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Virtual Transitions in Nonadiabatic Condensed-Phase Reactions 
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We calculate the rate of a reaction proceeding through a virtual intermediate for arbitrary vibrational potentials 
in three electronic states, expressing it in a form amenable to saddle-point approximations. Treating the mode- 
specific case, in which a small number of vibrational modes are coupled to the electronic transitions, dissipation 
is included by vibrational coupling to a large collection of harmonic oscillators. A semiclassical saddle-point 
expansion a t  large energy denominator allows us :o identify the criteria for the validity of the two-state 
approximation, in which the intermediate state is ignored, aside from generating an effective coupling between 
the initial and final states. We discuss the physical meaning of these criteria, which define a high-energy 
intermediate. In this case, virtual transfer may dominate over the two-step process. In the limit of a small 
energy denominator, we find that the virtual transfer rate is not necessarily negligible compared to the first 
step of a two-step transfer. In this case, the rate is found to depend on the damping of the vibrationally coupled 
modes over a certain range. 

I. Introduction 
Electron transfer in a condensed phase is often mediated by 

one or several virtual intermediate electronic states, in which 
coherence is maintained until arrival in the final state. In many 
casesof such virtual transfer (or 'supere~change"),~-~ theenergies 
of the intermediate electronic configurations are much higher 
than any energy scale associated with vibrational or polarization 
modes, so the vibrational dynamics in the intermediate states can 
be ignored. The intermediate states only serve to provide an 
effective electronic mixing matrix element between the initial 
and final states. There are problems, however, in which mediating 
electronic states are sufficiently close in energy to the initial and 
final states that vibrational coupling in the virtual transition may 
play a role in determining the reaction rate. Examples include 
certain intramolecular reactions6-' and the primary charge 
s e p a r a t i ~ n ~ - ~ ~  and recombination reactionsZo in photosynthetic 
reaction centers. In such cases, the effect of the intermediate 
state(s) is more complex than generating an effective higher- 
order coupling between the initial and final  state^.^.'.^^ This leads 
us to the general problem of calculating the rate from an initial 
state to a final state passing virtually through an intermediate 
state. The same physics may also be applicable to concerted 
proton transferZ2 and energy transfer. 

In section 11.1 and Appendix A, we derive perturbatively in the 
electronic matrix elements the general expression for the non- 
adiabatic virtual rate. The behavior of a simplified three-state 
model suggests that the virtual rate can be perturbative even at 
small energy denominator19 and plausibly is for the primary 
photosynthetic electron transfer. Hu and M ~ k a m e l ~ ~ , ~ ~  derived 
a different form of the general expression for the case of a 
macroscopic number of vibrational modes coupled to the electronic 
transitions and performed a short-time expansion to obtain useful 
approximations. We treat the "mode-specific" case, in which 
only a small number of vibrational modes are coupled to the 
electronic transitions, and express the virtual rate in a form 
amenable to saddle-point approximations that can capture some 
of the relevant dynamics at longer times. The treatment of mode- 
specific situations requires some form of damping to yield a finite 
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rate constant. We use the method of vibrational coupling to a 
large collection of harmonic o s c i l l a t ~ r s ~ ~ - ~ ~  to provide dissipation. 
Vol'kenshtein and co-worker~ ,~~ Kharkats and co-workers,6 Lin,30 
Kharkats and Ulstrup,)' and Kuznetsov and Ulstrup32considered 
examples in different regimes than that we will consider here and 
treated damping in different ways. For lightly damped modes, 
we find that the virtual rate at small energy denominator depends 
on the damping coefficient of the vibronically coupled modes. 
The saddle-point approach described here could also be used to 
treat coherent recurrence, in which the dephasing rate is lower 
than the vibrational frequencies, by including contributions from 
further saddle-points. 

Within models of three coupled electronic state surfaces, we 
seek systematic semiclassical approximations for the virtual rate. 
After motivating the approach in section 111.1, we use a 
combination of saddle-point and short-time approximations for 
high-energy intermediates in section 111.2. The leading term is 
found to be the rate of a two-state system consisting of the initial 
and final states, with an effective electronic matrix element that 
has a geometric interpretation in some cases. Physical inter- 
pretations can be assigned to the first quantum corrections beyond 
the leading term. In the case of low-energy intermediates (i.e., 
small energy denominators), we use the saddle-point approxi- 
mation in section 111.3 and find that many saddle-points contribute 
to the virtual rate, enhancing it considerably. Summarizing in 
section IV, we compare the virtual rate with the first rate of the 
two-step process to find that virtual transfer can dominate with 
a high-energy intermediate and need not be entirely negligible 
in the case of a low-energy intermediate. 

