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We present a generating function method for the computation of nonCondon effects in the context of nonadiabatic 
multiphonon transition theory. The method is nonperturbative in the electron-phonon coupling and 
nonperturbative in the dependence of the transition matrix element on nuclear coordinates, but it does assume 
the overall transition rate is small enough to be treated perturbatively. We do not assume the transition operator 
is given by the Born-Oppenheimer breakdown operator but rather consider more general forms of the transition 
matrix element V(x),  where x represents nuclear coordinates. In particular, for narrow forms of V(x)  such 
as a delta function, the optimum position (that position of V(x) which produces the maximal transition rate) 
is temperature dependent and may not coincide with the transition state. This calls into question the classical 
notion that a transition occursvia a thermal fluctuation to the potential surface crossing. Theclassical significance 
of the transition state does appear valid, however, at  low temperature and large electron-phonon coupling. 
Furthermore, when V(x)  is broad and the non-Condon effects are weak, the transition rate can be expressed 
in the Condon approximation with suitably scaled parameters. Since this scaling is temperature dependent, 
there may be an apparent change in the reorganization energy and in the enthalpy and entropy of activation. 
When many vibrational modes couple to the transition, there are circumstances under which a single promoting 
mode can dominate the vibrational effects. In thecontext of optical lineshapes, this means there are circumstances 
under which a weakly coupled vibrational mode can cause the wings of a line to assume a strictly exponential, 
rather than Gaussian, shape. 

Introduction 

The Condon approximation, that the transition matrix element 
is independent of nuclear coordinates, has the virtue of consid- 
erable simplicity, but it is not always appropriate. We present 
a technique for nonadiabatic transition rate calculations that 
completely avoid the Condon approximation. In fact, it is 
nonperturbative in the functional form of the matrix element 
V(x), although it does assume the overall transition is small enough 
to treat perturbatively. 

Our technique is also nonperturbative in the electron-phonon 
coupling constant, which allows us to compute non-Condon effects 
for strongly coupled reactions, such as electron transfer. (Tra- 
ditionally, non-Condon effects are ignored for electron-transfer 
processes. But Reimers and Hush’ attribute a charge-transfer 
absorption band to the existence of promoting modes in an organic 
donor/acceptor system, and we will consider the role that non- 
Condon effects may play in photosynthetic electron transfer 
elsewhere.*) 

Traditionally, vibrations are classified into two categories:’ 
(1) accepting modes, whose vibrational properties, such as 
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frequency or equilibrium position, differ between the electronic 
states, and (2) promoting modes, whose coordinates or momenta 
affect the electronic matrix elements. Since our emphasis is 
specifically on non-Condon effects, we will present results for the 
simplest case-a single harmonic mode with both promoting and 
accepting (equilibrium shift) character. 

Many aspects of this problem have a long history in the context 
of impurities in solids and various molecular situations.& For 
reviews with emphasis on the solid-state aspects, see Stoneham3 
and Huang.’ Jortner and MukameP discuss chemical issues, 
and DeVault9 reviews some applications to biological systems. 
There are other aspects of nonadiabatic transition theory, such 
as dissipation, resonance, and the adiabatic limit, that have been 
dealt with in the Condon approximation; the reader is referred 
to theliterature, e.g., refs 10, 1 1,12,and 13 and references therein. 

There is also a clever reformulation of nonadiabatic barrier 
crossing in termsof path integrals by Wolynesl4 and ceworken15J6 
that has significant advantages for modeling complex systems. 
Because of the explicit use of path integrals, one can ask about 
which paths (in nuclear configuration space) or virtual processes 
make significant contributions to the overall transition and 
therefore which nuclear configurations favor the electronic 
transition, given a Condon approximation Hamiltonian. 

But we will use our simpler non-Condon formulation to ask a 
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different but related question using a different Hamiltonian. That 
is, how significantly is the rate affected by an electronic transition 
matrix element that is strongly peaked in a region of nuclear 
configuration space far from the crossing of reactants and products 
potential surfaces? (There are cases in which the optimum 
position of V(x)  is not at the potential surface crossing.) And 
further, what is an appropriate way to impose the Condon 
approximation on a system known to have promoting modes? 

