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Statistical properties of spike trains: Universal and stimulus-dependent aspects
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Statistical properties of spike trains measured from a sensory neuravo are studied experimentally and
theoretically. Experiments are performed on an identified neuron in the visual system of the blowfly. It is
shown that the spike trains exhibit universal behavior over a short time, modulated by a stimulus-dependent
envelope over a long time. A model of the neuron as a nonlinear oscillator driven by noise and by an external
stimulus is suggested to account for these results. In the short-time universal regime, the main biophysical
effect is refractoriness, which can be described as a repulsivg (iritéraction law among spikes. A universal
distribution function for intervals is found, defining a point process with special symmetry properties. The
long-time modulations in the spike train are related in a simple way to the properties of the input stimulus as
seen through the neuronal nonlinearity. Thus our model enables a separation of the effects of internal neuronal
properties from the effect of external stimulus properties. Explicit formulas are derived for different statistical
properties, which are in very good agreement with the data in both the universal and the stimulus-dependent
regimes.

DOI: 10.1103/PhysReVE.66.031907 PACS nuni)er87.10+e

[. INTRODUCTION microscopic models of the neuron were constructed in the
same spirif2]. One aim of this type of modeling is to pro-
Many cells in the nervous system respond to stimulatiorfluce the different frequency-current/() response curves
by generating action potentiaispikes. Time sequences of DY fitting model parameters. o
these spikes are the basis for encoding information and for SPike trains measured from sensory neuriengvo, how-
communication between neurofig]. A pattern of spikes €Ver. show a very different behavior: many neurons seem to
across time contains the message being encoded, the sigfg¢ Stochastically, even when external conditions are held
ture of the biophysical spike generation mechanism, and o xed. This fact initiated what seems to be an unrelated line
the noise in the neuron and its environmigit These faétors of res_earch: that of describing spike trains by mod_els of sto-
are generally interrelated in a complicated way, and it is noghastu: processefb,6]. These models can sometimes de-

| how to disentanale their effect on th d spik cribe correctly statistical properties of the spikes trains, such
fr:i?]r ow fo disentangie their effect on the measured Spik§q the distribution of intervals, but in general the parameters

. . . . . of the models remain unrelated to physiological characteris-
The biophysical mechanism for generating action potensics of real system§7].

tials is quite universal, and was first described successfully geveral fundamental questions concerning the statistical
by Hodgkin and Huxley3]. Their description accounted for properties of spike trains thus remain unresolved, despite the
the stereotyped shape of an action potential, which is a rogrge literature on this subject: How is the periodic behavior
bust property, largely independent of external conditionsof the isolated neuron to be reconciled with the more irregu-
The Hodgkin-Huxley model describes the neuron as a comtar behavior in a complex network? What is a useful charac-
plex dynamical system; sustained firiig continuous train terization of the degree of this irregularity, and how does it
of spikeg comes about when the dynamical system is driverdepend on external conditions? How sensitive are the statis-
into an oscillatory mode. This picture is consistent with ex-tical properties to the microscopic biophysical details of the
periments on isolated neurons: many of these tend to firgeuron, and to the statistics of the noise? Can effects of the
periodic spike trains in response to direct current injectionsensory stimulus be separated and recognized at the output?
implying an oscillatorlike behavior. The frequency of these Here we present a theory that provides some answers to
trains is deterministically related to the strength of the apihe above questions, and apply it to the analysis of spike
plied current Adriari4] suggested long ago that this property trains measuredn vivo in a sensory neuron. We use the
could be used to code the strength of the input. Differenfiotion of a frequency function to describe the neuron's re-
neurons vary in the shape of the response function relatingPOnsef8], and connect it to the stochastic firing in a net-
frequency to input. Following Hodgkin and Huxley, many WOrk through the introduction of noise. Under some condi-
tions we find that the statistical properties of spike trains are
universalon the time scale of a few spik¢8]. This means
that on this scale they are independent of the details of the
_ ) Technternal oscillator, of the noise, and of external stimulation.
anon, Haifa 32000, Israel. _ _ ~_The dominant effect in this regime is the refractoriness in
Present address: Department of Physics, Princeton Unlversn)épike generation, which is here described by an effective
Princeton, NJ 08544. interaction potential among spikes. The functional form of
*Present address: Department of Molecular Biology, Princetorhe interaction is found to be universal and increaseswaatl/
University, Princeton, NJ 08544. small distances; it depends on a dimensionless parameter
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characterizing the internal irregularity of the point processinjection. When driven by a constant stimulgsin the ab-
On the time scale of many spikes, the universal behavior isence of noise, our model neuron generates a periodic spike
modulated by an envelope reflecting the input stimulus, asrain with a frequencyf(s), consistent with the behavior in
seen through the neuronal response function. We present eisolation. Starting from a microscopic level of modeling,
perimental data for the statistical properties of spike traingnany parameters need to be tuned to produce a required
measured from an identified motion sensor in the visual sysform of thef/I relation[12]. Here we use thé&/l relation as
tem of the blowfly, under various external stimulation. Thesea phenomenological description of the neuron, and base the
data are shown to be very well described by the theory. statistical theory on it. We develop the theory without speci-
The paper is organized as follows. In Sec. Il we define ouffying the details of this relation; it will be shown that statis-
model, and show how the frequency of the oscillator is retical properties at steady state are largely independent of
lated to the rate of the measured point process. In Sec. Il wéhese details.
consider the statistical properties of the model, when the Now we would like to “embed” our model neuron in a
fluctuations in the inputs are rapid relative to the typicalnoisy environment, such as a complex sensory network,
interspike time 1/. We derive explicit formulas for the sta- while it is still subject to a constant stimulss In general,
tistical properties of the spike train, and show that biophysithere can be many noise sources in such a network: the sig-
cal details affect these properties only through the irregularnals coming in from the external world are not perfect, the
ity parameter. In Sec. IV, we consider the case of arsensory apparatysuch as photoreceptgrs noisy, connec-
additional slow time scale in the inputs, which is muchtions between cells in the network introduce noise, and fi-
longer than /. The conditional rate is then approximated by nally the cell itself can generate noifer example, channel
a product of two distinct parts: a universal part, dependingioise [13]). We introduce noise as an additional random
only on the irregularity parameter, and a stimulus-dependerfunction n(t) added to the input. This simplified scheme is
part, which modulates it. In each section, application of thqustified by the fact that the final results do not depend on the
theoretic results to measurements from the fly is presenteddetails of the noise distribution, therefanét) is understood
as an effective noise.
Il. FREQUENCY INTEGRATOR Retaining the notion of a local frequency, the noise causes
frequency modulations in the spike train. Under the condi-
A sequence of spikes will be described as a train of Diragjons s=const, n=0 the oscillatory behavior is related to
o functions: some periodic trajectory in parameter space. Assuming that
this trajectory is stable, the addition oft) will cause the
— _ system to occupy a volume in parameter space surrounding
p(t) = X 3(t—ty. ()  System . .
K this trajectory. The phase of the oscillator will not advance at

