity of the model class.
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The different terms in the entropy equation 4.19 have a straightforward
interpretation. First, we see that the extensive term in the entropy,

S0 D Sx C
1
2

log2(2p es
2), (4.22)

re�ects contributions from the random choice of x and from the gaussian
noise in y; these extensive terms are independent of the variations in pa-
rameters ®, and these would be the only terms if the parameters were not
varying (that is, if there were nothing to learn). There also is a term that
re�ects the entropy of variations in the parameters themselves, Sa. This
entropy is not invariant with respect to coordinate transformations in the
parameter space, but the term hlog2 ZAia compensates for this noninvari-
ance. Finally, and most interesting for our purposes, the subextensive piece
of the entropy is dominated by a logarithmic divergence,

S1(N) ! K
2

log2 N (bits). (4.23)

The coef�cient of this divergence counts the number of parameters indepen-
dent of the coordinate system that we choose in the parameter space. Fur-
thermore, this result does not depend on the set of basis functions fwm (x)g.
This is a hint that the result in equation 4.23 is more universal than our
simple example.

4.2 Learning a Parameterized Distribution. The problem discussed
above is an example of supervised learning. We are given examples of how
the points xn map into yn, and from these examples we are to induce the
association or functional relation between x and y. An alternative view is
that the pair of points (x, y) should be viewed as a vector Ex, and what we are
learning is the distribution of this vector. The problem of learning a distri-
bution usually is called unsupervised learning, but in this case, supervised
learning formally is a special case of unsupervised learning; if we admit that
all the functional relations or associations that we are trying to learn have an
element of noise or stochasticity, then this connection between supervised
and unsupervised problems is quite general.

Suppose a series of random vector variables fExig is drawn independently
from the same probability distribution Q(Ex|®), and this distribution de-
pends on a (potentially in�nite dimensional) vector of parameters ®. As
above, the parameters are unknown, and before the series starts, they are
chosen randomly from a distribution P (®). With no constraints on the den-
sities P (®) or Q(Ex|®), it is impossible to derive any regression formulas for
parameter estimation, but one can still say something about the entropy of
the data series and thus the predictive information. For a �nite-dimensional
vector of parameters ®, the literature on bounding similar quantities is
especially rich (Haussler, Kearns, & Schapire, 1994; Wong & Shen, 1995;
Haussler & Opper, 1995, 1997, and references therein), and related asymp-
totic calculations have been done (Clarke & Barron, 1990; MacKay, 1992;
Balasubramanian, 1997).
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We begin with the de�nition of entropy:

S(N) ´ S[fExig]

D ¡
Z

dEx1 ¢ ¢ ¢ dExNP(Ex1, Ex2, . . . , ExN) log2 P(Ex1, Ex2, . . . , ExN). (4.24)

By analogy with equation 4.3, we then write

P(Ex1, Ex2, . . . , ExN) D
Z

dK
aP (®)

NY

iD1
Q(Exi |®). (4.25)

Next, combining the equations 4.24 and 4.25 and rearranging the order of
integration, we can rewrite S(N) as

S(N) D ¡
Z

dK N®P ( N®)

£

8
<

:

Z
dEx1 ¢ ¢ ¢ dExN

NY

jD1
Q(Exj | N®) log2 P(fExig)

9
=

;
. (4.26)

Equation 4.26 allows an easy interpretation. There is the “true” set of pa-
rameters N® that gave rise to the data sequence Ex1, . . . , ExN with the probability
QN

jD1 Q(Exj | N®). We need to average log2 P(Ex1, . . . , ExN) �rst over all possible
realizations of the data keeping the true parameters �xed, and then over the
parameters N® themselves. With this interpretation in mind, the joint prob-
ability density, the logarithm of which is being averaged, can be rewritten
in the following useful way:

P(Ex1, . . . , ExN) D
NY

jD1
Q(Exj | N®)

Z
dK

aP (®)
NY

iD1

µQ(Exi |®)

Q(Exi | N®)

¶

D
NY

jD1
Q(Exj | N®)

Z
dK

aP (®) exp [¡NEN(®I fExig)] , (4.27)

EN (®I fExig) D ¡
1
N

NX

iD1
ln

µQ(Exi |®)

Q(Exi | N®)

¶
. (4.28)

Since by our interpretation, N® are the true parameters that gave rise to
the particular data fExig, we may expect that the empirical average in equa-
tion 4.28 will converge to the corresponding expectation value, so that

EN(®I fExig) D ¡
Z

dDxQ(x | N®) ln
µQ(Ex|®)

Q(Ex| N®)

¶
¡ y (®, N®I fxig), (4.29)

where y ! 0 as N ! 1; here we neglect y and return to this term below.
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The �rst term on the right-hand side of equation 4.29 is the Küllback-
Leibler (KL) divergence, DKL( N®k®), between the true distribution charac-
terized by parameters N® and the possible distribution characterized by ®.
Thus, at large N, we have

P(Ex1, Ex2, . . . , ExN)

f!
NY

jD1
Q(Exj | N®)

Z
dK

aP (®) exp [¡NDKL( N®k®)] , (4.30)

where again the notation f! reminds us that we are not only taking the limit
of largeN but also making another approximationinneglecting �uctuations.
By the same arguments as above, we can proceed (formally) to compute the
entropy of this distribution. We �nd

S(N) ¼ S0 ¢ N C S
(a)
1 (N), (4.31)

S0 D
Z

dK
aP (®)

µ
¡

Z
dDxQ(Ex|®) log2 Q(Ex|®)

¶
, and (4.32)

S
(a)
1 (N) D ¡

Z
dK NaP ( N®) log2

µZ
dK

aP(®)e¡NDKL ( Naka)
¶

. (4.33)

Here S
(a)
1 is an approximation to S1 that neglects �uctuations y . This is the

same as the annealed approximation in the statistical mechanics of disor-
dered systems, as has been used widely in the study of supervised learn-
ing problems (Seung, Sompolinsky, & Tishby, 1992). Thus, we can identify
the particular data sequence Ex1, . . . , ExN with the disorder, EN(®I fExig) with
the energy of the quenched system, and DKL( N®k®) with its annealed ana-
log.

The extensive term S0, equation 4.32, is the average entropy of a dis-
tribution in our family of possible distributions, generalizing the result of
equation 4.22. The subextensive terms in the entropy are controlled by the
N dependence of the partition function

Z( N®I N) D
Z

dK
aP (®) exp [¡NDKL( N®k®)] , (4.34)

and Sa
1(N) D ¡hlog2 Z( N®I N)i Na is analogous to the free energy. Since what is

important in this integral is the KL divergence between different distribu-
tions, it is natural to ask about the density of models that are KL divergence
D away from the target N®,

r (DI N®) D
Z

dK
aP (®)d[D ¡ DKL( N®k®)]. (4.35)



Predictability, Complexity, and Learning 2429

This density could be very different for different targets.6 The density of
divergences is normalized because the original distribution over parameter
space, P(®), is normalized,

Z
dDr (DI N®) D

Z
dK

aP (®) D 1. (4.36)

Finally, the partition function takes the simple form

Z( N®I N) D
Z

dDr (DI N®) exp[¡ND]. (4.37)

We recall that in statistical mechanics, the partition function is given by

Z(b ) D
Z

dEr (E) exp[¡bE], (4.38)

where r (E) is the density of states that have energy E and b is the inverse
temperature. Thus, the subextensive entropy in our learning problem is
analogous to a system in which energy corresponds to the KL divergence
relative to the target model, and temperature is inverse to the number of
examples. As we increase the length N of the time series we have observed,
we “cool” the system and hence probe models that approach the target;
the dynamics of this approach is determined by the density of low-energy
states, that is, the behavior of r (DI N®) as D ! 0.7

The structure of the partition function is determined by a competition
between the (Boltzmann) exponential term, which favors models with small
D, and the density term, which favorsvalues of D that can be achieved by the
largest possible number of models. Because there (typically) are many pa-
rameters, there are very few models with D ! 0. This picture of competition
between the Boltzmann factor and a density of states has been emphasized
in previous work on supervised learning (Haussler et al., 1996).

The behavior of the density of states, r (DI N®), at small D is related to
the more intuitive notion of dimensionality. In a parameterized family of
distributions, the KL divergence between two distributions with nearby
parameters is approximately a quadratic form,

DKL ( N®k®) ¼
1
2

X

mº

¡
Nam ¡ am

¢
Fmº ( Naº ¡ aº) C ¢ ¢ ¢ , (4.39)

6 If parameter space is compact, then a related description of the space of targets based
on metric entropy, also called Kolmogorov’s 2 -entropy, is used in the literature (see, for
example, Haussler & Opper, 1997). Metric entropy is the logarithm of the smallest number
of disjoint parts of the size not greater than 2 into which the target space can be partitioned.