Considerations of non-Condon effects go back at least to 
Kovarskii” and co-workers and later Scharf and Silbey,18J9q20 
who showed that the Condon approximation can incur significant 
errors in the computation of transition rates. Kovarskii’s 
computations were valid for weak coupling ( S  << 1) and were 
later extended to moderate coupling (S I 1) by Nitzan and 
Jortner.21 

Still further progress was made by Freed and Lin,22 who used 
a Q-centroid approach to find the optimum vibrational coordinate 
at which to evaluate the transition matrix element. They found 
that this optimum coordinate was not always at the equilibrium 
position of the initial state, a conclusion we are able to support 
by the very different technique of allowing V(x)  to become a 
delta function. 

Most studies incorporated non-Condon effects by using 
electronic wave functions that explicitly depend on nuclear 
coordinates. In contrast, Passler23 obtained similar results by 
using crude adiabatic wave functions and putting the coordinate 
dependence into the transition operator. Later, GutscheZ4 and 
Huang25 showed these approaches to be equivalent. 

The above studies were generally concerned with computing 
the non-Condon transition rate between adiabatic states that is 
induced by the Born-Oppenheimer breakdown operator. (There 
are other transitions, however, such as Raman scattering, where 
non-Condon effects play a role, e.g., refs 26 and 27. We will 
comment later on the implications of non-Condon effects on optical 
line shapes.) They were often interested in comparing the results 
to experiments on internal conversion, where the electron-phonon 
coupling is weak. 

In contrast, we will cast our discussion in terms of a more 
general model, namely, a generalized spin-boson systemlo (a two- 
state “electronic” system coupled to a “nuclear” harmonic 
oscillator) which does not depend explicitly on the Born- 
Oppenheimer breakdown operator or on weak electron-phonon 
coupling. Thus, we make no assumptions about whether the 
electronic states are true Born-Oppenheimer states of the original 
molecular Hamiltonian and therefore no assumptions about the 
origin of the electronic matrix element, be it radiative, Born- 
Oppenheimer breakdown, overlap of nonorthogonal wave func- 
tions,28 superexchange, etc. 

In practice, one needs to consider a specific form of the electronic 
matrix element, V(x) ,  to compute a transition rate. We will 
provide formulas here for two functional forms of V(x) ,  namely, 
a Gaussian and a power series. Other functional forms, such as 
a Gaussian times a series of Hermite polynomials or an exponential 
times a power series, are straightforward to develop with the 
same techniques. Most functional forms of V(x)  are probably 
well approximated by some combination of these analytic forms. 
Elsewhere,2 we consider a particular form of V(x)  derived from 
superexchange in photosynthetic electron transfer. 

After we develop the methodology, we compute transition rates 
for the form V(x)  = S(x - X O )  for various values of XO. Although 
the transition rate for a general V(x)  cannot be expressed as a 
linear combination of rates due to delta functions, this nevertheless 
allows us to explore the importance of various regions of nuclear 
configuration. 

We find that the crossing state is the most effective value of 
xo in the limit of low temperature and large electron-phonon 
coupling. In other parameter regimes, however, the optimum 
position of V ( x )  is quite different from the potential surface 
crossing. This observation calls into question the semiclassical 
notion that a transition occurs via a thermal fluctuation to the 

crossing, and it certainly challenges the notion that in making the 
Condon approximation one should choose the Condon matrix 
element, VO, to be the value of V(x)  a t  that crossing. 

In fact, we show that when the coordinate dependence of V(x)  
is mild one can make the Condon approximation provided one 
uses an effective matrix element and one renormalizes other 
parameters such as the reorganization energy. We call this 
approximation the “static” non-Condon approximation because 
the renormalized effective parameters are calculated as averages 
over the equilibrium distribution of reactants’ coordinates and do 
not depend on the dynamics of vibrations. 

The Model 

The entire system consists of three coupled subsystems: (1) 
two electronic levels, which are operated on by Pauli spin matrices; 
(2) a discrete set of oscillators whose properties depend on the 
electronic state (Le., the “vibrational” part of the Hamiltonian 
will depend on uz); and (3) a heat bath to provide thermal 
equilibration for theoscillators.29 Although this heat bath assures 
the presence of vibrational relaxation, the electronic transition 
rate will be insensitive to the parameters (except for temperature) 
ofthis heat bath,fora widerangeofvalues. Thegeneralrestriction 
will be that of vibrational energy relaxation be fast compared to 
the electronic transition rate. 