11. Preliminary Theoretical Considerations 

11.1. General Nonadiabatic Virtual Rate Expression. In this 
section we give a general expression for the virtual rate to go from 
the initial electronic state (state 1)  to the final state (state 3) by 
means of a virtual transition through an intermediate state (state 
2) at the lowest nonvanishing order of perturbation theory in the 
electronic mixing matrix elements.)) In the case of electron 
transfer from the donor to acceptor through an intermediate site, 
state 1 is DIA, state 2 is D+I-A, and state 3 is D+IA-, where D, 
I, and A denote the donor, intermediate, and acceptor, respectively. 
Note, however, that the calculations presented here apply to any 
virtual electronic transition coupled to vibrational degrees of 

0 1993 American Chemical Society 



3246 The Journal of Physical Chemistry, Vol. 97, No. 13, 1993 

freedom. In the case of hole transfer, for example, the same 
formalism and approximations hold with the modification that 
state 2 is then DI+A-. Likewise, the analysis could apply to 
fluorescence or absorption. 

Picture three electronic states and some other degrees of 
freedom denoted by y,, with conjugate momenta pn.  We can 
write the Hamiltonian for the system as 

with 

and 

For simplicity we have made the Condon approximation, so the 
electronic matrix elements VI*, V23, and VI3 are independent of 
all the coordinates and momenta. We assume they, are initially 
in thermal equilibrium in electronic state 1. The presence of 
these other degrees of freedom, and their coupling to the electronic 
transitions, is necessary for the existence of a well-defined reaction 
rate from state 1 to state 3, as without them the populations 
would merely oscillate. 

The general expression for the perturbative rate k 1 3  from 11) 
to 13), derived in Appendix A, is found to be k I 3  = kv + kc + 
k ~ ,  where 

k, = 

and 

The time-dependent operators are in the interaction picture with 
initial values H,(O) = Vi$) (jl. The angle brackets with subscripts 
denote thermal averages over (y,,p,,) in the indicated electronic 
states. In the absence of direct coupling V13, the rate k13 reduces 
to the virtual rate kv. If the intermediate state were not present, 
we would be left with a two-state problem, and kl3 would reduce 
to the rate of direct transfer k ~ .  

11.2. Choosing a Class of Models. We now specify a class of 
three-state models within which we wish to calculate the virtual 
rate with the above expression. The simplest form we can take 
for the other degrees of freedom is that of a collection of harmonic 
oscillators. As discussed in refs 34 and 21, an effective harmonic 
description is valid for a wide variety of nonlinear systems if the 
coordinates coupled to the transitions exhibit linear response over 
the time scales relevant to the reaction dynamics. These time 
scales, which will be rigorously identified in the case of 
semiclassical dynamics in section 111, are often too short for 
nonlinearities to develop. Simulations of ferrous-ferric transfer 
in s o l ~ t i o n ~ ~ - ~ ~  indicate a striking degree of linear response. 
Furthermore, the result for harmonic degrees of freedom given 
at  the end of this section is seen to depend on the potential surfaces 
only through two-time correlation functions. This suggests that 
a harmonic description is valid under more general circumstances, 
provided these correlation functions have well-defined spectral 
peaks. 
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We now specialize to the case of N harmonic modes. To 
simplify the discussion and to facilitate our understanding of the 
system, we assume there are no frequency shifts or mode 
rediagonalization in the transitions. 

The model is specified by the Hamiltonian 

H = H, + H’ (7) 

N P2 3 

H’= V I ~ I ~ ) ( ~ I +  V2#)(3I+ Vl311)(31+ 
hermitian conjugate (1 1) 

This is the three-state analogue of a Hamiltonian that has been 
used in studies of the two-state problem.3s41 The ti are the 
electronic-state energies when all the vibrational coordinates Q, 
are a t  their equilibrium positions. There are N vibrational 
coordinates (er) with frequencies wr,  mass-weighted so that the 
kinetic energy is just P5/2. In each of the three electronic states, 
these coordinates have different equilibrium positions Pir. To 
ensure a finite rate, we include damping through coupling to a 
bath of harmonicoscillatorsX/.2G2s This has the effect of damping 
the vibrational correlation functions and destroying phase 
coherence. Appendix A of ref 41 argues that the Langevin 
equations for the Q, are approximately decoupled, so we may as 
well make the assumption of separate baths for each coordinate; 
namely, C,, # 0 for only one r. The correlation functions of the 
Qr and P, decay with time according to damping coefficients yr 
determined by the C/, and w). We neglect pure dephasing in this 
treatment. 

