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Statistical properties of spike trains: Universal and stimulus-dependent aspects
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Statistical properties of spike trains measured from a sensory neuronin vivo are studied experimentally and
theoretically. Experiments are performed on an identified neuron in the visual system of the blowfly. It is
shown that the spike trains exhibit universal behavior over a short time, modulated by a stimulus-dependent
envelope over a long time. A model of the neuron as a nonlinear oscillator driven by noise and by an external
stimulus is suggested to account for these results. In the short-time universal regime, the main biophysical
effect is refractoriness, which can be described as a repulsive ( 1/x) interaction law among spikes. A universal
distribution function for intervals is found, defining a point process with special symmetry properties. The
long-time modulations in the spike train are related in a simple way to the properties of the input stimulus as
seen through the neuronal nonlinearity. Thus our model enables a separation of the effects of internal neuronal
properties from the effect of external stimulus properties. Explicit formulas are derived for different statistical
properties, which are in very good agreement with the data in both the universal and the stimulus-dependent
regimes.
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I. INTRODUCTION

Many cells in the nervous system respond to stimulat
by generating action potentials~spikes!. Time sequences o
these spikes are the basis for encoding information and
communication between neurons@1#. A pattern of spikes
across time contains the message being encoded, the s
ture of the biophysical spike generation mechanism, and
the noise in the neuron and its environment@2#. These factors
are generally interrelated in a complicated way, and it is
clear how to disentangle their effect on the measured s
train.

The biophysical mechanism for generating action pot
tials is quite universal, and was first described successf
by Hodgkin and Huxley@3#. Their description accounted fo
the stereotyped shape of an action potential, which is a
bust property, largely independent of external conditio
The Hodgkin-Huxley model describes the neuron as a c
plex dynamical system; sustained firing~a continuous train
of spikes! comes about when the dynamical system is driv
into an oscillatory mode. This picture is consistent with e
periments on isolated neurons: many of these tend to
periodic spike trains in response to direct current injecti
implying an oscillatorlike behavior. The frequency of the
trains is deterministically related to the strength of the
plied current Adrian@4# suggested long ago that this proper
could be used to code the strength of the input. Differ
neurons vary in the shape of the response function rela
frequency to input. Following Hodgkin and Huxley, man

*Present address: Department of Chemical Engineering, T
nion, Haifa 32000, Israel.

†Present address: Department of Physics, Princeton Univer
Princeton, NJ 08544.

‡Present address: Department of Molecular Biology, Prince
University, Princeton, NJ 08544.
1063-651X/2002/66~3!/031907~14!/$20.00 66 0319
n

or

na-
of

t
e

-
ly

o-
.
-

n
-
re
,

-

t
g

microscopic models of the neuron were constructed in
same spirit@2#. One aim of this type of modeling is to pro
duce the different frequency-current (f /I ) response curves
by fitting model parameters.

Spike trains measured from sensory neuronsin vivo, how-
ever, show a very different behavior: many neurons seem
fire stochastically, even when external conditions are h
fixed. This fact initiated what seems to be an unrelated l
of research: that of describing spike trains by models of s
chastic processes@5,6#. These models can sometimes d
scribe correctly statistical properties of the spikes trains, s
as the distribution of intervals, but in general the parame
of the models remain unrelated to physiological characte
tics of real systems@7#.

Several fundamental questions concerning the statis
properties of spike trains thus remain unresolved, despite
large literature on this subject: How is the periodic behav
of the isolated neuron to be reconciled with the more irre
lar behavior in a complex network? What is a useful char
terization of the degree of this irregularity, and how does
depend on external conditions? How sensitive are the st
tical properties to the microscopic biophysical details of t
neuron, and to the statistics of the noise? Can effects of
sensory stimulus be separated and recognized at the ou

Here we present a theory that provides some answer
the above questions, and apply it to the analysis of sp
trains measuredin vivo in a sensory neuron. We use th
notion of a frequency function to describe the neuron’s
sponse@8#, and connect it to the stochastic firing in a ne
work through the introduction of noise. Under some con
tions we find that the statistical properties of spike trains
universalon the time scale of a few spikes@9#. This means
that on this scale they are independent of the details of
internal oscillator, of the noise, and of external stimulatio
The dominant effect in this regime is the refractoriness
spike generation, which is here described by an effec
interaction potential among spikes. The functional form
the interaction is found to be universal and increases as 1x at
small distancesx; it depends on a dimensionless parame
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characterizing the internal irregularity of the point proce
On the time scale of many spikes, the universal behavio
modulated by an envelope reflecting the input stimulus,
seen through the neuronal response function. We presen
perimental data for the statistical properties of spike tra
measured from an identified motion sensor in the visual s
tem of the blowfly, under various external stimulation. The
data are shown to be very well described by the theory.

The paper is organized as follows. In Sec. II we define
model, and show how the frequency of the oscillator is
lated to the rate of the measured point process. In Sec. II
consider the statistical properties of the model, when
fluctuations in the inputs are rapid relative to the typic
interspike time 1/r . We derive explicit formulas for the sta
tistical properties of the spike train, and show that biophy
cal details affect these properties only through the irregu
ity parameter. In Sec. IV, we consider the case of
additional slow time scale in the inputs, which is mu
longer than 1/r . The conditional rate is then approximated
a product of two distinct parts: a universal part, depend
only on the irregularity parameter, and a stimulus-depend
part, which modulates it. In each section, application of
theoretic results to measurements from the fly is present

II. FREQUENCY INTEGRATOR

A sequence of spikes will be described as a train of Di
d functions:

r~ t ! 5 (
k

d~ t2tk!. ~1!

In this approximation the height and shape of the action
tentials are neglected, and all the information is containe
their arrival times: the spike train is a point process. If t
system is driven by a signals(t) and a noisen(t), both
continuous functions of time, then we can imagine that
neuron evaluates some functionalF@s(t),n(t)# and produces
a spike when this crosses a threshold:

r~ t !5(
k

d„F@s~ t8!,n~ t8!#2k…
dF
dt

. ~2!

Formula~2! describes a very general class of models: a sp
is generated whenF crosses a fixed threshold, and the pr
cess resets after spiking. The operatorF can be linear or
nonlinear, deterministic or stochastic, and can depend on
history of the signal and the noise in a complicated way@10#.
We further specify our model by the following choice ofF:

F @s~ t !,n~ t !#5 E
0

t

f @s~u!1n~u!#du [ F~ t !, ~3!

where f ()>0 is the frequency response function charact
izing the neuron. This model is related to integral frequen
pulse modulation models and to the standard integrate-
fire model@7,10,11#. The motivation for defining a determin
istic frequency response function comes from the measu
behavior of isolated neurons in response to direct cur
03190
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injection. When driven by a constant stimuluss, in the ab-
sence of noise, our model neuron generates a periodic s
train with a frequencyf (s), consistent with the behavior in
isolation. Starting from a microscopic level of modelin
many parameters need to be tuned to produce a requ
form of the f /I relation@12#. Here we use thef /I relation as
a phenomenological description of the neuron, and base
statistical theory on it. We develop the theory without spe
fying the details of this relation; it will be shown that stati
tical properties at steady state are largely independen
these details.