The Hamiltonian can now be written as 

where e is the energy difference between the electronic states and 
V(x) is the matrix element that connects the two states. HB 
denotes the heat bath terms. The electronic matrix element, 
V(x) ,  depends on the coordinates of all promoting modes, by 
definition. 

For the moment, we make no assumption about the form of 
V(x) ,  or even that it is Hermitian. A non-Hermitian V(x)  might 
be useful for describing the effective coupling between reactants 
and products that occurs due to interaction with virtual states, 
particularly if the energies of those virtual states have imaginary 
components due to damping or other transitions. 

When the electronic state is I+) (reactants), the vibrations 
obey the Hamiltonian %yjb(+), and similarly for k). If the 
oscillators form a single simple harmonic mode whose equilibrium 
position depends on uz, then the annihilation operator for this 
mode is explicitly 

Atomic positions and momenta are denoted xj and p,, where j 
denotes a specific Cartesian coordinate of a specific atom; the 
mass of that atom is denoted mp The equilibrium position in the 
I&) state is ?=Ab The relation between the 3n atomic coordinates 
xj and the normal mode coordinate ij is defined as 4 = &A,xjmh 

Thus, the two adiabatic potential squares for reactants and 
products can be written 

U*@) = ‘/2u2(4 * 74,J2 4 2  (3) 

where GZp = is the rms zero-point motion of the 
coordinate 4 and q = CjAjAjm,/ij, is the dimensionless dis- 
placement of reactants and products along the coordinate 4. In 
the following, we will use the reduced coordinate q = 4/ijzp. Thus, 
the reactants’ minimum is q = -7, the products’ minimum is 
q = +q, and the crossing is q = -e/vhu. 

Perturbation Theory 
We will assume V(q) is small and calculate the transition rate 

between eigenstates of u, perturbatively in V(q). (Actually, the 
calculation treats the shapeof V(q) nonperturbatively but assumes 
the overall magnitude is small. That is, we do not treat just the 
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lowest orders of a Taylor expansion of V(q) . )  We wish to treat 
electron-phonon coupling nonperturbatively, so we use a canonical 
transformation30 to transform the general annihilation operator, 
c(u,), into a = c(u, - +l),  the annihilation operator of the 
reactants vibrations. 

The Journal of Physical Chemistry, Vol. 97, No. 43, 1993 

The Hamiltonian becomes 

U % U t  = l/z'uz + V(q)Fa+ + u - F V ( q )  + 
h w ( a b  + (4) 

The electronic transition term has acquired a factor F = 
U(uz-+l) Ut(u,+-l). Although [ V , q  # 0, when the 
Hamiltonian is written as above, V(q) is unaffected by the 
transformation. 

In the usual way, lowest order perturbation theory expresses 
the transition rate, k, as the Fourier transform of a correlation 
function, 

Goldstein et al. 

where the correlation function is defined as 
1 

C(7) = ( V(0) F(O) Ft(7) fl(7)) ( 6 )  
The expectation valuein the correlation function is to be evaluated 
in the thermal equilibrium state of the reactants' vibrational levels, 
because we assumed the electronic transition rate is much slower 
than vibrational relaxation. 

Correlation Function Evaluation 

here, F is given explicitly by3' 
In the single-mode, linear-coupling scheme we wish to treat 

~ ( t )  = exp{(at - a ) ~ )  (7) 
The general form of V(q) becomes more tractable if we use the 
Fourier transform: 

V(q) = J-ldK V(fd exPVKq1 (8) 

Since a + at = q + 7, the correlation function from eq 6 is now 
written 

C(T) = E d K O  dK, V(K~) fl(-~~) x 
eiyr(at(o)+a(o)-?)en(at(o)~(o))e-?(at(T)~(T))ei~,(a(T)+a+(T)-n)  ) (9) 