The thermal averages appearing in the rate expression can be 
computed with the help of a unitary tran~formation:~0.~2 ‘1c = 
e x p { ( i / h ) ~ ~ l ~ r ~ ~ = l l i )  (jigi,], where Fr = Pr + I/C/ ,P/ .  For 
example, the full four-point correlation function appearing in k v  
becomes 

, = I  
N 

r= I 
N 

where E , ,  = c, - t, and the time dependence of P, is now given by 

P,( t )  = exp(ijj,t/ h )pr(0) exp(-iR,t/ h )  ( 13) 

with the purely vibrational Hamiltonian 

The thermal average on the right-hand side is also computed 
with respect to and can be performed exactly by a second- 
order cumulant expansion in the 4’s. 
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N 

is the two-time momentum correlation function. 
The correlation function can be calculated by means of the 

fluctuationdissipation theorem43 and expressed40 in terms of the 
frequency-dependent friction coefficient2’ 

We work in the ohmic case where the friction coefficient qr is 
independent of frequency for all il << wc and assume the cutoff 
frequency wc is much higher than any other frequency in the 
problem. Assuming lightly damped modes ( ~ 4 2  << wr),  we get 

K r ( T )  = ?[e+rT(fi, 2 + 1) + eiw,rfi,le-~~r~ (22) 

whereh, = (ehwJknT- l)-I is the thermal mean number of phonons 
intherthmode, Tisthetemperature,andy,= ~,/2isthedamping 
coefficient of the rth mode. The presence of damping actually 
cause~a  shift in theoscillation frequency of thecorrelation function 
from the value wr appearing in the Hamiltonian. From here 
onward, w, will refer to the oscillation frequency. Because the 
damping oscillator bath has some finite correlation time 
NO;’,  we have q r ( i l )  + 0 as il - a. This means that the ohmic 
limit is only approximate and that the correlation function is 
actually an analytic function of the time, allowing contour 
distortion in the saddle-point approach that follows. 

111. Semiclassical Saddle-Point Expansion 

111.1. Application to the Two-State Problem. Semiclassical 
saddle-point methods (“steepest descent” or “stationary phase“) 
havebeen usedsuccessfully in the past toanalyze two-state electron 
t r a n ~ f e r a . ~ ~ . ~ s  and the related problem of solid-state polaron 
motiom46 The saddle-point method is a valid approximation 
whenever the transition is coupled to at  least one mode with S 
= A/hw >> 1, even at  zero temperature. Here the reorganization 
energy is A = ‘ / 2q i2w2,  with q12 the displacement of a coordinate 
between the two vibrational potential surfaces. A brief review 
of the method will clarify the subsequent sections. 

The two-state rate constant is expressed as an integral of the 

x r 
C 

u i 

! E  

vibrational coordinate Q 
Figure 1. Three-state problem, showing the semiclassical energy 
denominator E. 

form 

where Vis the electronic matrix element and g ( ~ )  is a function 
determined by the model parameters. Saddle-points are deter- 
mined (usually numerically) by the equation g’(s.) = 0, and it 
is these points about which g is expanded. When at  least one 
mode has S >> 1, the saddle-points are well-separated compared 
to their widths and the approximation is valid. This situation is 
referred to as the “semiclassical regime” (often called the “strong 
coupling case”); the more classical regime with kBT >> hw for 
all the modes will be referred to as the “high-temperature limit”. 
The saddle-point method is capable of capturing non-Gaussian 
energy-gap dependence, which results when the saddle-points 
contributing to the integral are distant from the origin by an 
amount comparable to or greater than a vibrational period. This 
can happen if there are both “low-frequency” (L) modes with SL 
= ‘ / tq i12wL/h  >> 1 and “high-frequency” (H) modes with SH = 
I /ZqH[?WH/h  5 1 and ~ W H  > kBT,,,. The shape of such non- 
Gaussian dependence has been described e l s e ~ h e r e . ~ ~ . ~ ~  By 
contrast, the short-time approximation (expanding about the 
origin) yields a Gaussian energy-gap dependence. 