Now we would like to ‘‘embed’’ our model neuron in a
noisy environment, such as a complex sensory netw
while it is still subject to a constant stimuluss. In general,
there can be many noise sources in such a network: the
nals coming in from the external world are not perfect, t
sensory apparatus~such as photoreceptors! is noisy, connec-
tions between cells in the network introduce noise, and
nally the cell itself can generate noise~for example, channe
noise @13#!. We introduce noise as an additional rando
function n(t) added to the input. This simplified scheme
justified by the fact that the final results do not depend on
details of the noise distribution, thereforen(t) is understood
as an effective noise.

Retaining the notion of a local frequency, the noise cau
frequency modulations in the spike train. Under the con
tions s5const, n50 the oscillatory behavior is related t
some periodic trajectory in parameter space. Assuming
this trajectory is stable, the addition ofn(t) will cause the
system to occupy a volume in parameter space surroun
this trajectory. The phase of the oscillator will not advance
a constant ratef (s), but instead will be given by

Ḟ~ t !5 f @s1n~ t !#. ~4!

The strength of the noise and the sensitivity off (•) to
changes in the inputs both determine the frequency mod
tion depth or the amount of randomness in the phase
vancement.

The frequency function is an internal property of the ne
ron. One would like to relate it to the firing rate function
the presence of noise, which can be measured experim
tally. Considering still the case of a constants and introduc-
ing the average over noise^•••&, the average spike train is

^rs~ t !& 5 (
k

^d„F~ t !2k… Ḟ~ t !&. ~5!

Using the Poisson summation formula

(
k

d~x2k!5(
m

ei2pmx, ~6!

we can write the average spike train as
7-2
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STATISTICAL PROPERTIES OF SPIKES TRAINS: . . . PHYSICAL REVIEW E66, 031907 ~2002!
^rs~ t !& 5 (
m

^ei2pmF(t)Ḟ~ t !&

' (
m

^ei2pmF(t)&^Ḟ~ t !&. ~7!

The last approximation amounts to assuming that the n
correlation timetn is much shorter than other length scal
in the problem. Fort larger than this correlation time,F(t) is
an integral of many independent random variables, an
approximately Gaussian by the central limit theorem. Th
one can substitute the average of the exponent by the e
nent of the two first cumulants:

^ei2pmF(t)&'ei2pm^F(t)&22p2m2^dF(t)2&, ~8!

where ^dF(t)2&5^F(t)2&2^F(t)&2. The first two cumu-
lants ofF(t) are

^F~ t !&5E
0

t

dt8^ f @s1n~ t8!#&5rt , ~9!

^dF~ t !2&5E
0

tE
0

t

dt8dt9^d f @s1n~ t8!#d f @s1n~ t9!#&.

But f is correlated only over a short time, on the order oftn ,
and therefore the double integral can be approximated b

^dF~ t !2&'E
0

t

d t̄E
2`

`

dz^d f „s1n~ t̄ 1z/2!…

3d f „s1n~ t̄ 2z/2!…&

'Dt, ~10!

with D5tn^d f 2&. Using Eq.~8! in Eq. ~7!, and taking the
time t arbitrarily large so that only the termm50 survives,
we find

^r~s!&5^ f ~s1n!&5@ f * N#~s!, ~11!

where* denotes convolution andN is the distribution func-
tion of the noise at a given point of time. For a stationa
noise distribution, this implies that the average firing rate
a function of signals has the form off (s) smeared by the
noise. This result is independent of the exact form of
function f or of the noise distribution. It relates thef /I curve
to a measurable quantity, an average firing rate; in this m
sured quantity some of the fine details off may be smeared
by the noise.

In order to compare to data, we must now identify t
stimuluss(t) in the experiment. If the neuron is isolated in
dish and current is injected directly into the cell, thens(t)
should be naturally identified with this current. In expe
ments with an intact sensory system one would like to c
nects(t) with the external stimulus. In the following discus
sion we will use as our test case the visual system of
blowfly. In our experiment, a live immobilized fly view
various visual stimuli, chosen to excite the response of
cell H1. This large neuron is located several layers ba
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from the eyes, and receives input through connections
many other cells. It is identified as a motion detector,
sponding optimally to wide-field rigid horizontal motion
with strong direction selectivity@14#. The fly watches a
screen with a random pattern of vertical dark and light ba
moving horizontally with a velocitys(t). We record the elec-
tric signal of H1 extracellularly and register a sequence
spike timings$tk% @15#.

An advantage of this system is that we have empiri
knowledge of what stimulus feature is relevant to this cell
responds to wide-field motion in the horizontal directio
Thus we may identify the input to the cell directly with
one-dimensional external signal, the motion of the pattern
the screen. Figure 1 shows the firing rate averaged o
many presentations of the same stimulus, both as a func
of time @Fig. 1~a!# and as a function of the instantaneo
value of s(t) @Fig. 1~b!#. If the velocity on the screen is
slowly varying in time, the firing rate ofH1 follows this
velocity closely: Fig. 1~a! shows the time-dependent firin
rate r (t)5^r@s(t)#& of H1 in response to a random signa
Since the signal varies very slowly, one may use Eq.~11!
locally, and if we plot the firing rate as a function of th
instantaneous value ofs, we see the smoothed response fun
tion f (s) @Fig. 1~b!#. If the signal varies rapidly, filtering
mechanisms at early stages of the visual pathway bec
important, ands(t), which directly drives the cell, is a modi
fied version of the velocity on the screen. In this case, i
more difficult to map out directly the response curve@16#. It
should be noted that we present the response function in
1 only for purpose of illustration; in what follows we sha
assume that this function is well defined, but we will n
need to know its exact shape. Moreover, our results w
show that to account for the statistical properties of the sp
trains, very little information about the response function
required.

It should be noted also that the response function of
neuron f (•) is not a fixed property, but may change wi
external conditions. The theory presented here is valid wit
a steady state, in whichf (•) takes a particular form and doe
not change with time. Rather than being a limitation, t
context dependence off (•) opens the possibility to investi
gate adaptive changes in the neural response, when adju
to different steady states@16#.

FIG. 1. ~a! Firing rate ofH1 as a function of time, average
over trials: r (t)5^r(t)& ~dots!, compared to the input signals(t)
~solid line!. The signal was repeated many times to obtain a sa
pling of the noise ensemble.~b! Instantaneous relation between fi
ing rate and local stimulus value. This is the effective nonline
neural response smoothed by the noise distribution@see Eq.~11!#.
7-3
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III. STATISTICAL PROPERTIES: UNIVERSAL REGIME

In this section we present the statistical theory for the c
of a constant input signal,s(t)5s, and a random uncorre
lated noise of arbitrary distribution. The result is a renew
process with special symmetry properties, reflecting the
derlying neuronal oscillator. This process provides a faith
empirical description of the interspike repulsive interactio
which is the main biophysical effect manifested in the sp
train on short time scales. As far as we know, this po
process is defined and analyzed in this work for the first ti
~it was introduced in@9#!. As will be shown in later sections
the results obtained here are valid in a limited time rang
the stimuluss(t) is time dependent.