The product of exponentials in eq 9 can be combined into one 
exponential whose exponent is linear in a and at, since the 
commutators such as [a(O),  at(^)] are numbers, not functions of 
operators. In turn, the expectation value of this exponential 
reduces to an exponential of a quadratic function of 7 and K 

because a and at are Gaussian variables. The result can be 
factored into an accepting-mode correlation function, Ca(7) (Le., 
what C(T) would be if V(q) were constant), and the correction 
due to promoting modes, Cp(7). If S = 72 and = l/(exp{hw/ 
kB7') - l ) ,  then C(T) = Ca(7)CP(7) where 

~ ~ ( 7 )  = exp{-~(2; + 1) + s(; + i)eiwT + ~ i e - ' ~ ' )  (IO) 

- - - +  
Cp(7) = J-:di V ( K ~ ) ~ ~ ( - K , )  eXp(-l/ZK*Gp*K - iNp%} 

We used KO and K, as integration_ variables and defined 
K~). The definitions of G, and N p  are 

(1 1) 

= (KO, 

(3 + l)eiwr + 
2B+ 1 

-15 r S=l 

- 5  
k,Vhw- j -- 1 

0 1  ..... 

r s - 1  

r 

-1.5 -0.5 0.5 1.5 -1.5 -0.5 0.5 1.5 

S d T  
Figure 1. Log of reaction rate vs qo for V(q) = 6(q - 40). The various 
values of S, e/Sw, and k ~ T / h w  are as labeled. Note that the reactants' 
minimum position is always at 4/11 = -1 and that the products' minimum 
is always at q /q  = +l. Furthermore, each graph has the location of the 
crossing state (q = -c /qhw) marked as T*. 

Explicit Forms 

In the case of a single mode with at most linear coupling, the 
forms in eqs 12-1 3 allow us to write explicit results for Cp(7) for 
several simple forms of V(q) .  Consider the Gaussian form, 

where qo and u are dimensionless parameters. This particular 
form allows us to evaluate the integral in eq 11 explicitly: 

[(2; + 1 + u2)' - ((; + l)eiwT + ;eJwT)z]-'/z (15) 

When uz = 0, V(q) is a delta function. In such a case, Figure 
1 shows the transition rate vs qo for several different values of 
Sand  ~ h w  and k ~ T / h w .  One might have expected the optimum 
value of qo to lie at the equilibrium value of the reactants, because 
that is where the reactants spend most of the time, or to lie at 
the transition state, because that is where the "transition" must 
classically occur. But Figure 2 shows that the optimum value of 
qo is uusually temperature-dependent and is not generally either 
at the transition stateor at the minimum of reactants or products. 

We note in passing that this formalism can treat a V(q) equal 
to a linear combination of Hermite polynomials times a Gaussian, 
because a Gaussian is the generating function for Hermite 
polynomials, and one can replace the Hermite polynomials with 
derivatives of the Gaussian in eq 14. Furthermore, the Hermite 
polynomials are complete, so essentially any functional form for 
V(q)  can be treated. 

Yet another form of V(q) that can be treated analytically is 
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E/Shw 
Figure 2. Optimum value of qo vs c for various values of S (0.2, 1, 5 )  
and various values of k ~ T / h u  (0.2,0.5, 1,2, 5 ) .  The axes are scaled so 
that the reactants’ minimum is always at -1 and the products’ minimum 
is always at +le  The dashed line shows the position of the crossing state, 
and the hatched area shows the probability density of the nuclear 
coordinatein thevibrationalgroundstateof thereactants. Iftheoptimum 
qo was always the crossing, the solid lines would all follow the dashed line. 
In most cases, however, theoptimumvalueof qo is somewhat more negative 
(closer to the reactants’ minimum). 

the power series, with arbitrary coefficients A,, 

but instead of a Fourier transform, it is easier to write V(q) as 
a series of derivatives: 

Then eq 1 1  reduces to 

- - -  
e ~ p ( - ’ / ~ h ; ~  - ~ N < K } ]  (18) 

Note the absence of poles in eq 18. If the Gaussian in eq 14 were 
approximated by any finite power series, the analytic structure 
of eq 15 would be changed by the absence of poles. This is most 
important for the use of the saddle-point approximation and shows 
why it was essential to treat the shape of V(x)  nonperturbatively. 