a constant ratdé(s), but instead will be given by
In this approximation the height and shape of the action po-

tentials are neglected, and all the information is contained in

their arrival times: the spike train is a point process. If the d(t)=f[s+n(t)]. (4)
system is driven by a signa(t) and a noisen(t), both

continuous functions of time, then we can imagine that the ) o

neuron evaluates some functioddls(t),n(t)] and produces The strength of the noise and the sensitivity fdf) to

a spike when this crosses a threshold: changes in the inputs both determine the frequency modula-
tion depth or the amount of randomness in the phase ad-
dF vancement.
P(t)=2k S(As(t),n(t)]—k) - 2 The frequency function is an internal property of the neu-

ron. One would like to relate it to the firing rate function in

Formula(2) describes a very general class of models: a s ikéhe presence .Of no?se, which can be measure_d experimen-
2) vy P tally. Considering still the case of a constardnd introduc-

is generated whelf crosses a fixed threshold, and the pro-. ; . C
cess resets after spiking. The operafrcan be linear or "9 the average over noige- -), the average spike train is
nonlinear, deterministic or stochastic, and can depend on the

history of the signal and the noise in a complicated WG] )

We further specify our model by the following choice Bf (ps(t)) = Zk (8(D(t)—k) D(1)). (5)

t
Fls(t),n(t)]= fof[s(u)+n(u)]du =oM), O

Using the Poisson summation formula

wheref()=0 is the frequency response function character-

izing the neuron. This model is related to integral frequency S sx—k)= eizmmx
pulse modulation models and to the standard integrate-and- n = ’
fire model[7,10,11. The motivation for defining a determin-

istic frequency response function comes from the measured

behavior of isolated neurons in response to direct currentve can write the average spike train as

©6)
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(ps(1)) = 2 (e?™*Wd (1)) - 200  (©)
~ 3 (emONbm). @ B 100
o -

The last approximation amounts to assuming that the noise
correlation timer, is much shorter than other length scales t (sec) s (deg/sec)

in the problem. Fot larger than this correlation tim&(t) is

an integral of many independent random variables, and is FIG. 1. (a) Firing rate ofH1 as a function of time, averaged
approximately Gaussian by the central limit theorem. Thengver trials:r(t)=(p(t)) (dots, compared to the input signa(t)

one can substitute the average of the exponent by the exp¢solid line). The signal was repeated many times to obtain a sam-

nent of the two first cumulants: pling of the noise ensembléb) Instantaneous relation between fir-
ing rate and local stimulus value. This is the effective nonlinear
<ei2wm¢(t)>%ei2wm<¢(t)>—2w2m2<5¢(t)2>, (8)  neural response smoothed by the noise distribijtiee Eq(11)].

where (5 (t)%)=(®(t)?) —(P(t))>. The first two cumu- from the eyes, and receives input through connections to

lants of & (t) are many other cells. It is identified as a motion detector, re-
. sponding optimally to wide-field rigid horizontal motion,
<¢(t)>:f dt’ (f[s+n(t")])=rt, (99  With strong direction selectivity14]. The fly watches a

0 screen with a random pattern of vertical dark and light bars,

moving horizontally with a velocitg(t). We record the elec-
tric signal of H1 extracellularly and register a sequence of
spike timings{t,} [15].

An advantage of this system is that we have empirical
Butf is correlated only over a short time, on the ordef-9f  knowledge of what stimulus feature is relevant to this cell: it
and therefore the double integral can be approximated by responds to wide-field motion in the horizontal direction.

t Thus we may identify the input to the cell directly with a
a || T one-dimensional external signal, the motion of the pattern on
(807 J'Odtfimdg(éf(s+n(t+§/2)) the screen. Figure 1 shows the firing rate averaged over
_ many presentations of the same stimulus, both as a function
X 8f(s+n(t—¢/2))) of time [Fig. 1(@)] and as a function of the instantaneous
_ value of s(t) [Fig. 1(b)]. If the velocity on the screen is
~Dt, (10 slowly varying in time, the firing rate oH1 follows this
with D= 7,(8f2). Using Eq.(8) in Eq. (7), and taking the velocity closely: Fig. 1a) s_hows the time-dependent firing
time t arbitrarily large so that only the term=0 survives, 'ater(t)=(p[s(t)]) of H1 in response to a random signal.
we find Since the signal varies very slowly, one may use 8d)
locally, and if we plot the firing rate as a function of the
(p(9))=(f(s+n))=[F*N](s), (11 instantaneous value sf we see the smoothed response func-
tion f(s) [Fig. 1(b)]. If the signal varies rapidly, filtering
where* denotes convolution and/is the distribution func- mechanisms at early stages of the visual pathway become
tion of the noise at a given point of time. For a stationaryimportant, ands(t), which directly drives the cell, is a modi-
noise distribution, this implies that the average firing rate asied version of the velocity on the screen. In this case, it is
a function of signals has the form off(s) smeared by the more difficult to map out directly the response cufié]. It
noise. This result is independent of the exact form of theshould be noted that we present the response function in Fig.
functionf or of the noise distribution. It relates ttiél curve 1 only for purpose of illustration; in what follows we shall
to a measurable quantity, an average firing rate; in this meassume that this function is well defined, but we will not
sured quantity some of the fine detailsfahay be smeared need to know its exact shape. Moreover, our results will
by the noise. show that to account for the statistical properties of the spike

In order to compare to data, we must now identify thetrains, very little information about the response function is
stimuluss(t) in the experiment. If the neuron is isolated in a required.
dish and current is injected directly into the cell, th&() It should be noted also that the response function of the
should be naturally identified with this current. In experi- neuronf(-) is not a fixed property, but may change with
ments with an intact sensory system one would like to conexternal conditions. The theory presented here is valid within
nects(t) with the external stimulus. In the following discus- a steady state, in which(-) takes a particular form and does
sion we will use as our test case the visual system of th@ot change with time. Rather than being a limitation, the
blowfly. In our experiment, a live immobilized fly views context dependence df-) opens the possibility to investi-
various visual stimuli, chosen to excite the response of thgate adaptive changes in the neural response, when adjusting
cell H1. This large neuron is located several layers backo different steady statd46].