A. Distribution of intervals

The distribution of interspike intervals is the distributio
of times for whichF(t)51. Due to the unidirectionality of
phase diffusion, these times are unique, and so the prob
ity density is simply

P~ t !5^d„t2F21~1!…&5^d„F~ t !21…Ḟ~ t !&. ~12!

It is more convenient to calculate the cumulative distribut

F~ t !5E
0

t

P~ t8!dt8, ~13!

which can be expressed in terms of the step functionQ and
its Fourier transform:

F~ t !5^Q„F~ t !21…&5E
2`

` dp

2p ip
e2 i2pp^ei2ppF(t)&.

~14!

Using the Gaussian approximation~8! for F(t), we find that

F~ t ! 5 E
2`

` dp

2p ip
ei2pp(rt 21)22p2p2Dt

5
1

2 F11erfS rt 21

A2Dt
D G ~15!

and the interval density is

P~ t !5
rt 11

A8pDt3
e2(rt 21)2/2Dt. ~16!

In Appendix A this result is derived for a discrete sum
non-negative random variables, directly from the cen
limit theorem. The density~16! depends on two parameter
the average firing rater and the diffusion coefficientD, both
of dimensionality@ time#21. In the derivation, we used onl
the non-negativity of the frequency integrator to write dow
Eq. ~12! and the Gaussian approximation~8! for F(t); there-
fore changes in the model which retain these properties
not affect the interval density. Equation~16! is similar to the
first passage time of the Wiener process@7,17#: it has the
same exponent, but this exponent is multiplied by a differ
03190
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function of t. As will be shown below, this results in signifi
cantly different symmetry properties of the function.

To understand the qualitative properties of the point p
cess, it is convenient to examine it in dimensionless ti
units, namely, to define the time such that the average ra
1. We denote this time asx5rt . In this representation, the
statistics depend on one dimensionless parameter,g,

g5
D

r
5

tn^d f 2&

^ f &
~17!

and the interval density is

P~x!5
x11

A8pgx3
e2(x21)2/2gx. ~18!

The parameterg governs the decay of the interval densi
both near the origin and at larget. For smallg these decays
are strong, indicating a narrow distribution, while for largeg
they are weaker and the distribution is broader. More f
mally, the moment generating function,G(l)5^e2lx&, of
Eq. ~18! can be calculated using the integral representati

P~x!5E
2`

`

dp~11 ipgp!ei2p(x21)p22p2gp2x. ~19!

The result is

G~l!5
1

2 S 11
1

A112lg
D e(1/g)(12A112lg), ~20!

and the first two moments are

^x&511g/2, ~21!

^dx2&5g1
5

4
g2. ~22!

Note that the average interval length is not equal to the
verse of the average rate, which is 1 in our units. In gene
inversion does not commute with averaging; for smallg,
however, the inverse average and the average of the inv
are similar.

Defining the coefficient of variation byA^dx2&/^x& @18#,
it is seen that the coefficient of variation is approximate
proportional toAg for small g, and goes toA5 for largeg.
This is a quantitative way of seeing that our family of dist
butions interpolates between low-variability~or regular! and
high-variability ~or irregular! limits. It should be noted tha
this distribution arises from a simple integration model
many independent inputs@19#. As noted already by severa
authors@8,12#, it is not only the properties of the inputs bu
also of the internal neural response that determine the de
of irregularity of a spike train. In our model, the parameterg
controlling this irregularity~17!, arises from a combination
of both these effects.

The fact thatg controls the behavior of the density~18! at
both tails is reflected in the form of an invariance under
transformationx→1/x, with the Jacobian properly accounte
7-4
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for. This implies that the cumulative distribution of the inte
vals between successive spikes is identical to the distribu
of inverse intervals, when both are measured in dimens
less units. Since the spike train for a constant input i
renewal process, invariance of the interval distribution i
plies an invariance of the process as a whole. In general
a point process with time intervals$xi%, one may construc
the dual process with intervals$1/xi%; this has the natura
interpretation of local frequencies. The process defined
Eq. ~18! is self-dual: the dual process is statistically identic
to the original one. In physical dimensional units~16!, this
invariance holds up to a global rescaling of the axis. Figur
shows that this is indeed a property of the measured data
cumulative distributions of intervals and inverse intervals
very similar when plotted in dimensionless units.

The derivation of the interval density presented above
independent of many microscopic details of the neuron
of the noise, and it is therefore expected to describe corre
the behavior of many different systems. Figure 3 show
comparison of the interval distribution~16! with experimen-
tal data measured from different parts of the visual system
several organisms. Figure 3~a! shows data measured in ou
experiment on the motion sensitive neuronH1 in the visual
system of the blowfly. In this experiment, the fly watched
random pattern of dark and light bars moving at a cons
velocity of ;0.16°/sec. The best fit to the data was fou
with an irregularity parameter ofg50.1. Figure 3~b! is
adapted from data published by Robson and Troy@20#. In
this experiment, a stationary sinusoidal grating was p
sented to an anesthetized cat, and spikes were recorded
neurons in the retina. The particular neuron these data w
recorded from was identified as a ‘‘Q-type’’ neuron, charac-
terized by regular spiking; consistent with this observati
the best fit of Eq.~16! was obtained withg50.015. Figure
3~c! shows data measured from isolated goldfish retina
Levine and Shefner@21# in darkness. These data are we
described by Eq.~16! with g50.1. Figure 3~d! contains
steady discharge measured by Troy and Lee@22# from retinal
cells of an anesthetized monkey. This interval density is
best fit withg50.38.

These data indicate that the classification of spike tra
according to the irregularity parameterg is a useful one, and
can be applied to many systems with very different mic

FIG. 2. A symmetry of the spike train point process: the dis
bution of intervals between neighboring spikes is the same as
distribution of the inverse intervals~local frequencies!, up to a con-
stant scaling factor. Data are shown from two experiments w
constant velocity stimuli, of magnitude 10.5°/s~a! and 0.16°/s~b!.
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scopic properties. This classification is expected to be
evant for sensory neurons that are driven by simple stim
tion, and for which firing is basically related to an oscillato
Properties of neurons in a highly connected network w
many reentrant connections, as well as spontaneous firin
many cases, are expected to be qualitatively different fr
those described here.

B. Scaled interval distributions

A generalization of the interval distribution is thescaled
interval distribution of order k, defined as the distribution o
intervals between pairs of spikes that have exactlyk21
other spikes in between them. In their landmark paper, G
stein and Mandelbrot@17# observed that the scaled interv
distributions of low orders in spike trains from the cat c
chlear nucleus have a similar shape. This observation m
vated them to suggest the random walk model for the me
brane voltage. In our model, we can calculate the sca
interval distribution directly: it is the distribution of times fo
which F(t)5k,

Fk~ t ! 5
1

2 F11erfS rt 2k

A2Dt
D G . ~23!