Even when the phase coherence of the system is maintained 
for several vibrational periods, the saddle-point approach can 
still be used by including contributions from additional saddle- 
points. The coherence time,47 the time for the phase of a 
wavepacket to be randomized, is given by44 

-I 

7C’COH - [ g y r e  ” J  ‘(215, + l ) ]  (24) 
2h 

The contribution from the nth saddle-point is smaller than that 
of the primary saddle (n = 0) by we-2m/(wrcOH). The statement 
that coherent recurrence in the final state can be neglected is 
equivalent to the assumption WrTCOH/2* < 1 for all modes. This 
is equivalent to neglecting all saddle-points except that closest to 
the origin, Le., that most like the short-time approximation. These 
considerations motivate us to apply saddle-point methods to the 
three-state problem, rather than the short-time expansions used 
by many  researcher^.^.^).^^.^^ 

III.2. Jmge Energy Denominator. A.  Asymptoric Expansion. 
In the three-state problem, we are particularly interested in the 
extremes of large and small energy denominator. These cases 
are distinguished by whether the intermediate state is well- 
separated in energy from the initial and final states in some sense 
to be clarified below. 

First consider the case of a high-energy intermediate state. 
The problem is depicted in Figure 1 for the case of one harmonic 
coordinate. We want an asymptoticexpansion for the rate integral 
of the three-state system that has the two-state rate (with the 



3248 The Journal of Physical Chemistry, Vol. 97, No. 13, 1993 

effective matrix element) as the leading term. Motivated by the 
success of the saddle-point method in approximating and 
elucidating the two-state problem, we seek an analogous approach 
for the three-state problem. We confine ourselves to situations 
where the activation energy is determined by the initial/final 
crossing; other situations have been studied by Kharkats and 
co-workers.6 Throughout the paper, we confine ourselves to a 
regime with U,Tc.oH/2T << 1 for all modes. 

There are two features of the virtual rate integral kv in eq 15 
that could require deviations from the saddle-point approach used 
in the two-state problem. First, the integrand in kvhas two terms. 
The integral of each one separately is divergent. This can be seen 
by making a change of variables s = I/2(s2 + sl)  and a = s2 - 
S I .  We find that as s - m the integral over 7 and a of each of 
the two terms approaches the finite value kI2kz3, where k12 and 
k23 are the two-state perturbative rates from states 1 to 2 and 2 
to 3 ,  respectively. (This can be seen from eqs 15, 18,19, and 22) .  
Performing the remaining s integral then only makes sense for 
the difference of the two terms and not for each of them separately. 
As shown in Appendix B, the case of large E can generally be 
dealt with by considering only the first term of the integrand. 
(This is not an issue for the cross-term kc in eq 16.) 

The second distinguishing feature of the three-state problem 
is that the limits on the si and s2 integrals only extend from 0 to 
-. Recall that the critical points dominating an integral include 
not just the saddle-points but also the boundary of integrati~n.~E 
In the case of large E, we include the effects of the boundary by 
performing short-time expansions in sI  and s2, while doing the 
saddle-point expansion in T .  The results of the calculation show 
that the typical values of si and s2 contributing to the integral 
are indeed short when the intermediate state is well-removed in 
energy from the initial and final states. 

The procedure for generating the asymptotic expansion for kv 
is as follows. Let f =fA + fBdenote the argument of the exponential 
in the first term of eq 15. Setting sI  = s2 = 0, the saddle-points 
T *  are determined from 

either numerically or, in some limits, analytically. In the large 
E case, damping is ignored in the computation of all derivatives. 
This is justified if the width of the saddle-points T F ~  << 7 ~ 0 ~ .  

Examination of the integrand shows that this results in the same 
saddle-point equation as in the two-state initial/final problem. 
We expand f about (7.,0,0). Keeping the terms in sI, s2, and (7 
- T.)~ up in the exponential, we expand the exponential of all 
other terms. This results in integrals of the form S-tdT 7n47' and 
lima--o+ Jcds sne-is-*s, which can be done exactly. We assume 
that the 7 contour can be distorted to pass through the saddle- 
point along the contour of steepest descent. We collect terms 
proportional to a given power of h .  (In doing this, we do not 
expand Rr in powers of h.) For the cross-term kc in eq 16, we 
apply the analogous procedure with only one s variable. (This 
asymptotic expansion is similar in some ways to the loop expansion 
of quantum field theory49 or quantum many-body physics.50 The 
Feynman rules for a diagrammatic approach to this expansion 
have been given elsewhere.5l) 

B. Leading Term. The leading term is found to be identical 
with the rate of a two-state system consisting of only the initial 
and final states, with an effective matrix element V I 2 V Z 3 / E  + 
Vl3: 

and the quantity playing the role of the semiclassical energy 
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denominator is 

The exponential factor is precisely that of the direct transfer rate 
in a two-state system consisting of states 11) and 13). Because 
this has been obtained with a saddle-point expansion, it reproduces 
the non-Gaussian c 1  3 dependence already described in the two- 
state p r ~ b l e m . ~ ~ . ~ ~  This causes the full e13 dependence of this 
expansion to differ from that of eq 4 . 1 2 ~  of ref 24. 

