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Surimary. — Recent experiments show that the neural codes at work in a wide
ran re of creatures share some common features. At first sight, these observations
seein unrelated. However, we show that all of these features of the code arise
nat irally in a simple threshold crossing model when we choose the threshold to
ma: imize the transmitted information. This maximization process requires neural
adaotation to not only the d.c. signal level, as in conventional light and dark
adastation (for example), but also to the statistical structure of the signal and noise
dist ributions. Interestingly, if we fix the threshold level, we can observe a peak in
the transmitted information at a finite value of the input signal-to-noise ratio.
Ho vever, when we allow the threshold to adapt to the statistical structure of the
signal and noise, the transmitted information is always monotonically increasing
wit1 increasing input signal-to-noise ratio.

PA S 87.10 - General, theoretical, and mathematical biophysics (including logic of
bio: ystems, quantum biology, and relevant aspects of thermodynamics, information
the ry, cyberneties, and bionies).

PA CS 01.30.Cc - Conference proceedings.

1. - Intioduction.

Most sensory receptor cells produce analog voltages and currents which are
smoothly related to analog signals in the outside world. Before being transmitted to
the brai, however, these signals are encoded in sequences of identical pulses called
action pctentials or spikes. As physicists, we would like to know if there is a universal
principle at work in the choice of these coding strategies. By «universal» we mean: In
(nearly) all modalities of (nearly) all creatures. By «principle» we mean something
analogots to the least-action principle in classical dynamics, say. The existence of
such a potentially powerful theoretical tool in biology is an appealing notion, but it
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may not turn out to be useful. Perhaps the function of biological systems is best seen
as a conplicated compromise among constraints imposed by the properties of
biologica materials, the need to build the system according to a simple set of
developn.ental rules, and the fact that current systems must arise from their
ancestor: by evolution through random change and selection. In this view, biology is
history, ..nd the search for principles (except for evolution itself) is likely to be futile.
Obviousl 7, we hope that this view is wrong, and that at least some of biology is
understandable in terms of the same sort of universal principles that have emerged in
the physies of the inanimate world.

Adrign[1] noticed in the 1920's that every peripheral neuron he checked produced
discrete, identical pulses no matter what input he administered. From the work of
Hodgker and Huxley [2] we know that these pulses are stable non-linear waves which
emerge from the non-linear dynamics describing the electrical properties of the nerve
cell meribrane. These dynamics in turn derive from the molecular dynamics of
specific i»n channels in the cell membrane[3]. By analogy with other non-linear wave
problems, we thus understand that when these signals have propagated over a long
distance-—e.g., = one meter from touch receptors in a finger to their targets in the
spinal cord—every spike has the same shape. This is an important observation since it
implies taat all information carried by a spike train is encoded in the arrival times of
the spikes. Since a ereature’s brain is connected to all of its sensory systems by such
axons, al the creature knows about the outside world must be encoded in spike
arrival t mes.

Until recently, neural codes have been studied primarily by measuring changes in
the rate of spike production by different input signals. Recently it has become
possible to characterize the codes in information-theoretic terms, and this has led to
the discovery of some potentially universal features of the code[4-10] (or see[11] for a
brief surimary). They are

1) Very high information rates. The record so far is 300 bits per second in a
cricket riechanical sensor.

2) High coding efficiency. In cricket and frog vibration sensors, the information
rate is vithin a factor of 2 of the entropy per unit time of the spike train.

3) Linear decoding. Despite evident non-linearities of the nervous system,
spike trains can be decoded by simple linear filters. Thus we can write an estimate of

the analog input signal s(t) as s., (t) = Z K, (t —t;), with K, chosen to minimize the

mean-squared errors (x*) in the estimate. Adding non-linear Ky (¢t —¢t;, t — t;) terms
does not significantly reduce y°.

4) Moderate signal-to-noise ratios. All these examples of high information
transmis sion rates have SNR of order unity over a broad bandwidth, rather than high
SNR in a narrow band.

We snall try to tie all of these observations together by elevating the first to a
principle The neural code is chosen to maximize information transmission where
informat on is quantified following Shannon. We apply this principle in the context of
a simple model neuron which converts analog signals into spike trains.
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2. - Information theory.