In this notation, the interval distribution of Eq.~16! is the
scaled distribution of order 1. Figure 4~a! shows the first
three scaled interval distributions, as measured experim
tally, together with Eq.~23!. The two fitting parameters o
the theory, the average rater and the diffusion constantD,
are fitted once for all three graphs. According to the obs

-
he

h

FIG. 3. Distribution of intervals between neighboring spike
experiments and theory. The data are from different sensory sys
in different organisms:~a! fly visual system~lobula plate motion
detector!, ~b! cat retina@20#, ~c! goldfish retina@21#, ~d! macaque
retinal ganglion cell@22#. The y axis is the probability density of
seeing an interval, in units of 1/s. The solid black lines are a fit
Eq. ~16!, and the number in each panel indicates the value of
irregularity parameterg in the fit.
7-5



a
le
s
il

al

r
h
e

u

its

le

he

ed

of
a

hen
nd

the

dth
er

y,
t

us,

eri-
q.

o
ive
and
ular
or-

me

ly

ith
am,
ms

of

age

NAAMA BRENNER et al. PHYSICAL REVIEW E 66, 031907 ~2002!
vation of Gerstein and Mandelbrot, these curves should h
the same shape after rescaling the time axis to dimension
unitsrt /k. Figure 3~b! shows the scaled interval distribution
in dimensionless time units. These curves have a sim
shape, but do not quite overlap. As is seen from Eq.~23!, the
transformationt→t/k gives a function of the same gener
form, but with a different value ofD. Thus the family of
curves Fk(t) with parameters (r ,D) obey the following
equation:

Fk
(r ,D)~ t/k! 5 F1

(r ,D/k)~ t !, ~24!

where the superscripts denote the dependence on the pa
eters. In Fig. 4~b!, it is clearly seen that the steepness of t
curve increases with increasingk, consistent with a decreas
in the diffusion constantD. The pointrt /k51 is where the
distributions cross, in agreement with the theoretical eq
tion ~24!.

C. Correlation function

An important statistical property of the spike train is
~auto-! correlation function ^r(t)r(0)&. Whereas many
models have been used to calculate the interval density,
attention has been paid to the correlation function@23#. In
Appendix B we derive the correlation function under t
assumption that the noise correlation timetn is much shorter
than the typical interval between spikes 1/r . The result is

^r~ t !r~0!&5rd~ t ! 1 r (
kÞ0

Pk
(r ,D)~ utu!, ~25!

where Pk
(r ,D)(t) are the densities derived from the scal

interval distributions of Eq.~23!,

Pk
(r ,D)~ t !5

d

dt
Fk

(r ,D)~ t !5
rt 1k

A8pDt3
e(rt 2k)2/2Dt. ~26!

FIG. 4. ~a! Scaled interval distributions of ordersk51,2,3, rep-
resenting the probability of finding a pair of spikes at a given ti
interval, with exactlyk21 spikes in between. Data fromH1 are
shown in gray dotted lines, while the theoretical value@Eq. ~23!# is
shown in a solid black line. Fitting parameters of the theory,r 530/s
andD53/s, are fitted once for all three curves.~b! Scaled interval
distributions in dimensionless time units, measured fromH1. In
agreement with Eq.~24!, these curves are similar but have slight
different slopes, corresponding to an effective value ofD, which
depends onk. The curves cross atrt /k51, as predicted by Eq.~24!.
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It is convenient to think about the probability per unit time
finding a spike at timetÞ0, conditional on the event that
spike is found at timet50. This quantityR(t) is propor-
tional to the correlation function fortÞ0, and is called the
conditional rate:

R~ t !5 (
kÞ0

Pk
(r ,D)~ utu![RU

(r ,D)~ t !. ~27!

In this sum, the term labeledk is the probability per unit time
for finding a pair of spikes separated by a timet with exactly
(k21) spikes in between. These independent events, w
added together, give the total probability per unit time to fi
a pair of spikes separated by a timet, regardless of how
many spikes appeared in between them, which is just
conditional rate. For smallk, the individual densitiesPk

(r ,D)

are narrow and their peaks can be resolved; their wi
grows asDk/r and eventually they overlap. Thus the numb
of peaks that can be resolved in the conditional rate~the sum
of these densities! is proportional to the degree of regularit
1/g. The notationRU

(r ,D)(t) is introduced to emphasize tha
this is a universal function, valid under constant stimul
independent of the details of the neuronal responsef (s) and
of the noise. Figure 5 shows the conditional rates for exp
ments with constant velocity, together with the best fit to E
~27!. The constant value of the velocity stimuluss increased
among parts~a!–~d! of the figure; the average firing rater
increases and the irregularityg decreases. This is due t
refractory effects: as the firing rate increases, the repuls
interaction among the spikes becomes more important,
the spike train becomes more stiff, causing a more reg
behavior. The form of the repulsive interaction and the c
relation function, however, remain the same.

FIG. 5. Conditional rate for the spike train in experiments w
a constant velocity stimulus. Data are shown by a gray histogr
calculated directly from the spike times by binning them into 4-
bins. Theoretical expression@Eq. ~27!# is shown by a solid black
line. The four parts of the figure correspond to different values
the constant velocity stimulus: 0.7°/s~a!, 2.6°/s~b!, 10.5°/s~c!, and
42.2°/s ~d!. As the motion signal becomes stronger, the aver
firing rate increases and the irregularity parameter decreases~see
also Fig. 6!.
7-6



n

th
ar

o
m

th
e

o

th
ta
s
ne
d
io
a
o

ro-
imi-
ing
he
l

ior.

ncy
nge

ith

r
ise
it is
wo
his
ins,

m-
of
s
ity
ra-
b-
ion
li,
by

ime
nd

on-

The

s in
on-
the

o the
.

STATISTICAL PROPERTIES OF SPIKES TRAINS: . . . PHYSICAL REVIEW E66, 031907 ~2002!
D. Number variance

The random variableN(t) counts the number of spikes i
the time window@0:t#. Defined by

N~ t ! 5 E
0

t

r~ t8!dt8, ~28!

it provides a useful, less detailed, characterization of
spike train point process. To study the statistics of this v
able, we write it as

N~ t !5 (
k51

`

Q„F~ t !2k…5Int„F~ t !…, ~29!

where Int(y) is the integer part ofy. We can write its Fourier
representation using the identity~ @24#, 1.441, p. 45!

(
m51

`
sin~2pmx!

m
5

~p2x!

2
, 0,x,2p ~30!

and expanding it to the fractional part ofx(mod 2p), for all
x. The result is

N~ t !5F~ t !1
1

2
2w1 (

mÞ0

1

2p im
ei2pm[F(t)112w] ,

~31!

wherew is uniformly distributed on@0,1#, accounting for a
random position of the first spike in a window~see Appendix
C!. The number mean iŝN(t)&5rt and around this mean
N(t) fluctuates. Since the correlation function of spikes is
finite range, the long-time asymptotic behavior of the nu
ber variance is diffusive:sN

2 5^dN2(t)&;Dt @1#. It is of
interest, however, to derive a complete expression for
quantity also for short times, where correlations betwe
spikes are important. Using Eq.~31!, it is shown in Appendix
C that

sN
2 5Dt1 (

m51

`
1

~pm!2
@12cos~2pmrt!e22p2m2Dt#.