(8D(1)2)= fot f;dt'dt”<5f[s+ n(t")]8f[s+n(t")]).
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[ll. STATISTICAL PROPERTIES: UNIVERSAL REGIME function oft. As will be shown below, this results in signifi-

. . . cantly different symmetry properties of the function.
In this section we present the statistical theory for the casé To understand the qualitative properties of the point pro-

of a constant input signag(t) = n random uncorre- o . ST . .
P gnak(t)=s, and a random uncorre cess, it is convenient to examine it in dimensionless time

lated noise of arbitrary distribution. The result is a renewal " ' . :
process with special symmetry properties, reflecting the un'imlts’ namely, to define the time such that the average rate is

derlying neuronal oscillator. This process provides a faithfulit.a\t/ivs?[igseggteeggsotrlln;ieagi:nzte.nls?omless;ep;?:rimfet :on, the
empirical description of the interspike repulsive interaction, P P Brer,
which is the main biophysical effect manifested in the spike D 7,52

. . . . n
train on short time scales. As far as we know, this point y=—= ) (17
process is defined and analyzed in this work for the first time
(it was introduced irf9]). As will be shown in later sections, gnd the interval density is
the results obtained here are valid in a limited time range if
the stimuluss(t) is time dependent. X+ 1 )
P(x)= ———e 0" D72% (18)

V8 yX

A. Distribution of intervals

The distribution of interspike intervals is the distribution The parametery governs the decay of the interval density
of times for whichd(t)=1. Due to the unidirectionality of both near the origin and at largeFor smally these decays
phase diffusion, these times are unique, and so the probab#re strong, indicating a narrow distribution, while for large
ity density is simply they are weaker and the distribution is broader. More for-

_ mally, the moment generating functio@(\)={e **), of
P(t)=(8t—® 1(1)))=(8(®(t)—1)P(1)). (12 Eqg. (18) can be calculated using the integral representation

It is more convenient to calculate the cumulative distribution

P(x)=f dp(L1+imyp)e27-1p-27"  (19)

t
thfPt’dt’, 13
® 0 () a3 The result is
which can be expressed in terms of the step funcBoand 1 A (1= TFE)
its Fourier transform: G(\)=5| 1+ ———|eMiviraly), 20
2 Vi+2Ny (20
= dp , ,
F(t)z(@((l)(t)—l))zf me 12mp( gl2mp® (1)) and the first two moments are
— o0 o
(14 (x)y="1+y/2, (21)
Using the Gaussian approximati@) for ®(t), we find that 5
(ox®)=y+ 772 (22)
F(t) — fm dp ei277p(rtfl)72ﬂ'2p2Dt
~»2mIp Note that the average interval length is not equal to the in-
verse of the average rate, which is 1 in our units. In general,
_- re—1 inversion does not commute with averaging; for smgll
1+erf (15 ; .
2 2Dt however, the inverse average and the average of the inverse
_ o are similar.
and the interval density is Defining the coefficient of variation by/{ 6x?)/(x) [18],
it is seen that the coefficient of variation is approximately
re+1 o (rt-1)%/20t (16) proportional to\y for small y, and goes ta/5 for largey.

P()= J87Dt3 This is a quantitative way of seeing that our family of distri-
butions interpolates between low-variabilityr regulay and
In Appendix A this result is derived for a discrete sum of high-variability (or irregulay limits. It should be noted that
non-negative random variables, directly from the centrakhis distribution arises from a simple integration model of
limit theorem. The density16) depends on two parameters, many independent inpufd9]. As noted already by several
the average firing rateand the diffusion coefficier, both  authors[8,12], it is not only the properties of the inputs but
of dimensionality time] 2. In the derivation, we used only also of the internal neural response that determine the degree
the non-negativity of the frequency integrator to write downof irregularity of a spike train. In our model, the parameger
Eg.(12) and the Gaussian approximati®) for @ (t); there-  controlling this irregularity(17), arises from a combination
fore changes in the model which retain these properties wilbf both these effects.
not affect the interval density. Equatioh6) is similar to the The fact thaty controls the behavior of the densit}8) at
first passage time of the Wiener procg¢3sl7]: it has the both tails is reflected in the form of an invariance under the
same exponent, but this exponent is multiplied by a differentransformatiorx— 1/x, with the Jacobian properly accounted
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FIG. 2. A symmetry of the spike train point process: the distri- =20 f retina |
bution of intervals between neighboring spikes is the same as the = ]
distribution of the inverse interval$ocal frequencies up to a con- a 10} i
stant scaling factor. Data are shown from two experiments with 01 A
constant velocity stimuli, of magnitude 10.5{& and 0.16°/9b). )

0 50 100 150 200 0 0 50 100
for. This implies that the cumulative distribution of the inter- t (ms)
vals between successive spikes is identical to the distribution
of inverse intervals, when both are measured in dimension- FIG. 3. Distribution of intervals between neighboring spikes,
less units. Since the spike train for a constant input is e.gxpt.eriments and t.heory. The dgta are from different sensory systems
renewal process, invariance of the interval distribution im-in different organisms(a) fly visual system(lobula plate motion
plies an invariance of the process as a whole. In general, fgietectoy, (b) cat retina[20], (c) goldfish retina[21], (d) macaque
a point process with time intervals;!, one may construct etinal ganglion cell22]. They axis is the probability density of
the dual process with intervaldl/x;}; this has the natural Eeemlgfsan wge;val, n l;)mts. of 1/SH The Slo."%.blaCk “Ees a:e a f]lt (r)1f
interpretation of local frequencies. The process defined b}/r?ég(ula);it?/npatra?ngtuen; igrﬂ'{; ?i?c panel indicates the value of the
Eq. (18) is self-dual the dual process is statistically identical '
to the original one. In physical dimensional un{ts), this
invariance holds up to a global rescaling of the axis. Figure Bcopic properties. This classification is expected to be rel-
shows that this is indeed a property of the measured data: tfvant for sensory neurons that are driven by simple stimula-
cumulative distributions of intervals and inverse intervals arelion, and for which firing is basically related to an oscillator.
very similar when plotted in dimensionless units. Properties of neurons in a highly connected network with
The derivation of the interval density presented above ignany reentrant connections, as well as spontaneous firing in
independent of many microscopic details of the neuron anghany cases, are expected to be qualitatively different from
of the noise, and it is therefore expected to describe correctifhose described here.
the behavior of many different systems. Figure 3 shows a
comparison of the interval distributiofd6) with experimen-
tal data measured from different parts of the visual system in
several organisms. Figurgd3 shows data measured in our A generalization of the interval distribution is tisealed
experiment on the motion sensitive neutdd in the visual  interval distribution of order kdefined as the distribution of
system of the blowfly. In this experiment, the fly watched aintervals between pairs of spikes that have exa&tyl
random pattern of dark and light bars moving at a constanother spikes in between them. In their landmark paper, Ger-
velocity of ~0.16°/sec. The best fit to the data was foundstein and Mandelbrdtl7] observed that the scaled interval
with an irregularity parameter ofy=0.1. Figure 8o) is  distributions of low orders in spike trains from the cat co-
adapted from data published by Robson and Ti@§]. In  chlear nucleus have a similar shape. This observation moti-
this experiment, a stationary sinusoidal grating was prevated them to suggest the random walk model for the mem-
sented to an anesthetized cat, and spikes were recorded frdirane voltage. In our model, we can calculate the scaled
neurons in the retina. The particular neuron these data weisterval distribution directly: it is the distribution of times for
recorded from was identified as &@*type” neuron, charac- which ®(t)=k,
terized by regular spiking; consistent with this observation,
the best fit of Eq(16) was obtained withy=0.015. Figure
3(c) shows data measured from isolated goldfish retina by
Levine and Shefnef21] in darkness. These data are well
described by Eq(16) with y=0.1. Figure 8d) contains
steady discharge measured by Troy and [282 from retinal  In this notation, the interval distribution of E@16) is the
cells of an anesthetized monkey. This interval density is thecaled distribution of order 1. Figure(a} shows the first
best fit with y=0.38. three scaled interval distributions, as measured experimen-
These data indicate that the classification of spike trainsally, together with Eq(23). The two fitting parameters of
according to the irregularity parametgiis a useful one, and the theory, the average rateand the diffusion constari,
can be applied to many systems with very different micro-are fitted once for all three graphs. According to the obser-