In the 1940’s, Shannon proposed a quantitative definition for «information»
[12,13]. He argued first that the average information available from observations of
some event x; is just the entropy of thz distribution from which the x; are chosen, and
showed that this is the only definition consistent with several plausible requirements.
This definition implies that the amount of information a signal can provide about
some other signal is just the diffirence between the entropy of its a priori
distribution and the entropy of its conditional distribution. The average of this
quantity is called the mutual (or transmitted) information. Thus, we can write the
amount of information that the spike train tells us about the signal as

O It} —s)])= - j @t, PI{t;}]) logs P[{t;}] -

= [ @sj)[s(r)](— j @t; PI{t:}|s(0)] log: P[{t:}]s(x)]),

where | @t; is shorthand for integration over all arrival times {¢;} and summation

over all numbers of spikes N, and [ @s denotes integration over the space of functions
s(7). P[{t;}|s(1)] is the probability distribution for the spike train when the signal is
given, and P[s(7)] and P[{t;}] are thz a priori distributions for the signal and spike
train.

3. = Interlude: information and SNR.

The recent literature on «stochistic resonance» attempts to characterize the
transmission of information in non-lnear systems by measurements of the signal-
to-noise ratio (SNR) response to sine wave inputs. In a linear system, such measur-
ements at all frequencies provide, i1 principle, a complete characterization of the
system from which the Shannon information can be calculated in any given ensemble
of input signals. Generations of exjerimentalists have attempted such «complete
characterization» experiments on neurons, and it seems fair to conclude that these
highly non-linear adaptive systems zre unlikely to yield to this approach.

The focus on SNR has an even more fundamental problem, namely that it is
defined uniquely only in the limit of small signals where the noisy non-linear system
exhibits a linear response. Furthermore, a single number for SNR can be meaningful
only if there is a single number whizh characterizes the scale of the noise, and this
effectively limits the analysis to near-Gaussian noise sources. As an example, if the
nose 7(t) flips at random between =17, , the SNR is very small as 1y, — *, but all
signals |s(t)| < nna are perfectly dstectable.

For the case of a small signal in ¢ Gaussian noise background, it is a theorem that
the SNR at the output of a non-linear device must be less than or equal to the SNR at
the input. Because this point has caused some confusion in the literature, we include
here a brief proof. For small inptt signals the definition of output SNR which
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corresponds to direct experimental measurements, e.g., with a lock-in amplifier, is as
follows:

({F @), |*),

() SNRyu (@) = ——
(| F(@)]*),

where & (1) is the non-linear functional of the input signal and noise that describes
our device, tildes indicate Fourier transforms, and zero subscripts indicate that the
input signal is set to zero. We expand & for small signal,

3) (F (1)), =~ (Fo(D), + J des(z){D(t - 7)), ,

where we have defined

8F ()

(4) Dit—1)=
4 on(r)

For Gaussian noise we may use the identity

() {1 Fo(@)]?), = (@) |* )y { | Dl@)|?),

which holds no matter how large the noise is compared to the scale for non-linear
response of the device. Finally we use the fact that (x%) = (x)* to complete the
proof:

52 (KBl@, |* _ {[5@)]?),

(6} SNRnut= . - — )
()3, (| D(@)[?),  (H@)),

= SNR,, .

4. — The threshold crossing model.

At the input, we have some signal s(¢{) embedded in a noisy background n(t).
These continuous time series are drawn from their respective probability dis-
tributions. This is crucial: No information can be carried by the signal unless its
entropy is an extensive quantity. In other words, if we choose to study a signal
composed of a sine wave, the information carried by the signal will not grow linearly
with the length of time we observe it, whether or not noise is present. In addition to
this, we would like to compare our results to the performance of real neurons in as
natural conditions as possible, so we should use ensembles of broad-band signals, not
sine waves.

We study the following model for encoding the signal s(¢) in a spike train:
First, the signal and noise are added and filtered to produce a new analog time series
y(t). We taen produce a spike each time y(t) crosses some threshold value & with
positive slope. If we allow y(t) to be any functional of s(¢) + n(¢), then our model can
be used to study any possible digital encoding of an analog signal. For most of what
we present. here, we will only consider linear filtering and Gaussian signal and noise
distributions, though we will have something to say about the general case. We will
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find it useful to define a characteristic time for the signal as

_ [
v N,

and similarly for the noise.