~32!

Written as function of the number mean, i.e., as a function
the dimensionless time variablex5rt , the number variance
is

sN
2 5 gx1 (

m51

`
1

~pm!2
@12cos~2pmx!e22p2m2gx#.

~33!

Figure 6 shows the number variance as a function of
number mean, as calculated from experiments with cons
velocity stimuli. Part~a! shows a scatter plot of the value
obtained in various windows in the experiments, with a li
showing the average. Part~b! of the figure shows a detaile
view of one such average plot, with the theoretical predict
Eq. ~33! in a solid black line. The number variance of
Poisson process is shown for comparison. The diffusion c
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stant in the number variable isg, implying again its role as
an irregularity parameter: the more stochastic the point p
cess, the faster is the diffusion in the number variance. S
lar to Fig. 4, a higher constant signal induces a higher fir
rate and a lower irregularity of the spike train. Although t
data presented here haveg,1, this is not a fundamenta
property of the theory, and in generalg can take on also
values larger than 1, resulting in a ‘‘super-Poisson’’ behav

E. Irregularity and stiffness of spike trains

We have presented a statistical theory for a freque
integrator model under constant stimulation and short-ra
correlated noise. This results in a renewal point process, w
the density of intervals given by Eq.~16!. This process is
characterized by a mean rater and an irregularity paramete
g5D/r , which depends both on the variance of the no
and on the sensitivity of the frequency response to noise;
the depth of frequency modulation, resulting from these t
effects, that determines the irregularity of the process. T
family of processes can describe many different spike tra
ranging from almost periodic to almost Poisson.

Our experimental data indicate that the two model para
etersr andg are not independent. Figure 7 shows a plot
the different values ofg obtained by fitting to the equation
in this section, for two sets of experiments. The irregular
decreases roughly linearly with the firing rate, with a satu
tion at very high firing rate. This is the limit where the a
solute refractory period is approached. The simple relat
betweeng andr holds only for the case of constant stimu
where frequency modulations are essentially induced
noise. When these modulations are affected also by a t
varying sensory stimulus, a very different behavior is fou
~see the following section!.

IV. STATISTICAL PROPERTIES: STIMULUS
DEPENDENT REGIME

In the preceding section, we considered the case of a c
stant input signal,s(t)5s. More generally, signals coming
into the system have a temporal and spatial structure.

FIG. 6. Number variance as a function of number mean.~a!
Scatter plots of variances, as calculated in different time window
the experiment. Data are shown from two experiments, with c
stant velocities of 0.054°/s and 0.162°/s. Solid lines indicate
average value of the variance for a given mean.~b! Comparison to
theory: the average value at each number mean is compared t
theoretic formula@Eq. ~33!#, which is shown by a solid black line
In this experiment, the velocity was 0.162°/s.
7-7
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NAAMA BRENNER et al. PHYSICAL REVIEW E 66, 031907 ~2002!
effect of input correlations on the output of model neuro
has recently received some theoretical interest@25–27#. Here
we consider the behavior of our model in the case where
continuous input signals(t) is slowly varying; it is expected
that universal behavior will be retained on short times, a
slower modulations will appear on longer times. In the vis
system, such time scale separation can be induced by fi
ing mechanisms that act on incoming signals. In this sec
we show that the conditional rate can be approximated b
product of the universal function Eq.~27! and a slowly vary-
ing envelope reflecting the temporal correlations of the in
signal. This envelope is calculated for some simple case
is shown that the theory fits the data very well, even wh
the time scale separation required in theory is only marg
ally satisfied by the experimental conditions.

A. The telegraph approximation

Consider a random input signals(t) that can take on posi
tive as well as negative values. Figure 8 shows a segme
some spike trains recorded fromH1 in response to such
stimulus, which was repeated many times. The most strik
effect in the figure is the existence of wide regions w
spikes, and wide regions which are empty; the typical ti
for these regions is much larger than the interspike time. T
partition into regions is a consequence of the direction se

FIG. 7. Dimensionless irregularity parameterg as a function of
the average firing rater. The different symbols correspond to tw
different experiments, each performed with a different set of c
stant velocity signals.

FIG. 8. Response of theH1 neuron to repeated presentations
a time-dependent stimulus. Each line shows the response to o
the presentations, with the origint50 corresponding to the onset o
the stimulus; each dot represents a spike. The black solid line i
illustration of the telegraphic envelope that multiplies the sp
train due to the strong direction selectivity of the neuron.
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tivity of H1, a property that is shared by other neurons
well. Although the velocity stimulus on the screen vari
rapidly in this experiment~every 2 ms an independent valu
is chosen!, the ‘‘spiking’’ and ‘‘quiet’’ regions in the spike
trains have a much slower typical time scale. This resu
from intermediate processing: the velocity on the screen
not identical to the effective stimulus driving the cell, since
is filtered by the photoreceptors and other elements in
visual pathway.

To describe the phenomenon of spiking regions and q
regions, we approximate the spike train to be multiplied b
telegraph signal, which keeps track of the algebraic sign
the effective stimulus:

r~ t !'rS~ t !rE~ t !, ~34!

where rE(t)5Q@s(t)# is the telegraphic envelope of th
spike train. Figure 8 shows an illustration of the telegra
signal, which demonstrates that the time scale of the ef
tive stimulus sign change is longer than the typical sp
time, 1/r .

Assuming that the telegraph envelope is statistically in
pendent of the short-time structure in the spike train, o
may write the correlation function as a product,

^r~ t !r~0!&5^rS~ t !rS~0!rE~ t !rE~0!&

'^rS~ t !rS~0!&^rE~ t !rE~0!&. ~35!

Now brackets^•••& denote averaging over both the noi
and the random stimulus. To perform the averages, we
the separation of time scales: let us divide the time axis i
blocks of sizets , the correlation time of the effective stimu
lus. Performing first the average over the noise in each bl
separately, the first term in the product gives the correlat
function of Eq.~25!, with the parametersr ,D determined by
the local value ofs:

^rS~ t !rS~0!&'H r ~s!RU
(r (s),D(s))~ t !, s.0

0, s<0
~36!

for tÞ0. If the response is saturated,r (s)'rQ(s) and the
firing rate does not change much inside each spiking reg
This condition is met in experiments where the signal-
noise ratio is high and the firing rate is large~see experi-
ments below!. Because of the above assumptions about
response, the diffusion constantD is determined mainly by
the properties of the noise and is expected to be similar in
the spiking regions. Therefore, on averaging the first te
over s, one hasraRU

(r ,D) , wherea is the coverage fraction
defined as the fraction of time in which the stimulus is po
tive @^rE(t)&5a#.

The second term in the product~35! is a correlation func-
tion of the input signal as seen through the telegraphic en
lope:

^rE~ t !rE~0!&5^Q@s~ t !#Q@s~0!#&. ~37!