In the limit ~ , 1 ~ * l  << 1 for all the modes, we retrieve the short- 
time approximation and, this becomes the well-known Marcus/ 
Hopfield e x p r e s s i ~ n ~ ~ . ~ ~  with the above effective matrix element. 
The physical meaning of the saddle-point time 11.1 is the time the 
vibrational coordinates spend tunneling between electronic states. 
The limit w , I T * ~  << 1 then means that vibrational quantum effects 
are weak. This limit can occur if the reaction is activationless, 
Le., ifc13 = A13,  where A13 ~ ~ l ( 1 / 2 ) q ~ , , 3 ~ f i ~ t h e r e o r g a n i z a t i o n  
energy for the overall reaction. In this case, T* = 0. This limit 
also occurs in the high-temperature limit, hw,  << keT, for all the 
modes. If there are high-frequency modes coupled to the reaction 
that have ho > keTroom - 200 cm-I, as there almost certainly 
are in the photosynthetic  system^,^^^^^^^ we are never in the high- 
temperature limit and vibrational quantum effects qualitatively 
change the temperature and energy-gap dependen~es.5~-5~ In 
general, 7. # 0, and this leading term itself contains quantum 
effects. 

As in the two-state problem, an important time scale is the 
width of the saddle-point, the Franck-Condon time T F C ~ ~ .  In the 
limit o ~ ( T * I  << 1 for each mode, this simplifies to 

N 

which in the high-temperature limit becomes TFC13 = 
(h /2X13k~T)1 / * .  The physical meaning of TFC13 is the time for 
the energy of a vibrational wavepacket moving through the 
crossing point to change by one vibrational quantum due to the 
force exerted on it by the potential surfaces. On this time scale, 
vibrational forces cause two wavepackets, both initially at  the 
crossing point, to lose coherent overlap with each other as they 
move on the initial- and final-state potential surfaces, respectively. 
For biological electron transfer, it is typically on the order of TFC - 10 fs. In regimes of physical interest, it is this very short time 
scale TFC which governs the microscopic reaction dynamics, and 
so the response of the system to external forces needs to be linear 
only over this short time, supporting the validity of the harmonic 
approximation for the vibrational motions.21-34 

The semiclassical energy denominator is given by 
N 

Because we neglect damping in the computation of derivatives 
in this section, we introduce the undamped correlation function 

K : ( T )  = 2[e-i+r(fir 2 + I )  + ei~rrij,] (31)  

In the case of only one mode, the energy denominator simplifies 
to 

E = - €13- 412 + j412423w 1 2 

413 
which agrees with eq 9 of ref 31 in the case 412 = q 2 3 .  This is 
precisely the energy vertically from the initial/final crossing point 
to the intermediate state, as in Figure 1. Note that in the case 
of two or more modes the initial/final crossing is not a point but 
rather a curve, surface, or hypersurface of vibrational configu- 
rations. When the reaction is nearly activationless, so that ~47.1 
<< 1, the semiclassical energy denominator for N modes can be 
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Figure 2. The semiclassical energy denominator is generally temperature- 
dependent for two or more vibrational modes. An explanation for this 
is that  the energy gradient V E I ,  generally would not be the direction to 
go from the initial equilibrium through the minimum of the initial/final 
crossing. 

written 
N 

which agrees with the energy denominator of eq 5.3b of ref 24 
if we make the correspondence 

N 

(34) 

(Equation 30 is the generalization of this to situations with o I T . ~  
L 1 .) A geometric meaning for E may be extracted in the high- 
temperature limit, where E is just the energy vertically from the 
minimum of the initial/final crossing to the intermediate state 
(hyper)surface. 

With more thanone mode, Eisslightly temperaturedependent, 
barring the special cases of an activationless reaction, the high- 
temperature limit, and WI = 0 2 .  Starting at  theinitialequilibrium, 
at low temperatures the system tends to follow the initial/final 
potential difference gradient (see Figure 2). This path generally 
does not pass through the minimum of the initial/final crossing. 
(Note that in cases without frequency shift, as we are considering, 
this minimum lies on the line connecting the initial and final 
equilibria.) At high temperatures the system may go against the 
gradient, and the easiest way of crossing to the final state without 
tunneling is by going to the initial/final crossing minimum. As 
the temperature is raised from low to high temperatures, the 
position at  which the system most typically leaves the initial state 
shifts to the initial/final minimum, shifting the effective energy 
denominator E. Any corrections due to fluctuations about this 
minimum appear in the first corrections of the expansion, since 
they are of relative order - ( h / E r , = ~ ) ~ .  