B. Scaled interval distributions

1
F(t) = > 1+erf (23

rt—k
)
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FIG. 4. (a) Scaled interval distributions of ordeks=1,2,3, rep- 40
resenting the probability of finding a pair of spikes at a given time 0 40 20 0 20 40 0 40 —20 0 20 40
interval, with exactlyk—1 spikes in between. Data frol1 are t (ms) t (ms)
shown in gray dotted lines, while the theoretical valke. (23)] is
shown in a solid black line. Fitting parameters of the theory30/s FIG. 5. Conditional rate for the spike train in experiments with

andD =3/s, are fitted once for all three curveb) Scaled interval 3 constant velocity stimulus. Data are shown by a gray histogram,
diStributionS in dimensionless tlme Units, measured fﬂdll’l In Ca'cu'ated direct'y from the Spike times by binning them into 4-ms
agreement with E(24), these curves are similar but have slightly pins. Theoretical expressidiEq. (27)] is shown by a solid black
different slopes, corresponding to an effective valueDofwhich |ine. The four parts of the figure correspond to different values of
depends ok. The curves cross at/k=1, as predicted by Eq24).  tne constant velocity stimulus: 0.7, 2.6°/s(b), 10.5°/s(c), and
42.2°/s (d). As the motion signal becomes stronger, the average
firing rate increases and the irregularity parameter decre@ases
vation of Gerstein and Mandelbrot, these curves should havgiso Fig. 6.
the same shape after rescaling the time axis to dimensionless
unitsrt/k. Figure 3b) shows the scaled interval distributions
in dimensionless time units. These curves have a simil
shape, but do not quite overlap. As is seen from&8), the
transformationt—t/k gives a function of the same general
form, but with a different value oD. Thus the family of
curves F(t) with parameters r(D) obey the following
equation:

It is convenient to think about the probability per unit time of
afinding a spike at time+ 0, conditional on the event that a
spike is found at timgé=0. This quantityR(t) is propor-
tional to the correlation function far#0, and is called the
conditional rate:

FIO/k) = FIoM), (24 R®= 2 PL(th=RE(0. (27)

where the superscripts denote the dependence on the param-

eters. In Fig. 4b), it is clearly seen that the steepness of they, this sum, the term labelddis the probability per unit time
curve increases with increasikgconsistent with a decrease g, finding a pair of spikes separated by a titmeith exactly
in the diffusion constanD. The pointrt/k=1 is where the (k1) gpikes in between. These independent events, when
distributions cross, in agreement with the theoretical equagqded together, give the total probability per unit time to find
tion (24). a pair of spikes separated by a timeregardless of how
many spikes appeared in between them, which is just the
C. Correlation function conditional rate. For smak, the individual densitie®{"")

An important statistical property of the spike train is its &€ harrow and their peaks can be resolved; their width
(autoy correlation function (p(t)p(0)). Whereas many 9rows aDk/r and eventually they overlap_. 'Thus the number
models have been used to calculate the interval density, le§$ Peaks that can be resolved in the conditional (tte sum
attention has been paid to the correlation functigg]. In ~ ©Of these densitigss PFDODOY'C_IODal to the degree of regularity,
Appendix B we derive the correlation function under thel/y. The nO_'[aUO”REJ' )(t_) is introduced to emphasize that
assumption that the noise correlation timgs much shorter ~ this is a universal function, valid under constant stimulus,

than the typical interval between spikes.1The result is independent of the details of the neuronal respdisg and
of the noise. Figure 5 shows the conditional rates for experi-

ments with constant velocity, together with the best fit to Eq.
(p()p(0))=ra(t) + rgo PEP(t)), (25 (27). The constant value of the velocity stimulsincreased
among partga)—(d) of the figure; the average firing rate
where P(kr,D)(t) are the densities derived from the scalegincreases and the irregula_lr_ity decreases. This is due to
interval distributions of Eq(23), _refracto_ry effects: as the _fmng rate increases, the repulsive
interaction among the spikes becomes more important, and
the spike train becomes more stiff, causing a more regular

p(kf’D)(t):EF(kr,D)(t):ﬂ e(t=k?20t (oG behavior. The form of the repulsive interaction and the cor-
dt V8mDt? relation function, however, remain the same.
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D. Number variance

The random variabl&l(t) counts the number of spikes in
the time window{ 0:t]. Defined by

t
N(t) = fp(t’)dt’, (28)

0

it provides a useful, less detailed, characterization of the
spike train point process. To study the statistics of this vari-

able, we write it as

o)

N(t) =D, O(D(t)—k)=Int(d(t)),

k=1

(29

where Intfy) is the integer part of. We can write its Fourier
representation using the identity24], 1.441, p. 4%

sin(2mTmx) _(7T—X)

X<
o 2,0X27T

(30

3
>
m=1

and expanding it to the fractional partxfmod 27), for all
X. The result is

1 .
N)=D(t)+ = — ¢+ 2 gl 2P +1-¢]

2 m+#0 27T|m

(31

where ¢ is uniformly distributed orf 0,1], accounting for a
random position of the first spike in a windgqaee Appendix
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+
(®) ;' Poisson

FIG. 6. Number variance as a function of number meai.
Scatter plots of variances, as calculated in different time windows in
the experiment. Data are shown from two experiments, with con-
stant velocities of 0.054°/s and 0.162°/s. Solid lines indicate the
average value of the variance for a given mgah.Comparison to
theory: the average value at each number mean is compared to the
theoretic formuld Eq. (33)], which is shown by a solid black line.