;=0 

Static Non-Condon Effects 

When V(q)  is broad, one expects the non-Condon effects to be 
small; perhaps some parameters in the Condon approximation 
expressions should be replaced by appropriate thermal averages. 
Indeed, we derive this below, but the thermal averages affect not 
only the overall magnitude of k(s) but the position (reorganization 
energy or Stokes’ shift) and width of the energy gap law as well. 

Since these effects depend on equilibrium averages, and not on 
the dynamics of nuclear motion, we term them “static” non- 
Condon effects. Thus, in this limit, the noncondon rateconstant 
can be written in terms of the Condon approximation value: 

Ism wc - Wmc - kSnc(e) = --kc( ( E -  f C )  - - E , ,  + Gc) (19) 
Ic Wsnc WC 

In this equation, I = Jdt & ( E )  (if the transition were radiative, 
I would be the intensity of the corresponding spectral line); t is 
the energy gap that gives the maximum rate constant; acd w is 
the width of k(e),  most easily obtained by w = Jdc k(e)/k(e). The 
subscript c represent the Condon approximation value, and snc 
represents the static non-Condon value. 

The shift of the maximum of the energy gap law can be easily 
obtained by considering an evaluation of k by the saddle-point 
method (whereby the log of the integrand in eq 5 is expanded 
about a saddle point, T, to second order in T ) .  From the form of 
eq 5, it is clear that ak/aa = 0 when the saddle point (T,,) is zero. 
Thus, the value of c that maximizes the rate is exactly that value 
which produces T,, = 0. In the Condon approximation this would 
be eC = Shw, and in the present case 

G,,, = S ~ U  - ~c,’(o)/c,(o) = Gc - iC,’(O)/C,(O) (20) 
Since this value might be experimentally interpreted as the 
reorganization energy, then even a broad V(q) acts to renormalize 
this value. 

The integrated area Jdt k(t) can be obtained directly from eq 
5: I,nc = 27rC,(O). And C,(O) = Vo2in theCondonapproximation, 
so IC = 27rV02. 

The peak value of the transition rate can be obtained by the 
saddle-point approximation when T,, = 0, as mentioned above. 
The width of k(c) then becomes 

Wmc = 

One can easily see from eq 21 that w, = 42rSu2(2 ;  + 1). 
Equations 20 and 21 provide the relations between ;,,, w,,, 

and C,, but it remains to derive expressions for C,(O) and its first 
two derivatives in terms of thermal averages over IV(q)I2. By 
substituting T = 0 into eq 1 1 ,  and using the Fourier transform 
in eq 8, we obtain 

This is just V(q) averaged over the thermal distribution of 
coordinates in the reactants’ potential well. 

The two derivatives can be derived in a similar fashion from 
eq 11 by ignoring the T dependence of G, but keeping the T 

dependence of N,. This is legitimate because the static non- 
Condon approximation is valid when V(q) is slowly varying, and 
hence V ( K )  is small for large K .  The T dependence in G, is higher 
order in K and therefore less important than that in N,. After 
some tedious algebra, we find 
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Figure 3. Transition rate vs c for a Gaussian form of V(q) (with u and 
qo as marked, S = 10 throughout) and a comparison with the Condon 
approximation and with the Condon approximation scaled by the static 
non-Condon factors from eq 19. Clearly the accuracy of the static non- 
Condon effects is best at large u, low temperature, and near t = Shu. 
The peaks of the curves have been marked with arrows to show the shifts 
due to non-Condon effects. Note the reactants' (products') minimum 
lies at qo = -q (40 = +?), and the crossing is defined by qo = -c/?hw. 

Figure 3 compares transition rates vs e calculated by the Condon 
approximation, the static non-Condon scheme described above, 
and our general non-Condon method. Wechose a Gaussian form 
for V(q) and considered different values of 40, u, and temperature. 
As expected, the wider form of V(q) produced a better static 
non-Condonvalue. Note that the shapes of thenon-Condon curves 
deviate significantly from those of the Condon curves a t  large e, 
particularly when the width of V(q), u, is small. This is a generic 
effect of the pole in CJT) and will be analyzed further in the 
Discussion section. 