C. Three-State Correcrions. The higher terms of the expansion 
contain pieces that are also present in the two-state problem plus 
pieces that are unique to the three-state problem. Treating the 
system within the two-state approximation is then equivalent to 
neglecting these corrections, and we can gain physical insight 
into the meaning of the two-state approximation by investigating 
their significance. The physical meaning of these quantum 
corrections can be most easily extracted by examining the case 
of just one low-frequency mode. We find, through O(h) 
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Q 
Figure 3. Deviation from two-state behavior. Wavepacket spreading 
during vibrational tunneling. The typical tunneling time is given by T * ,  

the saddle-point location. During this time, a wavepacket a t  the crossing 
point spreads by an amount 6q, blurring the energy denominator by bE. 

corrections, 

k 1 3  - k\!){1 + “two state” + “spreading wavepacket” + 
“overlap loss”) (35) 

The leading term k(O) was given in eq 26 and described above. 
The O( h )  two-state corrections appear in the semiclassical 

expansion of the two-state initial/final problem. The first two- 
statecorrection for onemodeat T =  Ois-(1/12)(hiw)/X13.Thus 
even at  T = 0, where any mode is quantum-mechanical in the 
sense that A << 1, a mode may be semiclassical in the sense that 
its quantum is small compared to the “classical” energies of the 
problem, such as reorganization energies. 

The other pieces of the O ( h )  correction are entirely due to the 
three-state character of the problem. The first of these, 

“spreading wavepacket” hq,2q23[KU”(~*) - K“”(0)]/E2 

is named for its interpretation in situations with W ~ T O I  << 1. In 
that limit, it is 

(36) 

(37) 

where E d Q )  = V I ( Q )  - V d Q )  and E23(Q) t VAQ) - v3(Q). The 
magnitude of the real time i n  is the time spent vibrationally 
tunneling from reactants to products. When the reaction is 
activationless or at  high-temperatures, T. = 0, because there is 
no need to tunnel. The quantity 6Q = IhiT.11/2 is then the amount 
of spreading of a wavepacket placed at the crossing point while 
the system tunnels from reactants to products. The spreading of 
a wavepacket is a purely quantum-mechanical phenomenon, with 
h playing the role of a diffusion constant. Becauseof the gradients 
of the potential differences aE12/aQ and aE23/aQ, this spread or 
blurring in position directly results in a blurring of the energy 
denominator 6E, as shown in Figure 3. The two-state approx- 
imation assumes that spreading wavepacket << 1. This is 
equivalent to the statement that this blurring of the energy 
denominator is much smaller than the energy denominator itself. 
This correction could be viewed as being due to the coordinate 
dependence of the energy differences between the states and so 
reflects the ’non-Condon” quality that the intermediate state 
surface induces on an effective matrix element coupling the initial 
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Q 
Figure 4. Deviation from two-state behavior. Dynamics in the virtual 
intermediate state. Vibrational forces move the wavepacket away from 
the crossing-point in a time typified by the Franck-Condon time, TFC'.  

and final states. When the reaction is activationless or in the 
high-temperature limit, T I  = 0 and this correction is negligible. 

The other three-state piece in the O( h )  correction is 

overlap loss I -2 - 
(E:c12)2 

where TFC.12 = [h/X12w c o t h ( h w / 2 k ~ T ) ] ~ / ~ .  If this correction is 
21, thenduringthetime ~h/Eallowedinthevirtualintermediate 
by the uncertainty principle, the vibronic force displaces a 
vibrational wavepacket from the crossing point enough to lose 
overlap with a wavepacket held fixed there. That is, the time 
that the system is allowed to spend in the virtual intermediate by 
the uncertainty principle is so long that vibrational dynamics in 
the intermediate state become significant (see Figure 4). The 
sign indicates that mixing is being cut short, reducing the rate. 
In terms of energies, this correction is -4h12ho(ii + ' / 2 ) /E2 .  The 
energy in the numerator is the energy fluctuation due to the 
thermal and quantum coordinate fluctuations in the presence of 
the vibronic force F12 5 w2q12. This correction also contains, for 
two or more modes, the effects of fluctuations along the initial/ 
final crossing curve, since these are of order ( (F6q)2) /E2 - ( h /  
(ETFC,))* relative to the leading term. 