In this experiment, the velocity was 0.162°/s.

stant in the number variable ig implying again its role as
an irregularity parameter: the more stochastic the point pro-
cess, the faster is the diffusion in the number variance. Simi-
lar to Fig. 4, a higher constant signal induces a higher firing
rate and a lower irregularity of the spike train. Although the
data presented here haye<1, this is not a fundamental
property of the theory, and in general can take on also
values larger than 1, resulting in a “super-Poisson” behavior.

E. Irregularity and stiffness of spike trains

We have presented a statistical theory for a frequency

C). The number mean iéN(t))=rt and around this mean integrator model under constant stimulation and short-range
N(t) fluctuates. Since the correlation function of spikes is ofcorrelated noise. This results in a renewal point process, with
finite range, the long-time asymptotic behavior of the num-the density of intervals given by E@16). This process is

ber variance is diffusiveo?=(sN?(t))~Dt [1]. It is of

characterized by a mean ratend an irregularity parameter

interest, however, to derive a complete expression for this,=D/r, which depends both on the variance of the noise
quantity also for short times, where correlations betweerand on the sensitivity of the frequency response to noise; it is

spikes are important. Using E@Y), it is shown in Appendix
C that

1
a’ﬁ,IDH- E

[1-cog 2mmrt)e 27 mDt],
m=1 (7rm)

(32

2

the depth of frequency modulation, resulting from these two
effects, that determines the irregularity of the process. This
family of processes can describe many different spike trains,
ranging from almost periodic to almost Poisson.

Our experimental data indicate that the two model param-
etersr and y are not independent. Figure 7 shows a plot of
the different values ofy obtained by fitting to the equations

Written as function of the number mean, i.e., as a function ofn this section, for two sets of experiments. The irregularity

the dimensionless time variable=rt, the number variance
is

1
(mm)?

[1-cog2mmx)e 27 M »],

(33

oR = Y+ 2
m=1

decreases roughly linearly with the firing rate, with a satura-
tion at very high firing rate. This is the limit where the ab-
solute refractory period is approached. The simple relation
betweeny andr holds only for the case of constant stimuli,
where frequency modulations are essentially induced by
noise. When these modulations are affected also by a time
varying sensory stimulus, a very different behavior is found

Figure 6 shows the number variance as a function of théSee the following section
number mean, as calculated from experiments with constant

velocity stimuli. Part(a) shows a scatter plot of the values
obtained in various windows in the experiments, with a line

showing the average. Pdti) of the figure shows a detailed

view of one such average plot, with the theoretical prediction

IV. STATISTICAL PROPERTIES: STIMULUS
DEPENDENT REGIME

In the preceding section, we considered the case of a con-

Eqg. (33) in a solid black line. The number variance of a stant input signals(t)=s. More generally, signals coming
Poisson process is shown for comparison. The diffusion coninto the system have a temporal and spatial structure. The
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l d T p i tivity of H1, a property that is shared by other neurons as
° well. Although the velocity stimulus on the screen varies
0.10 } - rapidly in this experimentevery 2 ms an independent value
is chosei the “spiking” and “quiet” regions in the spike
- e A trains have a much slower typical time scale. This results
0.08 i from intermediate processing: the velocity on the screen is
° not identical to the effective stimulus driving the cell, since it
is filtered by the photoreceptors and other elements in the
visual pathway.
0.04 . . . . , To describe the phenomenon of spiking regions and quiet
“To0 40 60 80 100 120 regions, we approximate the spike train to be muIt|p_I|eq by a
r (spikes/s) telegraph signal, which keeps track of the algebraic sign of

the effective stimulus:
the average firing rate. The different symbols correspond to two

p(t)=~p3(t)p&(1), (34)
different ex_peri_ments, each performed with a different set of coNy here pE(t)=®[S(t)] is the telegraphic envelope of the
stant velocity signals.

spike train. Figure 8 shows an illustration of the telegraph

effect of input correlations on the output of model neuronss'gnal’ which demonstrates that the time scale of the effec-

has recently received some theoretical intef25t-27. Here tive stimulus sign change is longer than the typical spike

we consider the behavior of our model in the case where thgme, 1t . . - .
Assuming that the telegraph envelope is statistically inde-

Goendent of the short-time structure in the spike train, one
may write the correlation function as a product,

0.06

>
&
>

FIG. 7. Dimensionless irregularity parameteas a function of

slower modulations will appear on longer times. In the visual

system, such time scale separation can be induced by filter- —(nS(1) S E 1) E
ing mechanisms that act on incoming signals. In this section (p(Dp(0))={p V)P 0)p=(1)p=(0))
we show that the conditional rate can be approximated by a ~{p>(t)pS(0)}{pE(t)pE(0)). (35

product of the universal function E(R7) and a slowly vary-

ing envelope reflecting the temporal correlations of the inputNow brackets(- - -) denote averaging over both the noise
signal. This envelope is calculated for some simple cases. #nd the random stimulus. To perform the averages, we use
is shown that the theory fits the data very well, even wherthe separation of time scales: let us divide the time axis into
the time scale separation required in theory is only marginblocks of sizer, the correlation time of the effective stimu-

ally satisfied by the experimental conditions. lus. Performing first the average over the noise in each block
separately, the first term in the product gives the correlation
A. The telegraph approximation function of Eq.(25), with the parameters,D determined by

. . . . the local val .
Consider a random input signg(t) that can take on posi- the local value of

tive as well as negative values. Figure 8 shows a segment of r(s)RIG PO (1), >0
some spike trains recorded frokil in response to such a (pS(1)pS(0))~ v ’ (36)
stimulus, which was repeated many times. The most striking 0, s<0

effect in the figure is the existence of wide regions with _
spikes, and wide regions which are empty: the typical timgor t#0. If the response is saturateds)~r@(s) and the

for these regions is much larger than the interspike time. Thifing rate does not change much inside each spiking region.

partition into regions is a consequence of the direction selecl is condition is met in experiments where the signal-to-
noise ratio is high and the firing rate is lar¢gee experi-

ments below Because of the above assumptions about the
response, the diffusion constadtis determined mainly by
the properties of the noise and is expected to be similar in all
the spiking regions. Therefore, on averaging the first term
overs, one hag aR{|"®), wherea is the coverage fraction,
defined as the fraction of time in which the stimulus is posi-
0 05 1 tive [(p5(t))=a]. _ _ .
t(s) The second term in the produ@5) is a correlation func-
tion of the input signal as seen through the telegraphic enve-
FIG. 8. Response of thd1 neuron to repeated presentations of lope:

a time-dependent stimulus. Each line shows the response to one of
the presentations, with the origis- 0 corresponding to the onset of (pE(1)pE(0))=(O[s(1)]0[s(0)]). (37
the stimulus; each dot represents a spike. The black solid line is an
illustration of the telegraphic envelope that multiplies the spikeSpecial care should be taken around the poiD. The
train due to the strong direction selectivity of the neuron. whole correlation function then takes the form