7 It may be worth emphasizing that this analogy to statistical mechanics emerges from
the analysis of the relevant probability distributions rather than being imposed on the
problem through some assumptions about the nature of the learning algorithm.
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where NF is the Fisher information matrix. Intuitively, if we have a reason-
able parameterization of the distributions, then similar distributions will be
nearby in parameter space, and, more important, points that are far apart
in parameter space will never correspond to similar distributions; Clarke
and Barron (1990) refer to this condition as the parameterization forming
a “sound” family of distributions. If this condition is obeyed, then we can
approximate the low D limit of the density r (DI N®):

r (DI N®) D
Z

dK
aP (®)d[D ¡ DKL( N®k®)]

¼
Z

dK
aP (®)d

"
D ¡

1
2

X

mº

¡
Nam ¡ am

¢
Fmº ( Naº ¡ aº)

#

D
Z

dK
aP ( N® C U ¢ »)d

"
D ¡

1
2

X

m

Lmj
2
m

#
, (4.40)

where U is a matrix that diagonalizes F ,

( U T ¢ F ¢ U )mº D Lmdmº. (4.41)

The delta function restricts the components of » in equation 4.40 to be of
order

p
D or less, and so if P(®) is smooth, we can make a perturbation

expansion. After some algebra, the leading term becomes

r (D ! 0I N®) ¼ P ( N®)
2p

K/2

C (K/2)
(det F )¡1/2 D(K¡2)/2. (4.42)

Here as before, K is the dimensionality of the parameter vector. Computing
the partition function from equation 4.37, we �nd

Z( N®I N ! 1) ¼ f ( N®) ¢ C (K/2)

NK/2 , (4.43)

where f ( N®) is some function of the target parameter values. Finally, this
allows us to evaluate the subextensive entropy, from equations 4.33 and 4.34:

S
(a)
1 (N) D ¡

Z
dK NaP ( N®) log2 Z( N®I N) (4.44)

! K
2

log2 N C ¢ ¢ ¢ (bits), (4.45)

where ¢ ¢ ¢ are �nite as N ! 1. Thus, general K-parameter model classes
have the same subextensive entropy as for the simplest example considered
in the previous section. To the leading order, this result is independent even
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of the prior distribution P (®) on the parameter space, so that the predictive
information seems to count the number of parameters under some very
general conditions (cf. Figure 3 for a very different numerical example of
the logarithmic behavior).

Although equation 4.45 is true under a wide range of conditions, this
cannot be the whole story. Much of modern learning theory is concerned
with the fact that counting parameters is not quite enough to characterize the
complexity of a model class; the naive dimension of the parameter space K
should be viewed in conjunction with the pseudodimension (also known as
the shattering dimension or Vapnik-Chervonenkis dimension dVC), which
measures capacity of the model class, and with the phase-space dimension d,
which accounts for volumes in the space of models (Vapnik, 1998; Opper,
1994). Both of these dimensions can differ from the number of parameters.
One possibility is that dVC is in�nite when the number of parameters is�nite,
a problem discussed below. Another possibility is that the determinant of F
is zero, and hence both dVC and d are smaller than the number of parameters
because we have adopted a redundant description. This sort of degeneracy
could occur over a �nite fraction but not all, of the parameter space, and
this is one way to generate an effective fractional dimensionality. One can
imagine multifractal models such that the effective dimensionality varies
continuously over the parameter space, but it is not obvious where this
would be relevant. Finally, models with d < dVC < 1 also are possible (see,
for example, Opper, 1994), and this list probably is not exhaustive.

Equation 4.42 lets us actually de�ne the phase-space dimension through
the exponent in the small DKL behavior of the model density,

r (D ! 0I N®) / D(d¡2)/2, (4.46)

and then d appears in place of K as the coef�cient of the log divergence
in S1(N) (Clarke & Barron, 1990; Opper, 1994). However, this simple con-
clusion can fail in two ways. First, it can happen that the density r (DI N®)
accumulates a macroscopic weight at some nonzero value of D, so that the
small D behavior is irrelevant for the large N asymptotics. Second, the �uc-
tuations neglected here may be uncontrollably large, so that the asymptotics
are never reached. Since controllability of �uctuations is a function of dVC
(see Vapnik, 1998; Haussler, Kearns, & Schapire, 1994; and later in this arti-
cle), we may summarize this in the following way. Provided that the small
D behavior of the density function is the relevant one, the coef�cient of
the logarithmic divergence of Ipred measures the phase-space or the scaling
dimension d and nothing else. This asymptote is valid, however, only for
N À dVC. It is still an open question whether the two pathologies that can
violate this asymptotic behavior are related.

4.3 Learning a Parameterized Process. Consider a process where sam-
ples are not independent, and our task is to learn their joint distribution
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Q(Ex1, . . . , ExN |®). Again, ® is an unknown parameter vector chosen ran-
domly at the beginning of the series. If ® is a K-dimensional vector, then
one still tries to learn just K numbers, and there are still N examples, even
if there are correlations. Therefore, although such problems are much more
general than those already considered, it is reasonable to expect that the
predictive information still is measured by (K/2) log2 N provided that some
conditions are met.

One might suppose that conditions for simple results on the predictive
information are very strong, for example, that the distribution Q is a �nite-
order Markov model. In fact, all we really need are the following two con-
ditions:

S [fExig | ®] ´ ¡
Z

dN Ex Q(fExig | ®) log2 Q(fExig | ®)

! NS0 C S¤
0 I S¤

0 D O(1), (4.47)

DKL [Q(fExig | N®)kQ(fExig|®)] ! NDKL ( N®k®) C o(N). (4.48)

Here the quantities S0, S¤
0 , and DKL ( N®k®) are de�ned by taking limits

N ! 1 in both equations. The �rst of the constraints limits deviations from
extensivity to be of order unity, so that if ® is known, there are no long-range
correlations in the data. All of the long-range predictability is associated
with learning the parameters.8 The second constraint, equation 4.48, is a
less restrictive one, and it ensures that the “energy” of our statistical system
is an extensive quantity.

With these conditions, it is straightforward to show that the results of the
previous subsection carry over virtually unchanged. With the same cautious
statements about �uctuations and the distinction between K, d, and dVC, one
arrives at the result:

S(N) D S0 ¢ N C S(a)
1 (N), (4.49)

S
(a)
1 (N) D

K
2

log2 N C ¢ ¢ ¢ (bits), (4.50)

where ¢ ¢ ¢ stands for terms of order one as N ! 1. Note again that for the
result of equation 4.50 to be valid, the process considered is not required to
be a �nite-order Markov process. Memory of all previous outcomes may be
kept, provided that the accumulated memory does not contribute a diver-
gent term to the subextensive entropy.

8 Suppose that we observe a gaussian stochastic process and try to learn the power
spectrum. If the class of possible spectra includes ratios of polynomials in the frequency
(rational spectra), then this condition is met. On the other hand, if the class of possible
spectra includes 1/ f noise, then the condition may not be met. For more on long-range
correlations, see below.
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It is interesting to ask what happens if the condition in equation 4.47 is
violated, so that there are long-range correlations even in the conditional dis-
tribution Q(Ex1, . . . , ExN |®). Suppose, for example, that S¤

0 D (K¤/2) log2 N.
Then the subextensive entropy becomes

S(a)
1 (N) D

K C K¤

2
log2 N C ¢ ¢ ¢ (bits). (4.51)

We see that the subextensive entropy makes no distinction between pre-
dictability that comes from unknown parameters and predictability that
comes from intrinsic correlations in the data; in this sense, two models with
the same KC K¤ are equivalent. This actually must be so. As an example, con-
sider a chain of Ising spins with long-range interactions in one dimension.
This system can order (magnetize) and exhibit long-range correlations, and
so the predictive information will diverge at the transition to ordering. In
one view, there is no global parameter analogous to ®—just the long-range
interactions. On the other hand, there are regimes in which we can approxi-
mate the effect of these interactions by saying that all the spins experience a
mean �eld that is constant across the whole length of the system, and then
formally we can think of the predictive information as being carried by the
mean �eld itself. In fact, there are situations in which this is not just an
approximation but an exact statement. Thus, we can trade a description in
terms of long-range interactions (K¤ 6D 0, but K D 0) for one in which there
are unknown parameters describing the system, but given these parameters,
there are no long-range correlations (K 6D 0, K¤ D 0). The two descriptions
are equivalent, and this is captured by the subextensive entropy.9

4.4 Taming the Fluctuations. The preceding calculations of the subex-
tensive entropy S1 are worthless unless we prove that the �uctuations y are
controllable. We are going to discuss when and if this indeed happens. We
limit the discussion to the case of �nding a probability density (section 4.2);
the case of learning a process (section 4.3) is very similar.

Clarke and Barron (1990) solved essentially the same problem. They did
not make a separation into the annealed and the �uctuation term, and the
quantity they were interested in was a bit different from ours, but, inter-
preting loosely, they proved that, modulo some reasonable technical as-
sumptions on differentiability of functions in question, the �uctuation term
always approaches zero. However, they did not investigate the speed of
this approach, and we believe that they therefore missed some important
qualitative distinctions between different problems that can arise due to a
difference between d and dVC. In order to illuminate these distinctions, we
here go through the trouble of analyzing �uctuations all over again.

9 There are a number of interesting questions about how the coef�cients in the diverg-
ing predictive information relate to the usual critical exponents, and we hope to return to
this problem in a later article.
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Returning to equations 4.27, 4.29 and the de�nition of entropy, we can
write the entropy S(N) exactly as

S(N) D ¡
Z

dK NaP ( N®)
Z NY

jD1

£
dExj Q(Exj | N®)¤

£ log2

" NY

iD1
Q(Exi | N®)

Z
dK

aP (®)

£ e¡NDKL ( Naka)CNy (a, NaIfExig)
#

. (4.52)

This expression can be decomposed into the terms identi�ed above, plus a
new contribution to the subextensive entropy that comes from the �uctua-
tions alone, S

(f)
1 (N):

S(N) D S0 ¢ N C S(a)
1 (N) C S(f)

1 (N), (4.53)

S
(f)
1 D ¡

Z
dK NaP ( N®)

NY

jD1

£
dExj Q(Exj | N®)

¤

£ log2

µZ dK
aP (®)

Z( N®I N)
e¡NDKL ( Naka)CNy (a, NaIfExig)

¶
, (4.54)

where y is de�ned as in equation 4.29, and Z as in equation 4.34.
Some loose but useful bounds can be established. First, the predictive in-

formation is a positive (semide�nite) quantity, and so the �uctuation term
may not be smaller (more negative) than the value of ¡S

(a)
1 as calculated

in equations 4.45 and 4.50. Second, since �uctuations make it more dif�-
cult to generalize from samples, the predictive information should always
be reduced by �uctuations, so that S(f) is negative. This last statement cor-
responds to the fact that for the statistical mechanics of disordered systems,
the annealed free energy always is less than the average quenched free en-
ergy and may be proven rigorously by applying Jensen’s inequality to the
(concave) logarithm function in equation 4.54; essentially the same argu-
ment was given by Haussler and Opper (1997). A related Jensen’s inequality
argument allows us to show that the total S1(N) is bounded,

S1(N) · N
Z

dK
a

Z
dK NaP (®)P ( N®)DKL( N®k®)

´ hNDKL( N®k®)iNa,a, (4.55)

so that if we have a class of models (and a prior P (®)) such that the aver-
age KL divergence among pairs of models is �nite, then the subextensive
entropy necessarily is properly de�ned.In its turn, �niteness of the average
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KL divergence or of similar quantities is a usual constraint in the learning
problems of this type (see, for example, Haussler & Opper, 1997). Note also
that hDKL( N®k®)i Na,a includes S0 as one of its terms, so that usually S0 and
S1 are well or ill de�ned together.