When the width of V(q)  is large enough, the Condon 
approximation must obtain. For the specific form of a Gaussian, 
one can derive validity conditions for the Condon approximation 
by expanding the various corrections in a power series in 6 1 .  The 
result is that, for Zsnc = IC, u2 >> 2; + 1 + (qo + q)2. For esnc zs 

ec, the condition is u2 >> 12(2; + 1)(1 + qO/q)l, and for wsn,Z = 
w,Z, the validity condition is u2 >> 2(2; + 1 + (40 + 9)/(2; + 1)). 
Since 2; + 1 is the rms thermal motion of q in the reactants' 
potential well, and q + qo is the distance between the reactants' 
minimum and the Gaussian peak, these conditions mean that the 
Gaussian V(q)  should be wide compared to (1) the offset of the 
Gaussian from the reactants well and (2) thermal motion. In 
particular, the Condon approximation actually becomes better 
at low temperature. 

Numerical Considerations 

An explicit evaluation of the Fourier transform in eq 5 has two 
difficulties: (1) the integrand can oscillate wildly on different 
time scales, destroying precision, and (2) unless vibrational 
damping is included, the integral formally diverges. The saddle 
point (steepest descent or stationary phase) approximation has 
been used in multiphonon transition the0ry~~-35 and succeeds in 
overcoming these problems. 

One can deform the contour of integration of eq 5 off the real 
axis so that the largest contributions will come from neighborhoods 
where the phase of the integrand is stationary, namely, the saddle 
points. The integral is then made to converge by including only 
the contribution from the principal saddle point on the imaginary 
axis. 

How can one justify discarding the contributions of the off- 
axis saddle points, particularly when they can sum to infinity? 
First, vibrational damping will attenuate the contributions from 
the off-axis saddle points. This is easiest to see for the case of 
a single vibrational mode in the Condon approximation. The 
principal saddle point, T ~ ,  can be found analytically, and the nth 
off-axis saddle point is then given by T. = T~ + 2 i ~ n / w .  

One includes frequency-independent damping by replacing efhr 
with e*iwTq1.1 in the integrand in eq 5 ,  where y is the vibrational 
damping constant. Inclusion of a small y will not materially 
affect the positions of the saddle points, but the integrand at T,, 

will be attenuated by a t  least exp{-2rnye/hw2), even at low 
temperature. So for low-frequency (e >> w )  modes, the off-axis 
saddle points do not make large contributions. 

High-frequency modes (w = e), on the other hand, do provide 
contributions from off-axis saddle points. Since the location of 
the principal saddle point varies slowly with e, the effect of the 
off-axis saddle points can be seen by substituting T,, into the factor 
e-irT in the integrand in eq 5 .  Clearly when n # 0, one obtains 
an oscillating factor, e-2*1nf/ho. Thus, high-order off-axis saddle 
points contribute high-order Fourier components to the form of 
k(e).  In the undamped case, these components sum to form delta 
functions, physically due to resonances between reactant and 
product vibrational energy levels. 

One can ignore this resonance effect by ignoring the contri- 
butions from off-axis saddle points, in effect "coarse 
graining" the form of k(e).  This is often reasonable for two 
reasons: (1) Each sharp resonance in k(e) is widened by roughly 
4- due to other low-frequency modes. (2) If there 
are three or four or more high-frequency modes whose frequencies 
lie roughly 300 cm-' apart, the resonances are likely to overlap. 
Thus, keeping only the principal saddle point is justified if one 
wants to compute the overall structure of k(e) in terms of a small 
number of effective modes. So although the principal saddle- 
point method is strongly related to vibrational damping, its use 
in no way requires that the high-frequency vibrations be 
overdamped. 

Once the decision to use the saddle-point approximation has 
been made, the next step is to locate the principal saddle point. 
In the Condon approximation, In C(T) has no poles on the 
imaginary T axis, and there exists a unique principal saddle point. 
But when one considers non-Condon effects with a Gaussian form 
of V(q), there are two poles on the imaginary T axis located at 
the roots of 

These poles depend on w and u, but interestingly their sum does 
not: i (T1  + 7 2 )  = h / k ~ T .  Fortunately, these polesare onopposite 
sides of the origin, and the residues are of opposite signs. 
Therefore, on can always deform the original contour of integration 
to pass through a saddle point on the imaginary T axis without 
crossing a pole. 