Following the classic discussion by Rice[14, 15], we can express the sum of delta-
functions resulting from the positive slope crossings of y(¢) through a threshold &
with the following definition:

N
e oty = I 8t = 6(y(t) — YW HG®),

where H is the step funetion and dots denote time derivatives. In this language the
spike firing rate—the probability per unit time of generating a spike given a signal
wave form s(f)—is just

) r(t) = (o(t)), -

If the signal and noise are Gaussian and y involves only linear filtering, then the
average firing rate is

_L oy L
s = <y2>e’“”[2<y2>]'

In terms of g, the conditional distribution that appears in eq. (1) can be written as

N
(11) P[{t; }|s(t)] = Elz-<exp[- J dt@(t)]“g(tﬁ)n.

i

Now all that is left is to define the signal and noise distributions and then we can
write an explicit formulation for the mutual information in the threshold crossing
model. Unfortunately, it is hopeless to evaluate this formula exactly, so we try to find
a self-consistent solution for the infcrmation near the Poisson limit. In this limit the
correlations between the spikes are small, so the timing of each spike gives nearly
independent information. To find an approximation that is valid near this limit we
expand the product of g¢'s in eq. (11) in a cluster expansion and expand the exponent
about ¢ = (g),. The small parameter in this expansion is related to (), 7., where r. is
some average of the signal and noise correlation times,
The zeroth-order term is just what we would get if there were no correlations

between the spikes. It is

) o

/B

I[{t;} — 3(7)] ( r
12 Ry = ————— ={rlog | —
( ) info T g2 ('r}s
This expression is valid for any analog to spike encoding process as long as the
correlations between the spikes are small. For linear filtering and Gaussian signal and
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noise, the zeroth-order term for the threshold crossing model can be calculated
exactly,

(13) Ry =

{r 0% - (y*) 2
In2 | 2(y2 X1 + (n)/{s*))

1o [ @hHy®) 2(n*) ()
T2 ln((fﬂf)) ’ \/n{y'zxs'z)f( (s*) ) : lnz) i

where we have defined

(14)  fle) = J dzexp[—azzlJda:xexp{—(x—z)zlln(Jdyyexp[—(y—g)z)),
_d 5

]

which we can easily approximate for any value of a. We can also calculate the first
correction to the zeroth-order term in this case. For the threshold & set to maximize
the first term, the first correction is indeed small as long as the time constants of the
signal and noise are within a factor of 10 of each other. If we were studying a
modulated Poisson process in which spikes are triggered according to a Poisson
process with rate r(t) dependent on the signal s(£), all the correlations between spikes
would be due to the time-dependent rate alone. In that case, the zeroth-order term
would be an upper bound to the exact expression for the information. For the
threshold crossing model, the corrections can be positive or negative, In particular,
we find that the first correction to the zeroth-order term is negative when the
correlatior. time of the noise is smaller than that of the signal. This is because the
signal is not changing much from spike to spike, so the spikes are providing somewhat
redundant information. Note that in the limit as 7, — 0 our threshold crossing model
is a modulated Poisson model. When the noise has a larger correlation time than the
signal, the first correction is positive because the correlations in the spikes are due to
the signal and add to the information we calculate from the first term.

5. — An aside about stochastic resonance.

If we {ix the threshold and signal variance, and then vary the input SNR, we
observe a peak in the information rate at a finite SNR value for some ratios of the
noise and signal correlation times as is shown in fig. 1. This is true even if the signal is
broad band so the «resonance» does not correspond to synchronization of the output
to the signal and may not be obvious from the power spectrum of the spike
train.

We get a similarly peaked picture if we plot the information rate vs. threshold for
fixed SNR If we adapt the threshold to maximize Ry, at each SNR value, we find
that the maximized information rate is always a monotonically increasing function of
the input SNR everywhere that our expansion is valid (again see fig. 1). So it seems
that if you can adapt your coding strategy, you discover that stochastic resonance
effects disappear when you maximize Ry . In fact, if a model of a neuron exhibits
stochastic resonance effects after it has been adapted to maximize Ry, , then there is
probably not enough adaptive freedom in the model to find the true optimum.