Trial No.
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(p(Op(0))=rad(t) + raR{ (1) (B[s(1)]O[s(0)]), ~
(38 @
£ 200
and the conditional rate is @
=Z 0
R(1)=R*(O[s(1)]O[s(0)]). @y
_ - 100
This formula expresses the conditional rate as a product o
two terms. The first term reflects internal properties of the 50
noise and of the neuron, similar to the result of the preceding 0
section;Ry, is parametrized by an effective rateand diffu- -20 0 20 -100 0 100

sion constanD. This function has an oscillatory structure on t (ms) t (ms)

a time scale I, defining theuniversal regimeof the con-

ditional rate in which temporal properties of the inputs do FIG. 9. Conditional rates for spike trains in the short-time and

not have an important effect. The second term contains inlong-time regimes. Datégray histogram are measured in experi-

formation about the statistics of the incoming stimulus, agnents where the visual stimulus was a pattern of light and dark bars

seen through the nonlinear response of the neuron. It modlﬁnovin_g with a rando_m time-dependent velocity. The velocity signal

lates the universal function with a slower structure. Intu-has different bandwidths, of 20 Ha),(b) and 500 Hz(c),(d). The

itively, the condition of time scale separation can be undertheoretic formula of Eq(42) is presented as a solid black line.

stood as follows: on short time$=1/D, the envelope is

almost constant and the oscillations of the universal part are p(A)= ie*A”‘ (41)

visible. As these oscillations decay, on times1/D, the '

stimulus induced structure sets in. The independence be-

tween the two factors affecting the probability of finding a the correlation function is also exponential,

spike at timet given a spike at time O results in a product ,

form. (PE(1)pE(t))=a’+ ape "1k, (42
Equation(38) indicates that in the telegraph approxima- _ .

tion, the envelope of the correlation function depends on thd N€ €xponential decay of the envelope, £42), gives a

statistics of the zero crossings of the stimulus. These s:tatiélo_Od fit to many of the meas_ured datasets. It has addl_tlonal
tics for a random continuous function are, in general, veryiting parametersr and u, which are the coverage fraction

difficult to calculate[28]. Here we need only the correlation and average length of the positive regions in the telegraph

function of the algebraic sign of a random signal, and weSnVvelope of the spike train. It uses no prior knowledge of the
input stimulus, and relies primarily on the direction selectiv-

proceed in two ways. In the following section we consider, . X !
the case in which zero crossings are independent and tH¥ Of the response. Figure 9 shows the correlation function
resulting correlation function is a simple exponential. An-Ccalculated from spike trains in two experiments with random
other simplification occurs if the incoming stimulus has Signais of 20 HZ(a), (b)] and 500 HZ(c), (d)] bandwidth.
Gaussian statistics, and in this case one may derive an exdefihough in these experiment we know the properties of the
formula for the correlation function of the nonlinear rate. visual stimulus presented to the fly, this stimulus is rapid, and
preprocessing takes place in earlier stages of the visual path-

way; the effective signal entering th€l neuron is therefore
B. Random independent spiking regions a filtered and probably distorted version of the motion on the
Let us first assume that the spiking regions occupy ranscreen. Therefore, we try the simple picture of the telegraph
dom independent positions along the time axis, with length@Pproximation, rather than rely on the detailed properties of
A drawn independent'y from some distribution_ Th|s is athe ViSUaI Stimulus. The bIaCk Solid Iine in F|g 9 iS a flt toa
crude approximation that may not be justified for many ex-Product of the universal function and the envelope correla-
perimental conditions. However, it is the simplest type oftion in the telegraph approximation, E@2). The time scale
telegraphic signal, and is characterized by a small number d¥f the exponential decay jg~50 ms for the slower varying
parameters; therefore we use this approximation as a startirf§imulus andu~20 ms for the faster varying one. In the
point. The correlation function of such a telegraph signal iscase of the fast stimulus, the correlation is probably limited
derived in Appendix D, and the result is by the filtering processes in the visual system, thus indicating
that the time scale for these processes ) ms. This is on
£ B a (= , the order of the behavioral time scale for changes in flight
(p=(t)p=(t ))=;Jt_t,p(A)(A—|t—t DA, (400 course in these flies, found by Land and Col[@$] to be
~30 ms.

wherep(A) is the distribution of lengths of positive regions
in the telegraph signal and is the average length of such a
positive region. For the case of an exponential distribution of If the incoming random signal is drawn from a Gaussian
positive regions, distribution, one may calculate exactly the correlation func-

C. A Gaussian input signal
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—~ 300 : 200
(2]
2 @ (b)
~ 200 o
g g 100
< 400 3
g 3
20 0 20 -200 0 200 = 0
t (ms) t (ms) 9,
FIG. 10. Conditional rate for spike trains in the short-time and =
long-time regimes. Datégray histogram are measured in experi- , |

ments where the visual stimulus was a pattern of light and dark bars 0.0 0.5 1.0
moving with a random time-dependent velocity, which is very slow
and has a Gaussian distribution. The theoretic formula of4.is t (sec)

presented as a solid black line. . ) .
FIG. 11. Stimulus and average response for a sine wave experi-

ment. A random pattern of dark and light horizontal lines was

tion of a nonlinear responsg(s). We focus on the simple r%oved by a sine wave velocitgolid black ling, and this stimulus

case where the response is a step function at zero and t .

stimulus has zero mean. corresnonding to a coverage fractioWas repeatedly presented to the fly. The average firing rate was

f a=1/2. In thi ! P 9 9 Liculated over the repeated presentations as a function of time

of a= - In IS case, (circles. The response of the neuron is not saturated, and it follows
closely the positive part of the sine wave stimullGompare the

(O[s(1)]10[s(0)]) = %"‘ %arcsirﬂc(t)ﬂ, (43)  saturated response in Figal |

where c(t)=(S()s(0)) is the correlation functon of the °( 0 U, 8 PRCETILES Y R e e
(_E-au53|an.S|gnaI. In principle, one may calculate the COrrelat'udes and periods; Fig. 11 shows the firing rate averaged over
tion funcuon of a general nonllnear_ TeSPO’?S.(eS) in the ., hoise, together with the stimulus, for one such experiment.
Gaussian case, but for our purposes it is sufficient to consid or a sine wave stimulus of frequenéy, a straightforward

the step response. We expect that in an experiment where tr&gl culation yields '

driving stimulus varies slowly, the effect of intermediate fil-

ters will be negligible and one can take the motion on the 1 1
screen to be essentially equivalent to the stimusii$ driv- (r[s(t)]r[s(0)])= _00$Q|t|)[2_|t| + ——sin(QJt]).
ing the neuron. Figure 10 shows the correlation function 2 Q 2Q) 46)

measured from an experiment where the input signal was a
slowly varying random function of time, with a Gaussian )
distribution. The correlation function as calculated from the!f We use our knowledge about the frequency of the input

data is shown as a gray histogram, whereas the solid bm&gnal, we can qbtain a.d_escription of the conditional rate
line is given by with only the universal fitting parametersand D, and no

additional parameters for the envelope. Figure 12 shows two

R(r)=R{:P) l+ iarcsirﬁ|c(t)|] (49 200
U 14 27 ’