It may happen that V(x)  is expressible as a sum of a small 
number of terms, such as a constant plus a Gaussian. For the 
case of two terms, 

V(x)  = c1 V,(x) * CZV,(X) (26) 
and the corresponding rate can be written 

k = c,'k, f 2c,c2k12 + c:k2 (27) 
The rate constant must be positive, however, and this must be 
true for any value of the coefficients CI and c2. This requires that 
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klk2 > k122, and therefore one can set an upper bound on the 
magnitude of the cross term before any calculation is done. If the 
sign of the cross term increases the transition rate, it can at most 
increase the rate by a factor of 2; if the sign of the cross term 
decreases the rate, it can decrease it to zero. But these extreme 
cases occur only when clkl = c2k2. 

This is fortunate, because in many cases the cross term, k12, 
may be much more difficult to compute than the values of kl and 
k2. When clkl does not approximate c2k2, the cross term may 
be numerically insignificant, and one can dispense with its 
calculation. 

Discussion 

When the dependence of the transition matrix element on the 
nuclear configuration is weak, static non-Condon effects are 
appropriate and easy to compute. When this dependence is strong, 
there are effects that demand a full nonperturbative calculation. 
One example occurs when V(q)  is a delta function. We will show 
that the optimum position of this delta function is not always the 
location of the potential surface crossing. 

A second example is the dependence of k on e for very large 
)cI when V(q)  has the form C(q) + G(q), where G(q) is a narrow 
Gaussian and C(q) is almost anything, including a constant. We 
will show that for large lei, k acquires an exponential dependence 
on e (in contrast to the Condon approximation result of an 
exponential dependence on e2) even if the coefficient of the 
Gaussian is small. In particular, this means the analogous 
radiative line shape would have exponential rather than Gaussian 
wings. 

OptimumCodigurations andTransitionStates. If the electronic 
matrix element is taken to be V(q) = b(q - go), then by computing 
the transitionrateasa functionofqoforvariousvaluesofe/(Shw), 
S, and kBT/hw, one can explore the importance of coupling in 
different regions of q. (See Figure 1.) That is, with this choice 
for V(q) ,  the transition from reactants to products can only take 
place at go. 

One might have expected the reaction rate to be a maximum 
when go coincides with the potential surface crossing. After all, 
the semiclassical limit (high temperature) of the Condon 
approximation rate constant looks very much like exp(-Et/kBT), 
where Et is the energy difference between reactants’ minimum 
and the transition state. In fact, in the normal region (where 
e < Shw), the rate is maximal when go coincides with the transition 
state for S >> 1 and kBT/hw << 1. But not for other conditions 
(see Figure 2). Also note the Arrhenius plots in Figure 4. Clearly, 
the position of a Gaussian V(q) can dramatically affect the 
apparent activation energy. 

One can rationalize this result by thinking of the transition as 
taking place between discrete vibrational levels of the reactants 
and products, rather than taking place by waiting for a thermal 
fluctuation to move the reactants up to the transition configuration. 
In such a case, one needs to compute the state-to-statevibrational 
overlap factors, weighted by V(q). The fact that this weighting 
takes place can substantially alter which vibrational-state tran- 
sitions significantly affect the overall electronic transition. (In 
the following discussion, go represents the vibrational coordinate 
where the vibrational wave functions have the largest overlap. 
The value qo = 0 represents a position halfway between the 
reactants’ and products’ equilibrium positions, while go = -7 
represents the reactants’ equilibrium and go = 7 represents the 
products’ equilibrium.) 

If the temperature is low (so only the reactants’ vibrational 
ground state contributes) and the electron-phonon coupling, S, 
is large (so that only the tails of the vibrational wave functions 
overlap), then the place of best overlap between the reactants’ 
ground state and the products’ state of nearest energy is 
approximately the position of the transition state. If t = 0, then 
by symmetry go = 0. 

-1 r a- - -1.0 

‘ I  E/Shu = 1.8 
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I- E/Shw = 1 

-9 ’ I I I I 

-1.5 
-10 ‘ I I 

0 0.5 1 1.5 2 2.5 

Figure 4. Arrhenius plots with V(q) = B(q - 40) for various values of 
c/Shw as marked. S = 25 for all curves. Each curve is marked with 
the value of 40. For comparison, the Condon approximation curves are 
shown for the same conditions. 