Tighter bounds require nontrivial assumptions about the class of distri-
butions considered. The �uctuation term would be zero if y were zero, and
y is the difference between an expectation value (KL divergence) and the
corresponding empirical mean. There is a broad literature that deals with
this type of difference (see, for example, Vapnik, 1998).

We start with the case when the pseudodimension (dVC) of the set of
probability densities fQ(Ex | ®)g is �nite. Then for any reasonable function
F(ExI b ), deviations of the empirical mean from the expectation value can be
bounded by probabilistic bounds of the form

P

(
sup

b

­­­­­

1
N

P
j F(ExjI b ) ¡ R

dEx Q(Ex | N®) F(ExI b )

L[F]

­­­­­
> 2

)

< M(2 , N, dVC)e¡cN2 2
, (4.56)

where c and L[F] depend on the details of the particular bound used. Typi-
cally, c is a constant of order one, and L[F] either is some moment of F or the
range of its variation. In our case, F is the log ratio of two densities, so that
L[F] may be assumed bounded for almost all b without loss of generality
in view of equation 4.55. In addition, M(2 , N, dVC) is �nite at zero, grows
at most subexponentially in its �rst two arguments, and depends exponen-
tially on dVC. Bounds of this form may have different names in different
contexts—for example, Glivenko-Cantelli, Vapnik-Chervonenkis, Hoeffd-
ing, Chernoff, (for review see Vapnik, 1998, and the references therein).

To start the proof of �niteness of S
(f)
1 in this case, we �rst show that

only the region ® ¼ N® is important when calculating the inner integral in
equation 4.54. This statement is equivalent to saying that at large values of
® ¡ N®, the KL divergence almost always dominates the �uctuation term,
that is, the contribution of sequences of fExig with atypically large �uctua-
tions is negligible (atypicality is de�ned as y ¸ d, where d is some small
constant independent of N). Since the �uctuations decrease as 1/

p
N (see

equation 4.56) and DKL is of order one, this is plausible. To show this, we
bound the logarithm in equation 4.54 by N times the supremum value of
y . Then we realize that the averaging over N® and fExig is equivalent to inte-
gration over all possible values of the �uctuations. The worst-case density
of the �uctuations may be estimated by differentiating equation 4.56 with
respect to 2 (this brings down an extra factor of N2 ). Thus the worst-case
contribution of these atypical sequences is

S
(f),atypical
1 »

Z 1

d

d2 N22 2M(2 )e¡cN2 2
» e¡cNd2

¿ 1 for large N. (4.57)
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This bound lets us focus our attention on the region ® ¼ N®. We expand
the exponent of the integrand of equation 4.54 around this point and per-
form a simple gaussian integration. In principle, large �uctuations might
lead to an instability (positive or zero curvature) at the saddle point, but
this is atypical and therefore is accounted for already. Curvatures at the
saddle points of both numerator and denominator are of the same order,
and throwing away unimportant additive and multiplicative constants of
order unity, we obtain the following result for the contribution of typical
sequences:

S
(f),typical
1 »

Z
dK NaP ( N®) dN Ex

Y

j
Q(Exj | N®) N (B A¡1 B)I

Bm D
1
N

X

i

@ log Q(Exi | N®)

@ Nam

, hBiEx D 0I

(A)mº D
1
N

X

i

@
2 log Q(Exi | N®)

@ Nam @ Naº

, hAiEx D F . (4.58)

Here h¢ ¢ ¢iEx means an averaging with respect to all Exi’s keeping N® constant.
One immediately recognizes that B and A are, respectively, �rst and second
derivatives of the empirical KL divergence that was in the exponent of the
inner integral in equation 4.54.

We are dealing now with typical cases. Therefore, large deviations of A
from F are not allowed, and we may bound equation 4.58 by replacing A¡1

with F ¡1(1Cd), whered again is independent of N. Now we have to average
a bunch of products like

@ log Q(Exi | N®)

@Nam

(F ¡1)mº
@ log Q(Exj | N®)

@Naº

(4.59)

over all Exi’s. Only the terms with i D j survive the averaging. There are
K2N such terms, each contributing of order N¡1. This means that the total
contribution of the typical �uctuations is bounded by a number of order
one and does not grow with N.

This concludes the proof of controllability of �uctuations for dVC < 1.
One may notice that we never used the speci�c form of M(2 , N, dVC), which
is the only thing dependent on the precise value of the dimension. Actually,
a more thorough look at the proof shows that we do not even need the
strict uniform convergence enforced by the Glivenko-Cantelli bound. With
some modi�cations, the proof should still hold if there exist some a priori
improbable values of ® and N® that lead to violation of the bound. That is,
if the prior P (®) has suf�ciently narrow support, then we may still expect
�uctuations to be unimportant even for VC-in�nite problems.

A proof of this can be found in the realm of the structural risk mini-
mization (SRM) theory (Vapnik, 1998). SRM theory assumes that an in�nite
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structure C of nested subsets C1 ½ C2 ½ C3 ½ ¢ ¢ ¢ can be imposed onto the
set C of all admissible solutions of a learning problem, such that C D

S
Cn.

The idea is that having a �nite number of observations N, one is con�ned
to the choices within some particular structure element Cn, n D n(N) when
looking for an approximation to the true solution; this prevents over�tting
and poor generalization. As the number of samples increases and one is
able to distinguish within more and more complicated subsets, n grows. If
dVC for learning in any Cn, n < 1, is �nite, then one can show convergence
of the estimate to the true value as well as the absolute smallness of �uc-
tuations (Vapnik, 1998). It is remarkable that this result holds even if the
capacity of the whole set C is not described by a �nite dVC.

In the context of SRM, the role of the prior P(®) is to induce a structure
on the set of all admissible densities, and the �ght between the number
of samples N and the narrowness of the prior is precisely what determines
how the capacity of the current element of the structure Cn, n D n(N), grows
with N. A rigorous proof of smallness of the �uctuations can be constructed
based on well-known results, as detailed elsewhere (Nemenman, 2000).
Here we focus on the question of how narrow the prior should be so that
every structure element is of �nite VC dimension, and one can guarantee
eventual convergence of �uctuations to zero.

Consider two examples. A variable x is distributed according to the fol-
lowing probability density functions:

Q(x|a) D
1

p
2p

exp
µ

¡
1
2

(x ¡ a)2
¶

, x 2 (¡1I C1)I (4.60)

Q(x|a) D
exp (¡ sin ax)

R 2p
0 dx exp (¡ sin ax)

, x 2 [0I 2p ). (4.61)

Learning the parameter in the �rst case is a dVC D 1 problem; in the second
case, dVC D 1. In the �rst example, as we have shown, one may construct
a uniform bound on �uctuations irrespective of the prior P(®). The sec-
ond one does not allow this. Suppose that the prior is uniform in a box
0 < a < amax and zero elsewhere, with amax rather large. Then for not too
many sample points N, the data would be better �tted not by some value
in the vicinity of the actual parameter, but by some much larger value, for
which almost all data points are at the crests of ¡ sin ax. Adding a new data
point would not help, until that best, but wrong, parameter estimate is less
than amax.10 So the �uctuations are large, and the predictive information is

10 Interestingly, since for the model equation 4.61 KL divergence is bounded from
below and from above, for amax ! 1 the weight in r (DI Na) at small DKL vanishes, and a
�nite weight accumulates at some nonzero value of D. Thus, even putting the �uctuations
aside, the asymptotic behavior based on the phase-space dimension is invalidated, as
mentioned above.
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small in this case. Eventually, however, data points would overwhelm the
box size, and the best estimate of a would swiftly approach the actual value.
At this point the argument of Clarke and Barron would become applicable,
and the leading behavior of the subextensive entropy would converge to
its asymptotic value of (1/2) log N. On the other hand, there is no uniform
bound on the value of N for which this convergence will occur; it is guaran-
teed only for N À dVC, which is never true if dVC D 1. For some suf�ciently
wide priors, this asymptotically correct behavior would never be reached
in practice. Furthermore, if we imagine a thermodynamic limit where the
box size and the number of samples both become large, then by anal-
ogy with problems in supervised learning (Seung, Sompolinsky, & Tishby,
1992; Haussler et al., 1996), we expect that there can be sudden changes
in performance as a function of the number of examples. The arguments
of Clarke and Barron cannot encompass these phase transitions or “Aha!”
phenomena. A further bridge between VC dimension and the information-
theoretic approach to learning may be found in Haussler, Kearns, & Schapire
(1994), where the authors bounded predictive information-like quantities
with loose but useful bounds explicitly proportional to dVC.

While much of learning theory has focused on problems with �nite VC
dimension, itmight be that the conventional scenario in which the number of
examples eventually overwhelms the number of parameters or dimensions
is too weak to deal with many real-world problems. Certainly in the present
context, there is not only a quantitative but also a qualitative difference
between reaching the asymptotic regime in just a few measurements or
in many millions of them. Finitely parameterizable models with �nite or
in�nite dVC fall in essentially different universality classes with respect to
the predictive information.