Special care should be taken around the pointt50. The
whole correlation function then takes the form
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STATISTICAL PROPERTIES OF SPIKES TRAINS: . . . PHYSICAL REVIEW E66, 031907 ~2002!
^r~ t !r~0!&'rad~ t ! 1 raRU
(r ,D)~ t ! ^Q@s~ t !#Q@s~0!#&,

~38!

and the conditional rate is

R~ t !5RU
(r ,D)^Q@s~ t !#Q@s~0!#&. ~39!

This formula expresses the conditional rate as a produc
two terms. The first term reflects internal properties of
noise and of the neuron, similar to the result of the preced
section;RU is parametrized by an effective rater and diffu-
sion constantD. This function has an oscillatory structure o
a time scale 1/D, defining theuniversal regimeof the con-
ditional rate in which temporal properties of the inputs
not have an important effect. The second term contains
formation about the statistics of the incoming stimulus,
seen through the nonlinear response of the neuron. It mo
lates the universal function with a slower structure. In
itively, the condition of time scale separation can be und
stood as follows: on short times,t<1/D, the envelope is
almost constant and the oscillations of the universal part
visible. As these oscillations decay, on timest.1/D, the
stimulus induced structure sets in. The independence
tween the two factors affecting the probability of finding
spike at timet given a spike at time 0 results in a produ
form.

Equation~38! indicates that in the telegraph approxim
tion, the envelope of the correlation function depends on
statistics of the zero crossings of the stimulus. These st
tics for a random continuous function are, in general, v
difficult to calculate@28#. Here we need only the correlatio
function of the algebraic sign of a random signal, and
proceed in two ways. In the following section we consid
the case in which zero crossings are independent and
resulting correlation function is a simple exponential. A
other simplification occurs if the incoming stimulus h
Gaussian statistics, and in this case one may derive an e
formula for the correlation function of the nonlinear rate.

B. Random independent spiking regions

Let us first assume that the spiking regions occupy r
dom independent positions along the time axis, with leng
D drawn independently from some distribution. This is
crude approximation that may not be justified for many e
perimental conditions. However, it is the simplest type
telegraphic signal, and is characterized by a small numbe
parameters; therefore we use this approximation as a sta
point. The correlation function of such a telegraph signa
derived in Appendix D, and the result is

^rE~ t !rE~ t8!&5
a

mEut2t8u

`

p~D!~D2ut2t8u!dD, ~40!

wherep(D) is the distribution of lengths of positive region
in the telegraph signal andm is the average length of such
positive region. For the case of an exponential distribution
positive regions,
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p~D!5
1

m
e2D/m, ~41!

the correlation function is also exponential,

^rE~ t !rE~ t8!&5a21ame2(t2t8)/m. ~42!

The exponential decay of the envelope, Eq.~42!, gives a
good fit to many of the measured datasets. It has additio
fitting parametersa andm, which are the coverage fractio
and average length of the positive regions in the telegr
envelope of the spike train. It uses no prior knowledge of
input stimulus, and relies primarily on the direction select
ity of the response. Figure 9 shows the correlation funct
calculated from spike trains in two experiments with rando
signals of 20 Hz@~a!, ~b!# and 500 Hz@~c!, ~d!# bandwidth.
Although in these experiment we know the properties of
visual stimulus presented to the fly, this stimulus is rapid, a
preprocessing takes place in earlier stages of the visual p
way; the effective signal entering theH1 neuron is therefore
a filtered and probably distorted version of the motion on
screen. Therefore, we try the simple picture of the telegr
approximation, rather than rely on the detailed properties
the visual stimulus. The black solid line in Fig. 9 is a fit to
product of the universal function and the envelope corre
tion in the telegraph approximation, Eq.~42!. The time scale
of the exponential decay ism'50 ms for the slower varying
stimulus andm'20 ms for the faster varying one. In th
case of the fast stimulus, the correlation is probably limit
by the filtering processes in the visual system, thus indica
that the time scale for these processes is'20 ms. This is on
the order of the behavioral time scale for changes in fli
course in these flies, found by Land and Collett@29# to be
'30 ms.

C. A Gaussian input signal

If the incoming random signal is drawn from a Gaussi
distribution, one may calculate exactly the correlation fun

FIG. 9. Conditional rates for spike trains in the short-time a
long-time regimes. Data~gray histogram! are measured in experi
ments where the visual stimulus was a pattern of light and dark
moving with a random time-dependent velocity. The velocity sig
has different bandwidths, of 20 Hz~a!,~b! and 500 Hz~c!,~d!. The
theoretic formula of Eq.~42! is presented as a solid black line.
7-9
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NAAMA BRENNER et al. PHYSICAL REVIEW E 66, 031907 ~2002!
tion of a nonlinear responser (s). We focus on the simple
case where the response is a step function at zero and
stimulus has zero mean, corresponding to a coverage frac
of a51/2. In this case,

^Q@s~ t !#Q@s~0!#&5
1

4
1

1

2p
arcsin@ uc~ t !u#, ~43!

where c(t)5^s(t)s(0)& is the correlation function of the
Gaussian signal. In principle, one may calculate the corr
tion function of a general nonlinear responser (s) in the
Gaussian case, but for our purposes it is sufficient to cons
the step response. We expect that in an experiment wher
driving stimulus varies slowly, the effect of intermediate fi
ters will be negligible and one can take the motion on
screen to be essentially equivalent to the stimuluss(t) driv-
ing the neuron. Figure 10 shows the correlation funct
measured from an experiment where the input signal wa
slowly varying random function of time, with a Gaussia
distribution. The correlation function as calculated from t
data is shown as a gray histogram, whereas the solid b
line is given by

R~r !5RU
(r ,D)F1

4
1

1

2p
arcsin@ uc~ t !u#G , ~44!

where c(t) was taken from the known distribution of th
input signal. The two fitting parameters arer, related to the
global firing rate, andD, the diffusion constant in the univer
sal regime.

D. Linear rectifier approximation

In analogy with Eq.~39!, one expects that if the nonlinea
response of the neuron isf (•), the conditional rate will take
the form

R~ t !'RU
(r ,D)^r @s~ t !#r @s~0!#&, ~45!

wherer (s)5^r(s)& is the firing rate as a function of stimu
lus, obtained by averaging over noise only@see Eq.~11!#. r
andD are some effective global parameters representing
average over different regions wheres is almost constant. In
this section we present results from experiments where
stimulus is relatively weak, the response is far from satu

FIG. 10. Conditional rate for spike trains in the short-time a
long-time regimes. Data~gray histogram! are measured in experi
ments where the visual stimulus was a pattern of light and dark
moving with a random time-dependent velocity, which is very sl
and has a Gaussian distribution. The theoretic formula of Eq.~44! is
presented as a solid black line.
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tion and can be approximated by linear rectification,r (s)
'sQ(s). We used as stimuli, sine waves of different amp
tudes and periods; Fig. 11 shows the firing rate averaged
noise, together with the stimulus, for one such experime
For a sine wave stimulus of frequencyV, a straightforward
calculation yields

^r @s~ t !#r @s~0!#&5
1

2
cos~Vutu!F p

V
2utuG1

1

2V
sin~Vutu!.

~46!