The O(h2)  corrections are quite complicated in appearance. 
In activationless cases with nearly vanishing energy denominator, 
we have found numerically that the largest such correction is 
2(  ET^(.,^))*, with the interpretation already discussed. 

If only the leading term is considered, then in the presence of 
a matrix element VI3 directly connecting the initial and final 
states it is possible for the direct coupling to precisely cancel the 
effective coupling Vi2/V23/E from the virtual transition. If the 
rate were given exactly by the leading term, it would be 
proportional to (Vi3 + Vi2V23/E)2 and there would be the 
possibility of making the rate vanish (as might be desirable for 
a recombination reaction) by appropriately adjusting the matrix 
elements and/or energy denominator. Quantum effects are 
responsible for corrections to the leading term that prevent 
complete destructive interference from occurring, placing a 
nonzero quantum minimum on the rate. At present, however, we 
know of no reaction that appears to approach this quantum 
minimum rate. Having said this, we treat only the case Vi3 = 
0 for the remainder of the paper. 

Here we give the detailed expressions for the virtual rate at  
large E, through the O(h) corrections, organized by powers of 
E: 

k ,  ( T ) u 0 [  1 + u , / E  + u2/E2]  (39) 

with 

u1 = 

and 

a2 = 

N 

X 
h 

N 

N N 

r= I 
N N 

U:(fir + ' /J))I (42) 
Because 7. is generally determined numerically from eq 25, these 
expressions cannot be simplified further. The function K37) is 
given by eq 3 1 as a simple combination of exponentials, and its 
derivatives will not be written here. The semiclassical energy 
denominator is most easily computed from eq 30. Two-state 
corrections have not been written here; they are small for the 
situations of interest. 

111.3. Small Energy Denominator. The above expansion 
certainly breaks down when the semiclassical energy denominator 
E = 0. This may occur in the photosynthetic primary charge 
separation. Perturbation theory can be valid nonetheless, as 
indicated by the behavior of a simplified three-state model.19 The 
essential reason is that vibrational dynamics and dephasing 
processes limit the coherent mixing into and out of the intermediate 
state. The rates of these processes, T& and T&,, can be much 
larger than the electronic mixing frequency ( V / h ) ,  thus rescuing 
perturbation theory. Furthermore, even in the extreme case E 
= 0 the system may still be semiclassical, in the sense that the 
electronic-vibrational coupling constants S >> 1. At small E, we 
confine our calculations to nearly activationless reactions for the 
sake of simplicity; experiments indicate that the photosynthetic 
primary separation falls into this categorya60 

We now estimate the virtual rate in situations with E = 0 and 
obtain corrections in powers of E, using a semiclassical saddle- 
point expansion. As discussed in Appendix B and below, we 
locate and evaluate the contributions from saddle-points of the 
first term in the integrand of eq 15. The second term plays the 
crucial role of canceling the first term very far from the origin, 
rendering the rate finite. 

For small E, boundary effects are unimportant and the 
stationary points of the integrand are the dominant critical points. 
We look for the saddle-point in three (complex) dimensions. Here 
we work in cases where E = 0 and the reaction is activationless 
( € 1 3  = k i j ) .  We assume ( € 2 3  - X23)*7;fl3/h2 >> 1, where 7 ~ ~ 2 3  
is defined as analogous to 7pc13 in eq 29. This means that kz3 
is far from activationless. We further assume TCOH >> TPC. In 
general the saddle-point structure is complicated. To simplify 
the situation, we suppose all the mode frequencies are equal (w) ,  
as are the damping coefficients (7) .  For light damping, we can 
ignore the damping in locating the saddle-points; this will be 
justified below. We then have a three-dimensional lattice of 
saddle-points spaced by 2 u / w .  If the coherence time is much 
shorter than the vibrational period, all the saddle-points are 
exponentially attenuated relative to the one at  the origin, except 
for those at  (7 .  = 0, sI* = n27r/w, ~ 2 .  = n 2 u / w ) ,  with n 2 0. We 
will make this assumption, although longer coherence times can 
be handled by including additional saddle-points. Let s = I/Z(SZ 
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is the (T ,u)  Hessian determinant62 and + SI) and a = s? - SI, so the saddle-points are at  (7, = 0, ur = 
0, s* = n2rlw). For n L 1, we can write the exponent function 
in eq 15 as 

r= l  
N 

~ : ( ' / , a  - s) + K:(T + ' / 2 a  + s) - K:( ' / ,u  + ~ ) ] e - ~ ~ '  (43) 

where q ( ~ )  is the undamped correlation function given in eq 3 1. 
The only approximation that has been made here is neglecting 
T and a in the damping factors. This is justified because the 
range of T and a contributing to the integral is on the order of 
TFC, which is small compared to the value of s a  = n27r/w for n 
L 1. We will discuss then = 0 saddle-point contribution shortly. 