4.5 Beyond Finite Parameterization:General Considerations. The pre-
vious sections have considered learning from time series where the underly-
ing class of possible models is described with a �nite number of parameters.
If the number of parameters is not �nite, then in principle it is impossible to
learn anything unless there is some appropriate regularization of the prob-
lem. If we let the number of parameters stay �nite but become large, then
there is more to be learned and, correspondingly, the predictive information
grows in proportion to this number, as in equation 4.45. On the other hand,
if the number of parameters becomes in�nite without regularization, then
the predictive information should go to zero since nothing can be learned.
We should be able to see this happen in a regularized problem as the regu-
larization weakens. Eventually the regularization would be insuf�cient and
the predictive information would vanish. The only way this can happen is
if the subextensive term in the entropy grows more and more rapidly with
N as we weaken the regularization, until �nally it becomes extensive at the
point where learning becomes impossible. More precisely, if this scenario
for the breakdown of learning is to work, there must be situations in which
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the predictive information grows with N more rapidly than the logarithmic
behavior found in the case of �nite parameterization.

Subextensive terms in the entropy are controlled by the density of models
as a function of their KL divergence to the target model. If the models have
�nite VC and phase-space dimensions, then this density vanishes for small
divergences as r » D(d¡2)/2. Phenomenologically, if we let the number of
parameters increase, the density vanishes more and more rapidly. We can
imagine that beyond the class of �nitely parameterizable problems, there
is a class of regularized in�nite dimensional problems in which the density
r (D ! 0) vanishes more rapidly than any power of D. As an example, we
could have

r (D ! 0) ¼ A exp
µ

¡
B

Dm

¶
, m > 0, (4.62)

that is, an essential singularity at D D 0. For simplicity, we assume that the
constants A and B can depend on the target model but that the nature of
the essential singularity (m ) is the same everywhere. Before providing an
explicit example, let us explore the consequences of this behavior.

From equation 4.37, we can write the partition function as

Z( N®I N) D
Z

dDr (DI N®) exp[¡ND]

¼ A( N®)
Z

dD exp
µ

¡
B( N®)

Dm
¡ ND

¶

¼ QA( N®) exp
µ

¡
1
2

m C 2

m C 1
ln N ¡ C( N®)Nm /(m C1)

¶
, (4.63)

where in the last step we use a saddle-point or steepest-descent approxima-
tion that is accurate at large N, and the coef�cients are

QA( N®) D A( N®)
µ 2p m

1/(m C1)

m C 1

¶1/2

¢ [B( N®)]1/(2m C2) (4.64)

C( N®) D [B( N®)]1/ (m C1)
µ 1

mm / (m C1) C m
1/ (m C1)

¶
. (4.65)

Finally we can use equations 4.44 and 4.63 to compute the subextensive
term in the entropy, keeping only the dominant term at large N,

S(a)
1 (N) !

1
ln 2

hC( N®)iNaNm /(m C1) (bits), (4.66)

where h¢ ¢ ¢iNa denotes an average over all the target models.
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This behavior of the �rst subextensive term is qualitatively different
from everything we have observed so far. A power-law divergence is much
stronger than a logarithmic one. Therefore, a lot more predictive informa-
tion is accumulated in an “in�nite parameter” (or nonparametric) system;
the system is intuitively and quantitatively much richer and more complex.

Subextensive entropy also grows as a power law in a �nitely parameter-
izable system with a growing number of parameters. For example, suppose
that we approximate the distribution of a random variable by a histogram
with K bins, and we let K grow with the quantity of available samples as
K » Nº. A straightforward generalization of equation 4.45 seems to imply
then that S1(N) » Nº log N (Hall & Hannan, 1988; Barron & Cover, 1991).
While not necessarily wrong, analogies of this type are dangerous. If the
number of parameters grows constantly, then the scenario where the data
overwhelm all the unknowns is far from certain. Observations may provide
much less information about features that were introduced into the model at
some large N than about those that have existed since the very �rst measure-
ments. Indeed, in a K-parameter system, the Nth sample point contributes
» K/2N bits to the subextensive entropy (cf. equation 4.45). If K changes
as mentioned, the Nth example then carries » Nº¡1 bits. Summing this up
over all samples, we �nd S

(a)
1 » Nº, and if we let º D m / (m C 1), we obtain

equation 4.66; note that the growth of the number of parameters is slower
than N (º D m / (m C 1) < 1), which makes sense. Rissanen, Speed, and Yu
(1992) made a similar observation. According to them, for models with in-
creasing number of parameters, predictive codes, which are optimal at each
particular N (cf. equation 3.8), provide a strictly shorter coding length than
nonpredictive codes optimized for all data simultaneously. This has to be
contrasted with the �nite-parameter model classes, for which these codes
are asymptotically equal.

Power-law growth of the predictive information illustrates the point
made earlier about the transition from learning more to �nally learning
nothing as the class of investigated models becomes more complex. As
m increases, the problem becomes richer and more complex, and this is
expressed in the stronger divergence of the �rst subextensive term of the
entropy; for �xed large N, the predictive information increases with m . How-
ever, if m ! 1, the problem is too complex for learning; in our model ex-
ample, the number of bins grows in proportion to the number of samples,
which means that we are trying to �nd too much detail in the underlying
distribution. As a result, the subextensive term becomes extensive and stops
contributing to predictive information. Thus, at least to the leading order,
predictability is lost, as promised.

4.6 Beyond Finite Parameterization: Example. While literature on
problems in the logarithmic class is reasonably rich, the research on es-
tablishing the power-law behavior seems to be in its early stages. Some
authors have found speci�c learning problems for which quantities similar
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to, but sometimes very nontrivially related to S1, are bounded by power–
law functions (Haussler & Opper, 1997, 1998; Cesa-Bianchi & Lugosi, in
press). Others have chosen to study �nite-dimensional models, for which
the optimal number of parameters (usually determined by the MDL crite-
rion of Rissanen, 1989) grows as a power law (Hall & Hannan, 1988; Rissa-
nen et al., 1992). In addition to the questions raised earlier about the danger
of copying �nite-dimensional intuition to the in�nite-dimensional setup,
these are not examples of truly nonparametric Bayesian learning. Instead,
these authors make use of a priori constraints to restrict learning to codes
of particular structure (histogram codes), while a non-Bayesian inference is
conducted within the class. Without Bayesian averaging and with restric-
tions on the coding strategy, it may happen that a realization of the code
length is substantially different from the predictive information. Similar
conceptual problems plague even true nonparametric examples, as consid-
ered, for example, by Barron and Cover (1991). In summary, we do not
know of a complete calculation in which a family of power-law scalings of
the predictive information is derived from a Bayesian formulation.

The discussion in the previous section suggests that we should look
for power-law behavior of the predictive information in learning problems
where, rather than learning ever more precise values for a �xed set of pa-
rameters, we learn a progressively more detailed description—effectively
increasing the number of parameters—as we collectmoredata. One example
of such a problem is learning the distribution Q(x) for a continuous variable
x, but rather than writing a parametric form of Q(x), we assume only that
this function itself is chosen from some distribution that enforces a degree
of smoothness. There are some natural connections of this problem to the
methods of quantum �eld theory (Bialek, Callan, & Strong, 1996), which we
can exploit to give a complete calculation of the predictive information, at
least for a class of smoothness constraints.

We write Q(x) D (1/ l0) exp[¡w (x)] so that the positivity of the distribu-
tion is automatic, and then smoothness may be expressed by saying that the
“energy” (or action) associated with a function w (x) is related to an integral
over its derivatives, like the strain energy in a stretched string. The simplest
possibility following this line of ideas is that the distribution of functions is
given by

P[w (x)] D
1

Z
exp

"
¡ l

2

Z
dx

³
@w

@x

´2#
d

µ 1
l0

Z
dx e¡w (x) ¡ 1

¶
, (4.67)

where Z is the normalization constant for P[w], the delta function ensures
that each distribution Q(x) is normalized, and l sets a scale for smooth-
ness. If distributions are chosen from this distribution, then the optimal
Bayesian estimate of Q(x) from a set of samples x1, x2, . . . , xN converges to
the correct answer, and the distribution at �nite N is nonsingular, so that the
regularization provided by this prior is strong enough to prevent the devel-
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opment of singular peaks at the location of observed data points (Bialek et
al., 1996). Further developments of the theory, including alternative choices
of P[w (x)], have been given by Periwal (1997, 1998), Holy (1997), Aida (1999),
and Schmidt (2000); for a detailed numerical investigation of this problem
see Nemenman and Bialek (2001). Our goal here is to be illustrative rather
than exhaustive.11

From the discussion above, we know that the predictive information is
related to the density of KL divergences and that the power-law behavior we
are looking for comes from an essential singularity in this density function.
Thus, we calculate r (D, Nw ) in the model de�ned by equation 4.67.