If we use our knowledge about the frequency of the inp
signal, we can obtain a description of the conditional r
with only the universal fitting parametersr and D, and no
additional parameters for the envelope. Figure 12 shows

rs

FIG. 11. Stimulus and average response for a sine wave ex
ment. A random pattern of dark and light horizontal lines w
moved by a sine wave velocity~solid black line!, and this stimulus
was repeatedly presented to the fly. The average firing rate
calculated over the repeated presentations as a function of
~circles!. The response of the neuron is not saturated, and it follo
closely the positive part of the sine wave stimulus.@Compare the
saturated response in Fig. 1~a!.#

FIG. 12. Conditional rates for spike trains in the short-time a
long-time regimes. Data~gray histograms! are measured in an ex
periment where a pattern of dark and light bars was moved h
zontally with a sine wave velocity, with periods of 0.25 s~a!,~b! and
0.5 s ~c!,~d!. Theory ~black solid lines! is obtained from Eq.~45!,
with the fitting parametersr andD, and using the known frequenc
of the stimulus.
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STATISTICAL PROPERTIES OF SPIKES TRAINS: . . . PHYSICAL REVIEW E66, 031907 ~2002!
correlation functions for the sine wave experiments, in
universal@~a!, ~c!# and the stimulus-dependent@~b!, ~d!# re-
gimes. No additional parameters of the stimulus other t
its frequency were used; the solid black curve was obtai
from Eq. ~45! with the envelope given by Eq.~46!. The
periodic nature of the envelope is evident in the data, and
theoretic prediction describes both the short-range and
long-range features well.

E. Irregularity and stimulus properties

In this section, we have shown that the conditional rate
the spike trains has approximately a product form. One te
in the product is very similar to the conditional rate for
constant stimulus and describes the behavior on short tim
This term isuniversal in the sense that it depends on on
two simple parameters, the global average rate and the i
nal irregularity of firing. The other term carries informatio
about temporal correlations in the stimulus and is a long-t
envelope over the universal term. We have shown how
envelope can be calculated in several cases, giving a
good fit of the data.

A naive quasistatic application of the universal theo
would tell us that the short-time behavior is characterized
local values of the parametersr ,D, and that these chang
slowly as the external stimulus varies slowly. This see
inconsistent with the short-time behavior exhibited by t
data @Figs. 8~a!, 10~a!, and 10~c!#. If the parameters would
change with the local changes of the external stimulus,
oscillatory structure defined by a period ofr would be con-
siderably washed out when averaged over the different
ues ofs. The data, however, show pronounced oscillatio
with a well defined period. This is consistent with the noti
that in a changing environment, the system achieves a st
state with the distribution as a whole, thus obtaining glo
values for the statistical parameters of its firing.

Further evidence for this picture is given by Fig. 1
where three measured correlation functions are plotted
normalized time units, and are normalized by the heigh
the first peak. After rescaling of the two axes, there is o

FIG. 13. Correlation functions from different experiments w
different time varying stimuli, in dimensionless units. The overl
at short times indicates that the parameter left after rescaling,
internal irregularity, is similar in all these cases.
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one dimensional parameter describing the short-time beh
ior: the irregularity g. Although the correlation functions
were measured under different experimental conditions
time varying stimuli, the curves are approximately overla
ping in the short-time regime (x,2). Thus, under high
signal-to-noise ratio, where the frequency modulations
mainly induced by the stimulus and not by the noise,
system tends to fix the internal irregularity parameterg at
some preferred value. This cannot be explained by a sim
quasistatic behavior; it probably involves subtle adapt
mechanisms of the neuron, which try to maximize the d
namic range in each stimulus ensemble. This observatio
studied in detail in@16#.

V. DISCUSSION

The statistical properties of spike trains generated b
sensory neuron under various stimulation conditions w
studied. Experiments were performedin vivo on a blowfly,
where the visual stimulus was well controlled, and sp
trains were measured extracellularly from an identified m
tion sensor. This neuron is known to respond to wide-fi
horizontal motion.

The main theoretical questions addressed were the foll
ing. ~i! How does the statistical behavior of spike trainsin
vivo relate to the biophysics of the spike generation mec
nism in the cell?~ii ! How can the effects of internal prope
ties be separated from those induced by the external sen
stimulus~or the input to the neuron!? These questions wer
considered within the framework of a model, which d
scribes the neuron as a nonlinear oscillator driven both
noise and by an external stimulus. In principle, the effect
both stimulus and noise is the same: to cause freque
modulations in the oscillator. We considered here the c
where the noise and the stimulus are very different in th
temporal characteristics, namely, the noise is rapid and
stimulus is slow compared to the time scales typical of
spiking. This separation of time scales enables the theor
analysis of the model, which in turn provides an understa
ing of how the different factors are reflected in the statisti
properties of the spike trains.

It was found that on the time scale of a few spikes, s
tistical behavior is rather universal, namely, they are rob
with respect to the details of the noise and of the nonlin
oscillator. The spike train can be described by a rene
process, which has special symmetry properties reflecting
underlying oscillator. It is characterized by one dimensio
less parameter representing the internal degree of irregul
of the process. This model interpolates between regular
stochastic point processes, and provides a convenient pa
etrization that is useful for classifying spike trains.

Biophysically, the universal short-time regime is the r
gime where refractory effects dominate. These are here
scribed as an effective repulsive interaction among spik
which is characterized by the parameterg. Rather than hav-
ing an absolute time scale, we find that the interaction
adjustable and adaptive to external conditions.

On the time scale of many spikes, effects of the sens
stimulus become important and are reflected in the form o

he
7-11
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slowly varying envelope which modulates the univer
function. Using only simple features of the nonlinear ne
ronal response, the theory provides quantitative predicti
for the statistical properties, which are in very good agr
ment with our data on long time scales. The dominant eff
which comes into play is the direction selectivity of the ne
ron, a property shared by many other sensory neurons; th
fore we expect this description to be useful also in ot
situations.

Justification for assuming a separation of time scales
tween noise and stimulus comes from the fact that signal
the visual system are filtered, and therefore the effective
nals reaching an interneuron are relatively slow. As often
the case in comparing theory with experiment, we found t
the agreement of the theoretical predictions with the d
extend to a regime where the required separation of t
scales is only marginally satisfied by the experimental c
ditions.

The understanding of how the stimulus is reflected in
statistical properties of the spike train could be used ‘‘ba
wards:’’ in cases where little is known about the stimulu
analysis of the long-time behavior of the correlation functi
can give us information about the time scales involved in t
stimulus, with only a gross description of the neural respo
~e.g., direction selectivity, degree of saturation!. Possibly this
understanding can be extended to cross correlation betw
several neurons; in that case the separation betw
stimulus-induced and internal properties will be important
assessing the connections between the neurons. This is a
ject for future research.

ACKNOWLEDGMENTS

Many thanks to G. Lewen for preparing the experime
and to N. Tishby and A. Schweitzer for comments.

APPENDIX A

In this appendix we show that for a unidirectional rando
walk, the density of times between barrier crossings is gi
by Eq. ~18!, in the limit where many steps are needed
cross the barrier.