As the energy gap, e, becomes increasingly positive, the excited 
states of the products’ surface come into play. Since these states 
have a larger variance, go becomes increasingly negative, in parallel 
with the transition state. This is essentially the classical limit. 
But if the temperature is high, it is the excited vibrational states 
of the reactants that become significant. As the temperature 
rises, go becomes more positive; this usually causes a deviation 
from the transition state. 

In the inverted, or undercoupled, region, it is not the tails of 
the wave functions but rather the full wave functions that 
determine the best overlap. In this case, the best overlap is 
determined by where the reactants spend the most time. Indeed, 
in the strongly undercoupled regime, the best coupling takes place 
not too far from the reactants’ minimum (go = -7); this statement 
is mostly insensitive to temperature or to e. 

For weakly coupled systems (S << l), the situation is 
complicated by the fact that thevibrational wave functions overlap 
a great deal at all values of e and temperature. When go is 
expressed as a fraction of the distance between reactants and 
products, it seems to be more sensitive to temperature and less 
sensitive to t than in strongly coupled systems. 

If one were to recast these arguments back into the classical 
picture, at least for strongly coupled systems, one might construct 
the following analysis: (1) In the normal, overcoupled, region 
and for low temperatures, the usual arguments for thermal 
fluctuations to the transition state still hold. As the temperature 
rises, go moves in the positive direction (away from the reactants’ 
minimum). This is because the system moves through the 
transition state faster, spending relatively less time in the transition 
state and more time further from the reactants’ minimum. (2) 
In the overcoupled region, the system has to get at least to the 
transition state beforea downward (in energy) electronic transition 
can take place. In the undercoupled region, however, a downward 
transition can almost always take place. Rther than thermal 
transitions to transition states, the reaction takes place from the 
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most probable configurations of the reactants. That is, the place 
of best coupling tends to lie near the reactants’ minimum and is 
somewhat insensitive to e. 

Large le1 Dependence. Assume that V(q) is a Gaussian, and 
consider the dependence of the transition rate on e when le1 is very 
large. Then C ( T )  from eq 15 has two poles on the imaginary T 

axis. When Icris very large, the saddle point T,, will become 
essentially q u a l  to one of the poles (which one depends on the 
sign of e) and will be nearly independent of E. Thus, the e 
dependence of the rate becomes exp(-ir,tee} where T ~ I ~  is pure 
imaginary. (See the non-Condon curves for u = 1 in Figure 3). 
Note that if V(q) were a finite power series, there would be no 
poles, so the simplicity of this analysis depends on the nonper- 
turbative nature of the calculation. 

If the form of the matrix element were V(q) = c1 + c2G(q) and 
if CI >> c2, then k would be well represented in the Condon 
approximation when E is close to that for the maximum transition 
rate. But the Condon approximation rate falls off much faster 
than exponential at large e, so the Gaussian part of V(x)  would 
dominate in this regime. Indeed, since the behavior of k(E) is 
dominated by the location of a pole in CP(7), this analysis would 
obtain in the presence of multiple vibrational modes. Near the 
optimum for the transition rate, all the modes would contribute, 
but at larger or smaller e, when the saddle point approaches the 
first pole of C,, that mode which produced the pole would 
dominate. Due to the behavior of the poles at small u, the 
dependence when e is large and positive is k 0: exp{-u%}, but 
when e is large and negative, k 0: exp(c/kBT). In fact, when e 
is large and negative, the exponential decay of k is never slower 
than this. If k represented a radiative line shape, the wings would 
be exponential with decay constants that depend simply on e, u, 
and temperature. 

Conclusion 
We have extended the calculations of multiphonon transitions, 

without use of the Condon approximation, into the strong coupling 
regime (S >> 1). Furthermore, the method is nonperturbative in 
the dependence of the transition matrix element on vibrational 
coordinates. Thus, one can compute transition rates for systems 
with low-lying charge-transfer states, such as the chlorophyll 
dimers considered by Freed.36 This is particularly useful if 
exchange or superexchange interactions produce a form of V(x)  
that cannot be treated to lowest order without significant loss of 
accuracy. 
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