With Q(x) D (1/ l0) exp[¡w (x)], we can write the KL divergence as

DKL[ Nw (x)kw (x)] D
1
l0

Z
dx exp[¡ Nw (x)][w (x) ¡ Nw (x)] . (4.68)

We want to compute the density,

r (DI Nw ) D
Z

[dw (x)]P[w (x)]d
¡
D ¡ DKL[ Nw (x)kw (x)]

¢
(4.69)

D M
Z

[dw (x)]P[w (x)]d
¡
MD ¡ MDKL[ Nw (x)kw (x)]

¢
, (4.70)

where we introduce a factor M, which we will allow to become large so that
we can focus our attention on the interesting limit D ! 0. To compute this
integral over all functions w (x), we introduce a Fourier representation for
the delta function and then rearrange the terms:

r (DI Nw ) D M
Z dz

2p
exp(izMD)

Z
[dw (x)]P [w (x)] exp(¡izMDKL) (4.71)

D M
Z dz

2p
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³
izMD C

izM
l0

Z
dx Nw (x) exp[¡ Nw (x)]

´

£
Z

[dw (x)]P[w (x)]

£ exp
³

¡
izM
l0

Z
dx w (x) exp[¡ Nw (x)]

´
. (4.72)

The inner integral over the functions w (x) is exactly the integral evaluated
in the original discussion of this problem (Bialek, Callan, & Strong, 1996);
in the limit that zM is large, we can use a saddle-point approximation,
and standard �eld-theoreticmethods allow us to compute the �uctuations

11 We caution that our discussion in this section is less self-contained than in other
sections. Since the crucial steps exactly parallel those in the earlier work, here we just give
references.
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around the saddle point. The result is that

Z
[dw (x)]P[w (x)] exp

³
¡

izM
l0

Z
dx w (x) exp[¡ Nw (x)]

´

D exp
³

¡
izM
l0

Z
dx Nw (x) exp[¡ Nw (x)] ¡ Seff[ Nw (x)I zM]

´
, (4.73)

Seff[ NwI zM] D
l
2

Z
dx

³
@ Nw
@x

´2

C
1
2

³ izM
ll0

´1/2Z
dx exp[¡ Nw (x)/2]. (4.74)

Now we can do the integral over z, again by a saddle-point method. The
two saddle-point approximations are both valid in the limit that D ! 0 and
MD3/2 ! 1; we are interested precisely in the �rst limit, and we are free to
set M as we wish, so this gives us a good approximation for r (D ! 0I Nw ).
This results in

r (D ! 0I Nw ) D A[ Nw (x)]D¡3/2 exp
³

¡B[ Nw (x)]
D

´
, (4.75)
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B[ Nw (x)] D
1

16ll0

³Z
dx exp[¡ Nw (x)/2]

´2

. (4.77)

Except for the factor of D¡3/2, this is exactly the sort of essential singularity
that we considered in the previous section, with m D 1. The D¡3/2 prefactor
does not change the leading large N behavior of the predictive information,
and we �nd that

S(a)
1 (N) »

1

2 ln 2
p

ll0

½ Z
dx exp[¡ Nw (x)/2]

¾

Nw
N1/2, (4.78)

where h¢ ¢ ¢i Nw denotes an average over the target distributions Nw (x) weighted
once again by P[ Nw (x)]. Notice that if x is unbounded, then the average in
equation 4.78 is infrared divergent; if instead we let the variable x range from
0 to L, then this average should be dominated by the uniform distribution.
Replacing the average by its value at this point, we obtain the approximate
result

S
(a)
1 (N) »

1
2 ln 2

p
N

³ L
l

´1/2

bits. (4.79)

To understand the result in equation 4.79, we recall that this �eld-theoretic
approach is more or less equivalent to an adaptive binning procedure in
which we divide the range of x into bins of local size

p
l/NQ(x) (Bialek,
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Callan, & Strong, 1996). From this point of view, equation 4.79 makes perfect
sense: the predictive information is directly proportional to the number of
bins that can be put in the range of x. This also is in direct accord with
a comment in the previous section that power-law behavior of predictive
informationarises from the number ofparameters in the problemdepending
on the number of samples.

This counting of parameters allows a schematic argument about the
smallness of �uctuations in this particular nonparametric problem. If we
take the hint that at every step »

p
N bins are being investigated, then we

can imagine that the �eld-theoretic prior in equation 4.67 has imposed a
structure C on the set of all possible densities, so that the set Cn is formed of
all continuous piecewise linear functions that have not more than n kinks.
Learning such functions for �nite n is a dVC D n problem. Now, as N grows,
the elements with higher capacities n »

p
N are admitted. The �uctuations

in such a problem are known to be controllable (Vapnik, 1998), as discussed
in more detail elsewhere (Nemenman, 2000).

One thing that remains troubling is that the predictive information de-
pends on the arbitrary parameter l describing the scale of smoothness in
the distribution. In the original work, it was proposed that one should in-
tegrate over possible values of l (Bialek, Callan, & Strong, 1996). Numerical
simulations demonstrate that this parameter can be learned from the data
themselves (Nemenman & Bialek, 2001), but perhaps even more interest-
ing is a formulation of the problem by Periwal (1997, 1998), which recovers
complete coordinate invariance by effectively allowing l to vary with x. In
this case, the whole theory has no length scale, and there also is no need to
con�ne the variable x to a box (here of size L). We expect that this coordinate
invariant approach will lead to a universal coef�cient multiplying

p
N in

the analog of equation 4.79, but this remains to be shown.
In summary, the �eld-theoretic approach to learning a smooth distri-

bution in one dimension provides us with a concrete, calculable example
of a learning problem with power-law growth of the predictive informa-
tion. The scenario is exactly as suggested in the previous section, where the
density of KL divergences develops an essential singularity. Heuristic con-
siderations (Bialek, Callan, & Strong, 1996; Aida, 1999) suggest that different
smoothness penalties and generalizations to higher-dimensional problems
will have sensible effects on the predictive information—all have power-
law growth, smoother functions have smaller powers (less to learn), and
higher-dimensional problems have larger powers (more to learn)—but real
calculations for these cases remain challenging.

5 Ipred as a Measure of Complexity

The problemof quantifying complexity isvery old(see Grassberger, 1991, for
a short review). Solomonoff (1964), Kolmogorov (1965), and Chaitin (1975)
investigated a mathematically rigorous notion of complexity that measures



Predictability, Complexity, and Learning 2445

(roughly) the minimum length of a computer program that simulates the
observed time series (see also Li & Vit Âanyi, 1993). Unfortunately there is
no algorithm that can calculate the Kolmogorov complexity of all data sets.
In addition, algorithmic or Kolmogorov complexity is closely related to the
Shannon entropy, which means that it measures something closer to our
intuitive concept of randomness than to the intuitive concept of complexity
(as discussed, for example, by Bennett, 1990). These problems have fueled
continued research along two different paths, representing two major mo-
tivations for de�ning complexity. First, one would like to make precise an
impression that some systems—such as life on earth or a turbulent �uid
�ow—evolve toward a state of higher complexity, and one would like to
be able to classify those states. Second, in choosing among different models
that describe an experiment, one wants to quantify a preference for simpler
explanations or, equivalently, provide a penalty for complex models that
can be weighed against the more conventional goodness-of-�t criteria. We
bring our readers up to date with some developments in both of these di-
rections and then discuss the role of predictive information as a measure of
complexity. This also gives us an opportunity to discuss more carefully the
relation of our results to previous work.

5.1 Complexity of Statistical Models. The construction of complexity
penalties for model selection is a statistics problem. As far as we know, how-
ever, the �rst discussions of complexity in this context belong to the philo-
sophical literature. Even leaving aside the early contributions of William of
Occam on the need for simplicity, Hume on the problem of induction, and
Popper on falsi�ability, Kemeney (1953) suggested explicitly that it would
be possible to create a model selection criterion that balances goodness of
�t versus complexity. Wallace and Boulton (1968) hinted that this balance
may result in the model with “the briefest recording of all attribute informa-
tion.” Although he probably had a somewhat different motivation, Akaike
(1974a, 1974b) made the �rst quantitative step along these lines. His ad hoc
complexity term was independent of the number of data points and was
proportional to the number of free independent parameters in the model.

These ideas were rediscovered and developed systematically by Rissa-
nen in a series of papers starting from 1978. He has emphasized strongly
(Rissanen, 1984, 1986, 1987, 1989) that �tting a model to data represents an
encoding of those data, or predicting future data, and that in searching for
an ef�cient code, we need to measure not only the number of bits required to
describe the deviations of the data from the model’s predictions (goodness
of �t), but also the number of bits required to specify the parameters of the
model (complexity). This speci�cation has to be done to a precision sup-
ported by the data.12 Rissanen (1984) and Clarke and Barron (1990) in full

12 Within this framework, Akaike’s suggestion can be seen as coding the model to
(suboptimal) �xed precision.
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generality were able to prove that the optimalencoding of a model requires a
code with length asymptotically proportional to the number of independent
parameters and logarithmically dependent on the number of data points we
have observed. The minimal amount of space one needs to encode a data
string (minimum description length, or MDL) within a certain assumed
model class was termed by Rissanen stochastic complexity, and in recent
work he refers to the piece of the stochastic complexity required for cod-
ing the parameters as the model complexity (Rissanen, 1996). This approach
was further strengthened by a recent result (Vit Âanyi & Li, 2000) that an es-
timation of parameters using the MDL principle is equivalent to Bayesian
parameter estimations with a “universal” prior (Li & Vit Âanyi, 1993).

There should be a close connection between Rissanen’s ideas of encoding
the data stream and the subextensive entropy. We are accustomed to the idea
that the average length of a code word for symbols drawn froma distribution
P isgiven by the entropyof that distribution; thus, it is tempting to say that an
encoding of a stream x1, x2, . . . , xN will require an amount of space equal to
the entropy of the joint distribution P(x1, x2, . . . , xN ). The situation here is a
bit moresubtle, because the usual proofsof equivalence between code length
and entropy rely on notions of typicality and asymptotics as we try to encode
sequences of many symbols. Here we already have N symbols, and so it does
not really make sense to talk about a stream of streams. One can argue, how-
ever, that atypical sequences are not truly random within a considered distri-
bution since their codingby the methods optimized for the distribution is not
optimal. So atypical sequences are better considered as typical ones coming
from a different distribution (a point also made by Grassberger, 1986). This
allows us to identify properties of an observed (long) string with the proper-
ties of the distribution it comes from,as Vit Âanyi and Li (2000) did. Ifwe accept
this identi�cation of entropy with code length, then Rissanen’s stochastic
complexity should be the entropy of the distribution P(x1, x2, . . . , xN ).