Stochastic resonance effects like the ones discussed here oceur when information
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Fig. 1. - The dashed curve is the transmitted information rate vs. the input noise variance with
the signal variance set to 1, r,,/:s = 0.1, and the threshold fixed at \/5 Notice that it goes
through a maximum for a finite value for the SNR (= 1), which is very similar to the plots of
SNR,,, vs. (n?) associated with stochastiz resonance. The solid curve is the information rate for
the same ratio of time constants, but with the threshold optimized at each value of the SNR.
From the graph it is clear that the threshold setting for the dashed curve is the optimum for SNR
near 1/2. For the entire region where our expansion is valid, we find that the information rate for
the optimized threshold is monotonic with the input SNR, as it is here: Stochastie resonance
effects evident when we fix the threshcld disappear when it is optimized.

is selectively discarded in some enccding process. In our case, information about the
analog signal is lost when we encodz it in discrete spike times. Stochastic resonance
has nothing to do with the dynamics of a system being studied. More generally, we
can view the addition of noise to improve information transmission as a strategy for
overcoming the incorrect setting of the threshold, 6. If 8 is set to its optimum value,
R4, 1s monotonic in SNR. This is analogous to the use of «dithering» to improve the
performance of conventional analog-to-digital converters.

6. — Results from the linear filtered threshold crossing model.

Using the expression for the information rate shown in eq. (13) (which should be
valid for 7, and 7, within a factor of 10 of each other), we can compare properties of
the information rate in our model to those of experiments. We find that the
information rate has a well-defined maximum near the Poisson limit. This is a
non-trivial maximum since maximizing Ry, does not correspond to maximizing (r) for
a large region of parameter space including the physically relevant case where SNR
is not too high and 7, > 1,.

At maximum information transmission in this region of parameter space, the
(zeroth-order) information per spike has a strikingly simple form that depends only
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on the SNR:

Rinto 1( 1

15 = ————— | hits .
o) 1+1/SNR) '

{r) In2
When the SNR is small, the information per spike is linear with SNR, which we knew
from low SNR expansions we did before attempting the general SNR case [11]. When
the SNR is high, the information per spike approaches its highest value of 1/In2 bits,
but clearly saturation occurs at rather modest SNR.

Having found an optimal setting of the threshold, we can study several properties
of the resulting code [16]. To summarize, the information rate is robust to errors in the
timing o’ individual spikes, with roughly 90% of the information retained when
timing errors are = 10% of the mean interspike interval. This is in good agreement
with experiment, and is another way of stating item number 2 of the introduction
regarding the efficiency of codes. We can also analyze the optimal code using the same
linear decoding methods used in analyzing real spike trains, except that here we know
how much information is available in total. We find that reconstructing the signal
with a linear filter captures 30% to 90% of the available information, in good
agreement with the observation that the addition of non-linear terms to the
reconstruetion does not significantly improve the information rate. Indeed, the
optimal code is in all respects similar to the real neural codes except that the real
neurons reviewed above typically transmit two to three times as much information
per spike, suggesting that we are missing something with our simple model. Perhaps
real neurons are designed to maximize the information rate, but they are optimizing
over a ruch larger space of coding strategies than we do with our linear filtering
model.

It may also be that real neurons maximize something related to the information
per spike rather than the information rate itself. If this is true, then there must be
some peralty for high timing resolution in the spike train. Otherwise, the problem is
not well defined since we can show that the information per spike diverges like the
thresholc squared as we let the threshold go to infinity. This produces very few
spikes that each carry a lot of information, but this information can be recovered only
if the spike times are «read» with arbitrarily high precision. This is an appealing
candidate for a universal principle because both the production of spikes and the
timing precision needed to maintain and read them can be thought of as metabolic
costs to be minimized while trying to maximize the information transmitted. In
addition o the heightened information per spike, the spikes would be more sparse on
average, which would improve the linear decodability.

7. = Concluding remarks.

The four seemingly unrelated features that were common to several recent
experiments on a variety of neurons are actually the natural consequences of
maximizing the transmitted information. Specifically, they are all due to the relation
between (r), and 7. that is imposed by the optimization. We make a new prediction:
Optimizing the code requires that the threshold adapt not only to cancel d.c. offsets,
but it must adapt to the statistical structure of the signal and noise. Very recently,
experimental hints at adaptation to statistical structure have been seen in the fly
visual system[17] and in the salamander retina[18].
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