We consider the discrete case. Letxi be non-negative ran
dom variables (xi>0), identically distributed and indepen
dent, with ^x&5m and ^dx2&5s2. Define the random vari-
able of their sum as

XN5(
i 51

N

xi . ~A1!

Let C be a constant positive number, then for large enougN
one has from the central limit theorem,

Prob$XN<C%5
1

A2pNs2E2`

C

expH 2
~XN2Nm!2

2Ns2 J
~A2!
03190
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5
1

2 F11erfS C2Nm

A2Ns2D G , ~A3!

where erf(x)5(2/p)*0
xe2t2dt. Now define N1 to be the

number of steps required to first reach the barrier. Then fr
the non-negativity it follows that

Prob$XN<C%5Prob$N1>N%512Prob$N1<N%.
~A4!

There are some normalization subtleties here, but let us
pose that the sample space is composed of trajectories w
finite number of stepsM, which is much larger than the
typical number needed to cross threshold. Then,

Prob$N1<N%5
1

2 F11erfS Nm2C

A2Ns2D G . ~A5!

APPENDIX B

In this appendix, we derive Eq.~25! starting from the
definition

^r~ t !r~0!&5K (
k,l

d„F~ t !2k…d„F~0!2 l …

3Ḟ~ t !Ḟ~0!L . ~B1!

The term att50 must be taken care of separately: it corr
sponds tok5k8,

(
k

^d„F~ t !2k…d„F~ t !2F~0!…Ḟ~ t !Ḟ~0!&

5(
k

K d„F~ t !2k…
d~ t !

Ḟ~ t !
Ḟ~ t !Ḟ~0!L

5d~ t !(
k

^d„F~ t !2k…Ḟ~ t !&

5rd~ t !, ~B2!

as expected for a point process of average rater. For times
tÞ0, we calculate the conditional rateR(t), the probability
of firing at some timet given a spike at time 0:

R~ t !5 (
kÞ0

^d„F~ t !2k…Ḟ~ t !&5 (
kÞ0

d

dt
^Q„F~ t !2k…&.

~B3!

Using the integral representation of the theta function,
write

R~ t !5 (
kÞ0

d

dtE2`

` dp

2p ip
e2 i2pk^ei2pF(t)&. ~B4!

As before, we use the Gaussian approximation forF(t), Eq.
~8!, which is justified for timest satisfyingtn!t:
7-12
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R~ t !5 (
kÞ0

d

dtE2`

` dp

2p ip
ei2pp(rt 2k)22p2p2Dt

5 (
kÞ0

d

dtE2`

`

dpEn

dyei2ppy22p2p2Dt, ~B5!

wheren5rt 2k. Doing first the integraldp, we find

R~ t !5 (
kÞ0

d

dtE
n dy

A2pDt
e2y2/2Dt

5 (
kÞ0

d

dt F1

2
erfS n

A2Dt
D 1constG

5r (
kÞ0

t1k/r

A8pDt3
e(rt 2k)2/2Dt. ~B6!

APPENDIX C

Here we discuss the properties of the number varia
which counts the number of spikes in the window@0:t#. One
must specify how the pointt50 is chosen, and there are tw
natural choices:~i! start counting at a spike and~ii ! start
counting at a random point in the spike train. The seco
choice of a random origin is the more commonly used.
this case, it is convenient to define an auxiliary variablew
5F(t1), the phase of the integratorF(t) at the time of the
first spike in the window. This variable is uniformly distrib
uted in @0:1#, and with this we have

N~ t !5Int@F~ t !112w#

5F~ t !112w1 (
m51

`
1

pm
sin@2pm$F~ t !112w%#

2
1

2
. ~C1!

Note that the constant2 1
2 ensures thatN(0)50. Sincew

only depends on the choice of origin, it is independent
F(t), and therefore

^N~ t !&5^F~ t !&1
1

2
2^w&1 (

mÞ0

1

2p im
^ei2pm[F(t)112w]&

5rt 1 (
mÞ0

1

2p im
^e[ i2pm[F(t)11]&^e2 i2pmw&5rt .

~C2!

Now to calculate the number variance we define the fluct
tion

dN~ t !5dF~ t !1S 1

2
2w D1 (

mÞ0

1

2p im
ei2pm[F(t)112w]

~C3!

and average its square:
03190
le

d
n

f

-

sN
2 5^dN~ t !2&

5^dF~ t !2&1^~ 1
2 2w!2&12^dF~ t !~ 1

2 2w!&

1K 2~ 1
2 2w! (

mÞ0

1

2p im
e[ i2pm[F(t)112w] L

1 (
m,m8Þ0

1

~2p i !2mm8
^ei2p(m1m8)[F(t)112w]&.

~C4!

By Eq. ~9!, ^dF(t)2&5Dt; averaging the second term ove
w gives 1

12 . Due to the independence ofw andF(t), the first
cross term vanishes while the second cross term decou
into

22 (
mÞ0

1

2p im
^e2p im[F(t)11]&^we22p imw&. ~C5!

Performing the average overw,

^we2 i2pmw&5
d

dm

1

2p im
^e22p imwm&U

m51

5
21

2p im
~C6!

and we have for the second cross term

(
m51

`
1

~pm!2
cos~2pmrt!e22p2m2Dt, ~C7!

where the Gaussian approximation was used when avera
over F(t). In the last double sum of Eq.~C4!, all terms
vanish by averaging overw except for the termsm1m8
50, which gives

(
mÞ0

1

~2pm!2
5

1

12
. ~C8!

Adding the terms together we find

sN
2 5Dt1

1

6
1 (

m51

`
1

~pm!2
cos~2pmrt!e22p2m2Dt,

~C9!

which is the same as Eq.~32!.

APPENDIX D

In this appendix we derive Eq.~42! for the correlation
function of the envelope of the spike train in the telegra
approximation. The enveloperE(t) is composed of a train o
characteristic window functions,

^rE~ t !&5(
k

xS Tk2
Dk

2
,Tk1

Dk

2 D . ~D1!

This function has a Fourier transform
7-13
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^rE~v!&5E
2`

`

rE~ t !e2 ivt

5(
k

e2 ivTk
sin~vDk/2!

~v/2!
1bmd~v!, ~D2!

where Tk denote the middle points of the positive sign
regions. These positive regions are assumed to be distrib
over the time axis independently with a densityb per unit
time, and with an average length of^D&5m. Averaging in
the frequency domain gives

^urE~v!u2&5b
^sin2~vD/2!&

~v/2!2
1~bm!2d~v!. ~D3!

In the time domain this expression transforms to
W

s

e
s

as
eu

an

ck

03190
l
ted

^rE~ t !rE~0!&5~bm!21bE
0

`

p~D!dD

3E
2`

` dv

2p

sin2~vD/2!

~v/2!2
eivt. ~D4!

The last term in this expression is the Fourier transform o
product of two sine functions, which is the convolution
two square windows. This convolution has the form

x* x5H 0 , utu.D

D2utu, utu<D,
~D5!

which is equivalent to Eq.~40!.
put.
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