(aj (b)

where c(t) was taken from the known distribution of the _ 100
input signal. The two fitting parameters arerelated to the - j
global firing rate, andD, the diffusion constant in the univer- £
sal regime. g 0
— 200
_ 3 o = (c) (d)
D. Linear rectifier approximation 100 |
In analogy with Eq(39), one expects that if the nonlinear
response of the neuron i$-), the conditional rate will take 0
the form 20 0 20 -500 0 500
t (ms) t (ms)

R(t)~R{P(r[s(t)Ir[s(0)]), (45)
) . . . FIG. 12. Conditional rates for spike trains in the short-time and

Wherer(s_)z(p(s)> is the firing rate as a function of stimu- |5ng-time regimes. Datégray histogramsare measured in an ex-
lus, obtained by averaging over noise ofee Eq(11)]. I periment where a pattern of dark and light bars was moved hori-
andD are some effective global parameters representing agontally with a sine wave velocity, with periods of 0.2%a(b) and
average over different regions whesés almost constant. In 0.5 s(c),(d). Theory (black solid line$ is obtained from Eq(45),
this section we present results from experiments where thgith the fitting parameters andD, and using the known frequency
stimulus is relatively weak, the response is far from saturaef the stimulus.
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UL R r one dimensional parameter describing the short-time behav-
random ior: the irregularity v. Although the correlation functions
1.0 | —— sine were measured under different experimental conditions of
time varying stimuli, the curves are approximately overlap-
i ping in the short-time regimex&2). Thus, under high
s i signal-to-noise ratio, where the frequency modulations are
mainly induced by the stimulus and not by the noise, the
system tends to fix the internal irregularity paramejeat
some preferred value. This cannot be explained by a simple
quasistatic behavior; it probably involves subtle adaptive
0.0 N M mechanisms of the neuron, which try to maximize the dy-
-3 0 3 namic range in each stimulus ensemble. This observation is
X studied in detail if16].

W, !

R(x)/R(1)

0.5

FIG. 13. Correlation functions from different experiments with V. DISCUSSION
different time varying stimuli, in dimensionless units. The overlap
at short times indicates that the parameter left after rescaling, the The statistical properties of spike trains generated by a
internal irregularity, is similar in all these cases. sensory neuron under various stimulation conditions were
studied. Experiments were performedvivo on a blowfly,

correlation functions for the sine wave experiments, in thevhere the visual stimulus was well controlled, and spike
universal[(a), (c)] and the stimulus-dependefitb), (d)] re-  trains were measured extracellularly from an identified mo-
gimes. No additional parameters of the stimulus other thafon sensor. This neuron is known to respond to wide-field
its frequency were used; the solid black curve was obtaineforizontal motion. _

from Eq. (45) with the envelope given by Eq46). The The main theoretical questions addressed were the follow-
periodic nature of the envelope is evident in the data, and thi#1g- (i) How does the statistical behavior of spike trains

theoretic prediction describes both the short-range and thévo relate to the biophysics of the spike generation mecha-
long-range features well. nism in the cellqii) How can the effects of internal proper-

ties be separated from those induced by the external sensory
stimulus (or the input to the neurgf These questions were
considered within the framework of a model, which de-

In this section, we have shown that the conditional rate ocribes the neuron as a nonlinear oscillator driven both by
the spike trains has approximately a product form. One ternmoise and by an external stimulus. In principle, the effect of
in the product is very similar to the conditional rate for a both stimulus and noise is the same: to cause frequency
constant stimulus and describes the behavior on short timesodulations in the oscillator. We considered here the case
This term isuniversalin the sense that it depends on only where the noise and the stimulus are very different in their
two simple parameters, the global average rate and the intetemporal characteristics, namely, the noise is rapid and the
nal irregularity of firing. The other term carries information stimulus is slow compared to the time scales typical of the
about temporal correlations in the stimulus and is a long-timespiking. This separation of time scales enables the theoretic
envelope over the universal term. We have shown how thisinalysis of the model, which in turn provides an understand-
envelope can be calculated in several cases, giving a veipg of how the different factors are reflected in the statistical
good fit of the data. properties of the spike trains.

A naive quasistatic application of the universal theory It was found that on the time scale of a few spikes, sta-
would tell us that the short-time behavior is characterized byistical behavior is rather universal, namely, they are robust
local values of the parametersD, and that these change with respect to the details of the noise and of the nonlinear
slowly as the external stimulus varies slowly. This seemw®scillator. The spike train can be described by a renewal
inconsistent with the short-time behavior exhibited by theprocess, which has special symmetry properties reflecting the
data[Figs. 8a), 10@), and 1@c)]. If the parameters would underlying oscillator. It is characterized by one dimension-
change with the local changes of the external stimulus, théess parameter representing the internal degree of irregularity
oscillatory structure defined by a period ofvould be con-  of the process. This model interpolates between regular and
siderably washed out when averaged over the different valstochastic point processes, and provides a convenient param-
ues ofs. The data, however, show pronounced oscillationsetrization that is useful for classifying spike trains.
with a well defined period. This is consistent with the notion  Biophysically, the universal short-time regime is the re-
that in a changing environment, the system achieves a steag@yme where refractory effects dominate. These are here de-
state with the distribution as a whole, thus obtaining globalscribed as an effective repulsive interaction among spikes,
values for the statistical parameters of its firing. which is characterized by the parameterRather than hav-

Further evidence for this picture is given by Fig. 13,ing an absolute time scale, we find that the interaction is
where three measured correlation functions are plotted iadjustable and adaptive to external conditions.
normalized time units, and are normalized by the height of On the time scale of many spikes, effects of the sensory
the first peak. After rescaling of the two axes, there is onlystimulus become important and are reflected in the form of a

E. Irregularity and stimulus properties
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slowly varying envelope which modulates the universal

1 C—N
function. Using only simple features of the nonlinear neu- =5 1+erf —/: , (A3)
ronal response, the theory provides quantitative predictions VZ2No

for the statistical properties, which are in very good agree- .2 _

ment with our data on long time scales. The dominant effecyvhere erf)=(2/m)[oe™" dt. Now defineN, to be the

which comes into play is the direction selectivity of the neu-number of steps reguwed to first reach the barrier. Then from

ron, a property shared by many other sensory neurons; therf€ non-negativity it follows that