As emphasized by Balasubramanian (1997), the entropy of the joint dis-
tribution of N points can be decomposed into pieces that represent noise
or errors in the model’s local predictions—an extensive entropy—and the
space required to encode the model itself, which must be the subexten-
sive entropy. Since in the usual formulation all long-term predictions are
associated with the continued validity of the model parameters, the domi-
nant component of the subextensive entropy must be this parameter coding
(or model complexity, in Rissanen’s terminology). Thus, the subextensive
entropy should be the model complexity, and in simple cases where we
can describe the data by a K-parameter model, both quantities are equal to
(K/2) log2 N bits to the leading order.

The fact that the subextensive entropy or predictive information agrees
with Rissanen’s model complexity suggests that Ipred provides a reasonable
measure of complexity in learning problems. This agreement might lead the
reader to wonder if all we have done is to rewrite the results of Rissanen
et al. in a different notation. To calm these fears, we recall again that our
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approach distinguishes in�nite VC problems from �nite ones and treats
nonparametric cases as well. Indeed, the predictive information is de�ned
without reference to the idea that we are learning a model, and thus we can
make a link to physical aspects of the problem, as discussed below.

The MDL principlewas introduced as a procedure for statistical inference
from a data stream to a model. In contrast, we take the predictive informa-
tion to be a characterization of the data stream itself. To the extent that we
can think of the data stream as arising from a model with unknown pa-
rameters, as in the examples of section 4, all notions of inference are purely
Bayesian, and there is no additional “penalty for complexity.” In this sense
our discussion is much closer in spirit to Balasubramanian (1997) than to
Rissanen (1978). On the other hand, we can always think about the ensem-
ble of data streams that can be generated by a class of models, provided
that we have a proper Bayesian prior on the members of the class. Then the
predictive information measures the complexity of the class, and this char-
acterization can be used to understand why inference within some (simpler)
model classes will be more ef�cient (for practical examples along these lines,
see Nemenman, 2000, and Nemenman & Bialek, 2001).

5.2 Complexity of Dynamical Systems. While there are a few attempts
to quantify complexityin terms of deterministic predictions(Wolfram,1984),
the majority of efforts to measure the complexity of physical systems start
with a probabilistic approach. In addition, there is a strong prejudice that
the complexity of physical systems should be measured by quantities that
are not only statistical but are also at least related to more conventional ther-
modynamic quantities (for example, temperature, entropy), since this is the
only way one will be able to calculate complexity within the framework of
statistical mechanics. Most proposals de�ne complexity as an entropy-like
quantity, but an entropy of some unusual ensemble. For example, Lloyd
and Pagels (1988) identi�ed complexity as thermodynamic depth, the en-
tropy of the state sequences that lead to the current state. The idea clearly
is in the same spirit as the measurement of predictive information, but this
depth measure does not completely discard the extensive component of the
entropy (Crutch�eld & Shalizi, 1999) and thus fails to resolve the essential
dif�culty in constructing complexity measures for physical systems: distin-
guishing genuine complexity from randomness (entropy), the complexity
should be zero for both purely regular and purely random systems.

New de�nitions of complexity that try to satisfy these criteria (Lopez-
Ruiz, Mancini, & Calbet, 1995; Gell-Mann & Lloyd, 1996; Shiner, Davison,
& Landsberger, 1999; Sole & Luque, 1999, Adami & Cerf, 2000) and criti-
cisms of these proposals (Crutch�eld, Feldman, & Shalizi, 2000, Feldman &
Crutch�eld, 1998; Sole & Luque, 1999) continue to emerge even now. Aside
from the obvious problems of not actually eliminating the extensive com-
ponent for all or a part of the parameter space or not expressing complexity
as an average over a physical ensemble, the critiques often are based on



2448 W. Bialek, I. Nemenman, and N. Tishby

a clever argument �rst mentioned explicitly by Feldman and Crutch�eld
(1998). In an attempt to create a universal measure, the constructions can be
made over–universal: many proposed complexity measures depend only
on the entropy density S0 and thus are functions only of disorder—not a
desired feature. In addition, many of these and other de�nitions are �awed
because they fail to distinguish among the richness of classes beyond some
very simple ones.

In a series of papers, Crutch�eld and coworkers identi�ed statistical com-
plexity with the entropy of causal states, which in turn are de�ned as all
those microstates (or histories) that have the same conditional distribution
of futures (Crutch�eld & Young, 1989; Shalizi & Crutch�eld, 1999). The
causal states provide an optimal description of a system’s dynamics in the
sense that these states make as good a prediction as the histories them-
selves. Statistical complexity is very similar to predictive information, but
Shalizi and Crutch�eld (1999) de�ne a quantity that is even closer to the
spirit of our discussion: their excess entropy is exactly the mutual informa-
tion between the semi-in�nite past and future. Unfortunately, by focusing
on cases in which the past and future are in�nite but the excess entropy
is �nite, their discussion is limited to systems for which (in our language)
Ipred(T ! 1) D constant.

In our view, Grassberger (1986, 1991) has made the clearest and the most
appealing de�nitions. He emphasized that the slow approach of the en-
tropy to its extensive limit is a sign of complexity and has proposed several
functions to analyze this slow approach. His effective measure complexity
is the subextensive entropy term of an in�nite data sample. Unlike Crutch-
�eld et al., he allows this measure to grow to in�nity. As an example, for
low-dimensional dynamical systems, the effective measure complexity is
�nite whether the system exhibits periodic or chaotic behavior, but at the
bifurcation point that marks the onset of chaos, it diverges logarithmically.
More interesting, Grassberger also notes that simulations of speci�c cellular
automaton models that are capable of universal computation indicate that
these systems can exhibit an even stronger, power-law, divergence.

Grassberger (1986, 1991) also introduces the true measure complexity, or
the forecasting complexity, which is the minimal information one needs to
extract from the past in order to provide optimal prediction. Another com-
plexity measure, the logical depth (Bennett, 1985), which measures the time
needed to decode the optimal compression of the observed data, is bounded
from below by this quantity because decoding requires reading all of this
information. In addition, true measure complexity is exactly the statisti-
cal complexity of Crutch�eld et al., and the two approaches are actually
much closer than they seem. The relation between the true and the effective
measure complexities, or between the statistical complexity and the excess
entropy, closely parallels the idea of extracting or compressing relevant in-
formation (Tishby, Pereira, & Bialek,1999; Bialek & Tishby, in preparation),
as discussed below.
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5.3 A Unique Measure of Complexity? We recall that entropy provides
a measure of information that is unique in satisfying certain plausible con-
straints (Shannon, 1948). It would be attractive if we could prove a sim-
ilar uniqueness theorem for the predictive information, or any part of it,
as a measure of the complexity or richness of a time-dependent signal
x(0 < t < T) drawn from a distribution P[x(t)]. Before proceeding along
these lines, we have to be more speci�c about what we mean by “complex-
ity.” In most cases, including the learning problems discussed above, it is
clear that we want to measure complexity of the dynamics underlying the
signal or, equivalently, the complexity of a model that might be used to
describe the signal.13 There remains a question, however, as to whether we
want to attach measures of complexity to a particular signal x(t) or whether
we are interested in measures (like the entropy itself) that are de�ned by an
average over the ensemble P[x(t)].

One problem in assigning complexity to single realizations is that there
can be atypical data streams. Either we must treat atypicality explicitly,
arguing that atypical data streams from one source should be viewed as
typical streams from another source, as discussed by Vit Âanyi and Li (2000),
or we have to look at average quantities. Grassberger (1986) in particular
has argued that our visual intuition about the complexity of spatial patterns
is an ensemble concept, even if the ensemble is only implicit (see also Tong
in the discussion session of Rissanen, 1987). In Rissanen’s formulation of
MDL, one tries to compute the description length of a single string with
respect to some class of possible models for that string, but if these models
are probabilistic, we can always think about these models as generating an
ensemble of possible strings. The fact that we admit probabilistic models is
crucial. Even at a colloquial level, if we allow for probabilistic models, then
there is a simple description for a sequence of truly random bits, but if we
insist on a deterministic model, then it may be very complicated to generate
precisely the observed string of bits.14 Furthermore, in the context of proba-
bilistic models, it hardly makes sense to ask for a dynamics that generates a
particular data stream;we must ask fordynamics that generate the data with
reasonable probability, which is more or less equivalent to asking that the
given string be a typical member of the ensemble generated by the model.
All of these paths lead us to thinking not about single strings but about
ensembles in the tradition of statistical mechanics, and so we shall search
for measures of complexity that are averages over the distribution P[x(t)].

13 The problem of �nding this model or of reconstructing the underlying dynamics
may also be complex in the computational sense, so that there may not exist an ef�cient
algorithm.More interesting, the computational effort required maygrowwith theduration
T of our observations. We leave these algorithmic issues aside for this discussion.

14 This is the statement that the Kolmogorov complexity of a random sequence is large.
The programs or algorithms considered in the Kolmogorov formulation are deterministic,
and the program must generate precisely the observed string.
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Once we focus on average quantities, we can start by adopting Shannon’s
postulates as constraints on a measure of complexity: if there are N equally
likely signals, then the measure should be monotonic in N; if the signal is
decomposable into statistically independent parts, then the measure should
be additive with respect to this decomposition; and if the signal can be
described as a leaf on a tree of statistically independent decisions, then the
measure should be a weighted sum of the measures at each branching point.
We believe that these constraints are as plausible for complexity measures
as for information measures, and it is well known from Shannon’s original
work that this set of constraints leaves the entropy as the only possibility.
Since we are discussing a time-dependent signal, this entropy depends on
the duration of our sample, S(T). We know, of course, that this cannot be the
end of the discussion, because we need to distinguish between randomness
(entropy) and complexity. The path to this distinction is to introduce other
constraints on our measure.