;ci)trl:eativxgensexpect this description to be useful also in other Prob{ Xy < C} = Prot{N, =N} = 1 — ProtfN,<NJ.
Justification for assuming a separation of time scales be- (A4)

tween noise and stimulus comes from the fact that signals ihere are some normalization subtleties here, but let us sup-
the visual system are filtered, and therefore the effective sighose that the sample space is composed of trajectories with a
nals reaching an interneuron are relatively slow. As often iginite number of stepsv, which is much larger than the

the case in Comparing theory with eXperiment, we found thaiypma] number needed to cross threshold. Then,
the agreement of the theoretical predictions with the data

extend to a regime where the required separation of time 1 Nu—C
scales is only marginally satisfied by the experimental con- ProN;<N}=7| 1+ erf > (AS5)
ditions. V2Nor
The understanding of how the stimulus is reflected in the
statistical properties of the spike train could be used “back- APPENDIX B

wards:” in cases where little is known about the stimulus, In this appendix, we derive Eq25) starting from the
analysis of the long-time behavior of the correlation functiondefinition '

can give us information about the time scales involved in this

stimulus, with only a gross description of the neural response

(e.g., direction selectivity, degree of saturajidPossibly this (p(t)p(0))= < E S(P(t)—k)o(P(0)—1)
understanding can be extended to cross correlation between kil

several neurons; in that case the separation between o

stimulus-induced and internal properties will be important in ><<I>(t)<1>(0)>. (B1)
assessing the connections between the neurons. This is a sub-

ject for future research. The term att=0 must be taken care of separately: it corre-

sponds tk=k’,
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o(t) . :
=D { 8(D(t)—K)—D(t)d(0)
APPENDIX A k D(t)

In this appendix we show that for a unidirectional random _ .
walk, the density of times between barrier crossings is given - 5(t)2k (8@ (1) —k)D(1))
by Eg. (18), in the limit where many steps are needed to
cross the barrier. =rd(t), (B2)

We consider the discrete case. ixebe non-negative ran- ) )
dom variables X;=0), identically distributed and indepen- @s expected for a point process of average ratéor times

dent, with(x)=u and(x2)=¢?. Define the random vari- t#0, we calculate the conditional raR{t), the probability
able of their sum as of firing at some timet given a spike at time 0:

. d
. R()=2 (8@(1)— k)b (1)= 2 S(O(®(1)-k).
XN:Zl X; . (Al) k#0 k#0 (83)

Using the integral representation of the theta function, we
Let C be a constant positive number, then for large endigh write
one has from the central limit theorem,

d (- d : .
R(t)= 2 _J p e*l2'n’k<el2ﬂ'<1>(t)>. (B4)
ProgXy<C}= —f expp ——— , o
J27NG?2) - 2No? As before, we use the Gaussian approximationdf¢t), Eq.

(A2) (8), which is justified for timeg satisfying r,<t:
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o 2 _ 2
R(t):kEO %f ;T_?pemwp(rt—k)—brzpzm ON <5N(t) >
i - =(0D(1)*)+((5 — @)?)+2(6P(1) (3 —¢))

2mwpy— 2w2p2Dt
& dtJ:oodpJ dye (B5)

1
+<2(%—(,D) m [|27Tm[I>(t)+1 @]

wherev=rt—Kk. Doing first the integratlp, we find 1

d(r» d m’'#0 (277i)2mm’
R(t)zz _ y e—y2/2Dt m.m

k7o dt) 24Dt (C4)
d
=, i 2

<ei2w(m+m’)[<l>(t)+1—<p]>_

By Eq. (9), (6D (t)?)=Dt; averaging the second term over
+cons ¢ givesss. Due to the independence gfand®(t), the first
cross term vanishes while the second cross term decouples

14
v
( J/2Dt

into
—r t+kir (rt—k)zlzml (B6)
&b J8aDE . .
_ 27im[P(t) +1] —2mime
250 S (e Y pe ). (CH
APPENDIX C

Performing the average over,
Here we discuss the properties of the number variable

which counts the number of spikes in the windpvt]. One , d 1 , -1

must specify how the poirtt=0 is chosen, and there are two (pe™12mMme) = m(e_zmmw> = omm
natural choices{i) start counting at a spike an@di) start K )
counting at a random point in the spike train. The second

ch_0|ce of a (andom origin is the_ more com_r_nonly u_sed. IN3nd we have for the second cross term
this case, it is convenient to define an auxiliary variaple

=®d(t,), the phase of the integratdr(t) at the time of the * 1
first spike in the window. This variable is uniformly distrib- 5 cos{zqrmrt)e‘zﬂzmzm, (C?
uted in[0:1], and with this we have m=1 (7rm)
N(t)=In[D(t)+1— ¢] where the Gaussian approximation was used when averaging

over ®(t). In the last double sum of EqC4), all terms
vanish by averaging ovep except for the termsn+m’

o] 1 .
=P(t)+1— <p+mZ:1 —sin2am{®(t) + 1 ¢}] =0, which gives

1 v L2 9
2 m70 (27m)2 127

Note that the constant 3 ensures thaN(0)=0. Sincee Adding the terms together we find

only depends on the ch0|ce of origin, it is independent of
d(t), and therefore 1 -

=Dt+ g+ E p— 5 cog2mmrt)e” 27 P,
) =1 (mm
(N(t)= <<I><t>>+——<<p> 2, 2mm< e2mmie () r1el) (C9

which is the same as E¢32).

_ [i2am[®(t) + 1]\ / o= i27Me\ _
rtwLn;0 S (e NG y=rt.
APPENDIX D
(C2) : : . .
In this appendix we derive Eq42) for the correlation

Now to calculate the number variance we define the fluctuafunction of the envelope of the spike train in the telegraph
tion approximation. The enveloge(t) is composed of a train of
characteristic window functions,

SN(t)= 6D (1) + %—

QD) + E 1 eiZWm[¢(t)+l—<p]

mz0 2im E _ T
# 3 (p=(1)) Ek x| Tk

A
k k
71Tk+_

5 (D1)

and average its square: This function has a Fourier transform
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W)= | pwe (pE(D)PE(0)) = (Bu)?+ B f:pm)dA
LN aier SiN@AW2) » do sif(wAl2)
e am A, (02 Xfwﬁ(w/—zy L 09

where T, denote the middle points of the positive signal

regions. These positive regions are assumed to be distributdde last term in this expression is the Fourier transform of a
over the time axis independently with a dens@typer unit ~ product of two sine functions, which is the convolution of
time, and with an average length 6A)= . Averaging in  two square windows. This convolution has the form

the frequency domain gives

. 0 [t|>A
(sif(wA/2)) * = ’
(@)D= 4 (Bu)28(w). (DY) XX=\ Al Jt|=a, (b3)
(wl2)
In the time domain this expression transforms to which is equivalent to Eq40).
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