First we notice that if the signal x is continuous, then the entropy is
not invariant under transformations of x. It seems reasonable to ask that
complexity be a function of the process we are observing and not of the
coordinate system in which we choose to record our observations. The ex-
amples above show us, however, that it is not the whole function S(T) that
depends on the coordinate system for x;15 it is only the extensive component
of the entropy that has this noninvariance. This can be seen more generally
by noting that subextensive terms in the entropy contribute to the mutual
information among different segments of the data stream (including the
predictive information de�ned here), while the extensive entropy cannot;
mutual information is coordinate invariant, so all of the noninvariance must
reside in the extensive term. Thus, any measure complexity that is coordi-
nate invariant must discard the extensive component of the entropy.

The fact that extensive entropy cannot contribute to complexity is dis-
cussed widely in the physics literature (Bennett, 1990), as our short re-
view shows. To statisticians and computer scientists, who are used to Kol-
mogorov’s ideas, this is less obvious. However, Rissanen (1986, 1987) also
talks about “noise” and “useful information” in a data sequence, which is
similar to splitting entropy into its extensive and the subextensive parts. His
“model complexity,” aside from not being an average as required above, is
essentially equal to the subextensive entropy. Similarly, Whittle (in the dis-
cussion of Rissanen, 1987) talks about separating the predictive part of the
data from the rest.

If we continue along these lines, we can think about the asymptotic ex-
pansion of the entropy at large T. The extensive term is the �rst term in
this series, and we have seen that it must be discarded. What about the

15 Here we consider instantaneous transformations of x, not �ltering or other transfor-
mations that mix points at different times.
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other terms? In the context of learning a parameterized model, most of the
terms in this series depend in detail on our prior distribution in parameter
space, which might seem odd for a measure of complexity. More gener-
ally, if we consider transformations of the data stream x(t) that mix points
within a temporal window of size t , then for T À t , the entropy S(T)
may have subextensive terms that are constant, and these are not invariant
under this class of transformations. On the other hand, if there are diver-
gent subextensive terms, these are invariant under such temporally local
transformations.16 So if we insist that measures of complexity be invariant
not only under instantaneous coordinate transformations, but also under
temporally local transformations, then we can discard both the extensive
and the �nite subextensive terms in the entropy, leaving only the divergent
subextensive terms as a possible measure of complexity.

An interesting example of these arguments is provided by the statisti-
cal mechanics of polymers. It is conventional to make models of polymers
as random walks on a lattice, with various interactions or self-avoidance
constraints among different elements of the polymer chain. If we count the
number N of walks with N steps, we �nd that N (N) » ANc zN (de Gennes,
1979). Now the entropy is the logarithm of the number of states, and so there
is an extensive entropy S0 D log2 z, a constant subextensive entropy log2 A,
and a divergent subextensive term S1(N) ! c log2 N. Of these three terms,
only the divergent subextensive term (related to the critical exponent c ) is
universal, that is, independent of the detailed structure of the lattice. Thus,
as in our general argument, it is only the divergent subextensive terms in
the entropy that are invariant to changes in our description of the local,
small-scale dynamics.

We can recast the invariance arguments in a slightly different form using
the relative entropy. We recall that entropy is de�ned cleanly only for dis-
crete processes and that in the continuum there are ambiguities. We would
like to write the continuum generalization of the entropy of a process x(t)
distributed according to P[x(t)] as

Scont D ¡
Z

dx(t) P[x(t)] log2 P[x(t)], (5.1)

but this is not well de�ned because we are taking the logarithm of a dimen-
sionful quantity. Shannon gave the solution to this problem: we use as a
measure of information the relative entropy or KL divergence between the
distribution P[x(t)] and some reference distribution Q[x(t)],

Srel D ¡
Z

dx(t) P[x(t)] log2

³ P[x(t)]
Q[x(t)]

´
, (5.2)

16 Throughout this discussion, we assume that the signal x at one point in time is �nite
dimensional. There are subtleties if we allow x to represent the con�guration of a spatially
in�nite system.
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which is invariant under changes of our coordinate system on the space of
signals. The cost of this invariance is that we have introduced an arbitrary
distribution Q[x(t)], and so really we have a family of measures. We can
�nd a unique complexity measure within this family by imposing invari-
ance principles as above, but in this language, we must make our measure
invariant to different choices of the reference distribution Q[x(t)].

The reference distribution Q[x(t)] embodies our expectations for the sig-
nal x(t); in particular, Srel measures the extra space needed to encode signals
drawn from the distribution P[x(t)] if we use coding strategies that are op-
timized for Q[x(t)]. If x(t) is a written text, two readers who expect different
numbers of spelling errors will have different Qs, but to the extent that
spelling errors can be corrected by reference to the immediate neighboring
letters, we insist that any measure of complexity be invariant to these dif-
ferences in Q. On the other hand, readers who differ in their expectations
about the global subject of the text may well disagree about the richness of
a newspaper article. This suggests that complexity is a component of the
relative entropy that is invariant under some class of local translations and
misspellings.

Suppose that we leave aside global expectations, and construct our ref-
erence distribution Q[x(t)] by allowing only for short-ranged interactions—
certain letters tend to followone another, letters form words, and so on—but
we bound the range over which these rules are applied. Models of this class
cannot embody the full structure of most interesting time series (includ-
ing language), but in the present context we are not asking for this. On the
contrary, we are looking for a measure that is invariant to differences in
this short-ranged structure. In the terminology of �eld theory or statistical
mechanics, we are constructing our reference distribution Q[x(t)] from local
operators. Because we are considering a one-dimensional signal (the one di-
mension being time), distributions constructed from local operators cannot
have any phase transitions as a function of parameters. Again it is important
that the signal x at one point in time is �nite dimensional. The absence of
critical points means that the entropy of these distributions (or their contri-
bution to the relative entropy) consists of an extensive term (proportional
to the time window T) plus a constant subextensive term, plus terms that
vanish as T becomes large. Thus, if we choose different reference distribu-
tions within the class constructible from local operators, we can change the
extensive component of the relative entropy, and we can change constant
subextensive terms, but the divergent subextensive terms are invariant.

To summarize, the usual constraints on information measures in the
continuum produce a family of allowable complexity measures, the relative
entropy to an arbitrary reference distribution. If we insist that all observers
who choose reference distributions constructed from local operators arrive
at the same measure of complexity, or if we follow the �rst line of arguments
presented above, then this measure must be the divergent subextensive com-
ponent of the entropy or, equivalently, the predictive information. We have
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seen that this component is connected to learning in a straightforward way,
quantifying the amount that can be learned about dynamics that generate
the signal, and to measures of complexity that have arisen in statistics and
dynamical systems theory.

6 Discussion

We have presented predictive information as a characterization of various
data streams. In the context of learning, predictive information is related
directly to generalization. More generally, the structure or order in a time
series or a sequence is related almost by de�nition to the fact that there is
predictability along the sequence. The predictive information measures the
amount of such structure but does not exhibit the structure in a concrete
form. Having collected a data stream of duration T, what are the features of
these data that carry the predictive information Ipred(T)? From equation 3.7,
we know that most of what we have seen over the time T must be irrelevant
to the problem of prediction, so that the predictive information is a small
fraction of the total information. Can we separate these predictive bits from
the vast amount of nonpredictive data?

The problem of separating predictive from nonpredictive information is
a special case of the problem discussed recently (Tishby, Pereira, & Bialek,
1999; Bialek & Tishby, in preparation): given some data x, how do we com-
press our description of x while preserving as much information as pos-
sible about some other variable y? Here we identify x D xpast as the past
data and y D xfuture as the future. When we compress xpast into some re-
duced description Oxpast, we keep a certain amount of information about
the past, I( OxpastI xpast), and we also preserve a certain amount of informa-
tion about the future, I( OxpastI xfuture). There is no single correct compression
xpast ! Oxpast; instead there is a one-parameter family of strategies that trace
out an optimal curve in the plane de�ned by these two mutual informations,
I( OxpastI xfuture) versus I( OxpastI xpast).

The predictive information preserved by compression must be less than
the total, so that I( OxpastI xfuture) · Ipred(T). Generically no compression can
preserve all of the predictive information so that the inequality will be strict,
but there are interesting special cases where equality can be achieved. If
prediction proceeds by learning a model with a �nite number of parameters,
we might have a regression formula that speci�es the best estimate of the
parameters given the past data. Using the regression formula compresses
the data but preserves all of the predictive power. In cases like this (more
generally, if there exist suf�cient statistics for the prediction problem) we
can ask for the minimal set of Oxpast such that I( OxpastI xfuture) D Ipred(T). The
entropy of this minimal Oxpast is the true measure complexity de�ned by
Grassberger (1986) or the statistical complexity de�ned by Crutch�eld and
Young (1989) (in the framework of the causal states theory, a very similar
comment was made recently by Shalizi & Crutch�eld, 2000.)
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In the context of statistical mechanics, long-range correlations are charac-
terized by computing the correlation functions of order parameters, which
are coarse-grained functions of the system’s microscopic variables. When
we know something about the nature of the orderparameter (e.g., whether it
is a vector or a scalar), then general principles allow a fairly complete classi-
�cation and description of long-range ordering and the nature of the critical
points at which this order can appear or change. On the other hand, de�ning
the order parameter itself remains something of an art. For a ferromagnet,
the order parameter is obtained by local averaging of the microscopic spins,
while for an antiferromagnet, one must average the staggered magnetiza-
tion to capture the fact that the ordering involves an alternation from site to
site, and so on. Since the order parameter carries all the information that con-
tributes to long-range correlations in space and time, it might be possible to
de�ne order parameters more generally as those variables that provide the
most ef�cient compression of the predictive information, and this should be
especially interesting for complex or disordered systems where the nature
of the order is not obvious intuitively; a �rst try in this direction was made
by Bruder (1998). At critical points, the predictive information will diverge
with the size of the system, and the coef�cients of these divergences should
be related to the standard scaling dimensions of the order parameters, but
the details of this connection need to be worked out.

If we compress or extract the predictive information from a time series,
we are in effect discovering “features” that capture the nature of the or-
dering in time. Learning itself can be seen as an example of this, where
we discover the parameters of an underlying model by trying to compress
the information that one sample of N points provides about the next, and
in this way we address directly the problem of generalization (Bialek and
Tishby, in preparation). The fact that nonpredictive information is useless
to the organism suggests that one crucial goal of neural information pro-
cessing is to separate predictive information from the background. Perhaps
rather than providing an ef�cient representation of the current state of the
world—as suggested by Attneave (1954), Barlow (1959, 1961), and others
(Atick, 1992)—the nervous system provides an ef�cient representation of
the predictive information.17 It should be possible to test this directly by

17 If, as seems likely, the stream of data reaching our senses has diverging predictive
information, then the space required to write down our description grows and grows
as we observe the world for longer periods of time. In particular, if we can observe for
a very long time, then the amount that we know about the future will exceed, by an
arbitrarily large factor, the amount that we know about the present. Thus, representing
the predictive information may require many more neurons than would be required to
represent the current data. If we imagine that the goal of primary sensory cortex is to
represent the current state of the sensory world, then it is dif�cult to understand why
these cortices have so many more neurons than they have sensory inputs. In the extreme
case, the region of primary visual cortex devoted to inputs from the fovea has nearly 30,000
neurons for each photoreceptor cell in the retina (Hawken & Parker 1991); although much
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studying the encoding of reasonably natural signals and asking if the infor-
mation that neural responses provide about the future of the input is close
to the limit set by the statistics of the input itself, given that the neuron only
captures a certain number of bits about the past. Thus, we might ask if, un-
der natural stimulus conditions, a motion-sensitive visual neuron captures
features of the motion trajectory that allow for optimal prediction or extrap-
olation of that trajectory; by using information-theoretic measures, we both
test the “ef�cient representation” hypothesis directly and avoid arbitrary
assumptions about the metric for errors in prediction. For more complex
signals such as communication sounds, even identifying the features that
capture the predictive information is an interesting problem.

It is natural to ask if these ideas about predictive information could be
used to analyze experiments on learning in animals or humans. We have em-
phasized the problem of learning probability distributions or probabilistic
models rather than learning deterministic functions, associations, or rules.
It is known that the nervous system adapts to the statistics of its inputs, and
this adaptation is evident in the responses of single neurons (Smirnakis et al.,
1997; Brenner, Bialek, & de Ruyter van Steveninck, 2000); these experiments
provide a simple example of the system learning a parameterized distri-
bution. When making saccadic eye movements, human subjects alter their
distribution of reaction times in relation to the relative probabilities of differ-
ent targets, as if they had learned an estimate of the relevant likelihoodratios
(Carpenter & Williams, 1995). Humans also can learn to discriminate almost
optimally between random sequences (fair coin tosses) and sequences that
are correlated or anticorrelated according to a Markov process; this learning
can be accomplished from examples alone, with no other feedback (Lopes &
Oden, 1987). Acquisition of language may require learning the jointdistribu-
tion of successive phonemes, syllables, orwords, and there is direct evidence
for learning of conditional probabilities from arti�cial sound sequences, by
both infants and adults (Saffran, Aslin, & Newport, 1996;Saffran et al., 1999).
These examples, which are not exhaustive, indicate that the nervous system
can learn an appropriate probabilistic model,18 and this offers the oppor-
tunity to analyze the dynamics of this learning using information-theoretic
methods: What is the entropy of N successive reaction times following a
switch to a new set of relative probabilities in the saccade experiment? How

remains to be learned about these cells, it is dif�cult to imagine that the activity of so many
neurons constitutes an ef�cient representation of the current sensory inputs. But if we live
in a world where the predictive information in the movies reaching our retina diverges, it
is perfectly possible that an ef�cient representation of the predictive information available
to us at one instant requires thousands of times more space than an ef�cient representation
of the image currently falling on our retina.

18 As emphasized above, many other learning problems, including learning a function
from noisy examples, can be seen as the learning of a probabilistic model. Thus, we expect
that this description applies to a much wider range of biological learning tasks.
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much information does a single reaction time provide about the relevant
probabilities? Following the arguments above, such analysis could lead to
a measurement of the universal learning curve L (N).

The learning curve L (N) exhibited by a human observer is limited by
the predictive information in the time series of stimulus trials itself. Com-
paring L (N) to this limit de�nes an ef�ciency of learning in the spirit of
the discussion by Barlow (1983). While it is known that the nervous system
can make ef�cient use of available information in signal processing tasks
(cf. Chapter 4 of Rieke et al., 1997) and that it can represent this information
ef�ciently in the spike trains of individual neurons (cf. Chapter 3 of Rieke
et al., 1997, as well as Berry, Warland, & Meister, 1997; Strong et al., 1998;
and Reinagel & Reid, 2000), it is not known whether the brain is an ef�cient
learning machine in the analogous sense. Given our classi�cation of learn-
ing tasks by their complexity, it would be natural to ask if the ef�ciency of
learning were a critical function of task complexity. Perhaps we can even
identify a limitbeyond which ef�cient learning fails, indicating a limit to the
complexity of the internal model used by the brain during a class of learning
tasks. We believe that our theoretical discussion here at least frames a clear
question about the complexity of internal models, even if for the present we
can only speculate about the outcome of such experiments.

An importantresult of our analysis is the characterization of time series or
learning problems beyond the class of �nitely parameterizable models, that
is, the class with power-law-divergent predictive information. Qualitatively
this class is more complex than any parametric model, no matter how many
parameters there may be, because of the more rapid asymptotic growth of
Ipred(N). On the other hand, with a �nite number of observations N, the
actual amount of predictive information in such a nonparametric problem
may be smaller than in a model with a large but �nite number of parameters.
Speci�cally, if we have two models, one with Ipred(N) » ANº and one with
K parameters so that Ipred(N) » (K/2) log2 N, the in�nite parameter model
has less predictive information for all N smaller than some critical value

Nc »
µ K

2Aº
log2

³ K
2A

´¶1/º
. (6.1)

In the regime N ¿ Nc, it is possible to achieve more ef�cient prediction
by trying to learn the (asymptotically) more complex model, as illustrated
concretely in simulations of the density estimation problem (Nemenman &
Bialek, 2001). Even if there are a �nite number of parameters, such as the
�nite number of synapses in a small volume of the brain, this number may
be so large that we always have N ¿ Nc, so that it may be more effective
to think of the many-parameter model as approximating a continuous or
nonparametric one.

It is tempting to suggest that the regime N ¿ Nc is the relevant one for
much of biology. If we consider, for example, 10 mm2 of inferotemporal cor-



Predictability, Complexity, and Learning 2457

tex devoted to object recognition(Logothetis & Sheinberg, 1996), the number
of synapses is K » 5£109. On the other hand, object recognition depends on
foveation, and we move our eyes roughly three times per second through-
out perhaps 10 years of waking life, during which we master the art of object
recognition. This limits us to at most N » 109 examples. Remembering that
we must have º < 1, even with large values of A, equation 6.1 suggests that
we operate with N < Nc. One can make similar arguments about very dif-
ferent brains, such as the mushroom bodies in insects (Capaldi, Robinson, &
Fahrbach, 1999). If this identi�cation of biological learning with the regime
N ¿ Nc is correct, then the success of learning in animals must depend on
strategies that implement sensible priors over the space of possible models.

There is one clear empirical hint that humans can make effective use of
models that are beyond �nite parameterization (in the sense that predictive
information diverges as a power law), and this comes from studies of lan-
guage. Long ago, Shannon (1951) used the knowledge of native speakers
to place bounds on the entropy of written English, and his strategy made
explicit use of predictability. Shannon showed N-letter sequences to native
speakers (readers), asked them to guess the next letter, and recorded how
many guesses were required before they got the right answer. Thus, each
letter in the text is turned into a number, and the entropy of the distribution
of these numbers is an upper bound on the conditional entropy (̀N) (cf.
equation 3.8). Shannon himself thought that the convergence as N becomes
large was rather quick and quoted an estimate of the extensive entropy per
letter S0. Many years later, Hilberg (1990) reanalyzed Shannon’s data and
found that the approach to extensivity in fact was very slow; certainly there
is evidence fora large component S1(N) / N1/2, and this may even dominate
the extensive component for accessible N. Ebeling and Pöschel (1994; see
also Pöschel, Ebeling, & Ros Âe, 1995) studied the statistics of letter sequences
in long texts (such as Moby Dick) and found the same strong subextensive
component. It would be attractive to repeat Shannon’s experiments with a
design that emphasizes the detection of subextensive terms at large N.19

In summary, we believe that our analysis of predictive information solves
the problem of measuring the complexity of time series. This analysis uni-
�es ideas from learning theory, coding theory, dynamical systems, and sta-
tistical mechanics. In particular, we have focused attention on a class of
processes that are qualitatively more complex than those treated in conven-

19 Associated with the slow approach to extensivity is a large mutual information
between words or characters separated by long distances, and several groups have found
that this mutual information declines as a power law. Cover and King (1978) criticize such
observations bynoting that this behavior is impossible in Markovchains of arbitraryorder.
While it is possible that existing mutual information data have not reached asymptotia, the
criticism of Cover and King misses the possibility that language is not a Markov process.
Of course, it cannot be Markovian if it has a power-law divergence in the predictive
information.
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tional learning theory, and there are several reasons to think that this class
includes many examples of relevance to biology and cognition.
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