In most applications of the saddle-point method, the function 
would be expanded about the saddle-point to quadratic terms. If 
we neglect damping, however, the 3 X 3 Hessian matrix has a 
null eigenvector. We must include nonquadratic terms, but we 
must also include damping in the expansion to ensure that 
successive saddle-points give smaller contributions.6' For 613 = 
h 1 3  and E = 0, with y << w, the expansion gives 

N 

N N 

N N 

Other terms with damping can be neglected, because for y << w 
they have negligible effects on the rate, as shown below. We 
have included cubic terms that haves-dependence. All such cubic 
terms aside from that shown have vanishing coefficients at  these 
saddle-points if damping is neglected. (Including damping in 
these coefficients only leads to negligible corrections in the rate.) 
The 7(s - n 2 ~ / w ) ~  term shown is the nonvanishing nonquadratic 
term of lowest order and must be included to obtain the 
contribution from the "nth" saddle-point at  ( I *  = 0, u* = 0,  SI 

= n2rlw). Cubic terms without s-dependence lead to corrections 
that are small in the semiclassical limit. 

We can now compute the nth saddle-point contribution. 
Assume the (T,u) Hessian determinant does not vanish. We can 
extend the limits of the a-integral from [-2s,+2s] to [-a,+-]; 
this is justified because the range of values of a contributing to 
the integral is of the order T F C ,  which is much smaller than s. 
After performing the Gaussian T and a integrals, we have 

where 

N 

N N 

The saddle-points are well-separated compared to their widths, 
so may extend the integral over each saddle-point to the interval 
[--,a]. In the exponential, we can rewrite 27s = 2yn2r/w + 
2y(s - n2r/w) and neglect the latter term, since for y << w it does 
not vary appreciably from 0 over the width of the saddle. 
Multiplying out the square in the exponential, the cross-term 
quadratic in (s - n27r/w) can also be neglected. Its variation 
from 0 is negligible for s in the width of the saddle and n 
contributing to the sum. The expression then factorizes into an 
integral and a sum. The integral is J'_",ds e-"+ = 
2~-1/~(1/4)I'(I/J N 2u-II4. The sum is E,"=lexp( - n2/2N3) N 

( ~ / 2 ) l / ~ N , ,  where 

N,  (~ /27ry ) (w~ /8u)"~  (48) 

is assumed >>1. Th i s  corresponds to the  assumption 
( 7 ~ 0 ~ / 7 ~ ~ ) ( 2 f i  + 1) >> 1, which is consistent with our earlier 
assumption TCOH >> TFC. Corrections for nonzero E arecomputed 
by expanding the factor eiEa/h inside the integral; corrections for 
non-zero activation energy can be computed similarly. 

We must justify the neglect of all damping terms except that 
included in eq 44. The other damping terms change either the 
( 7 , ~ )  Hessian determinant or coefficients of cubic terms. The 
inclusion of such terms multiplies the exponent in eq 45 by (1 + 
O( l)ys), which has a negligible effect on the saddle-point integral 
and on thesum over saddle-points. We can alsoclarify thevalidity 
of expanding about the points ( T O  = 0, a. = 0, S* = n2r/y).  This 
is valid if the combination of derivatives constituting A4 and u 
undergo negligible changes A(A4) and Au upon displacement to 
the exact saddle-points. To lowest nonvanishing order in y/w, 
the deviations from the exact saddle-point locations are A n ,  AUO, 
and h a ,  each - O(l)y/w2. We then have 

and also 

O(l)(ylw)(2fi + 1) (50) 
fr,,, Au/u - O(1) - 1 fr,, 1 w2 

To ensure the validity of expanding about these points, we must 
require (y/w)(2fi + 1) << 1. 

The computation of the n = 0 saddle-point contribution is 
complicated by the boundary of integration. For n = 0, we can 
neglect damping altogether in the expansion of eq 44, assuming 
T F ( ,  << TCOH. Following the above procedure, we see that this 
saddle-point contribution is of the same order of magnitude as 
the others contributing to the sum, Le., those with n S Ns. Since 
N ,  >> 1 under these assumptions, we are justified in neglecting 
the n = 0 saddle-point, because it is only one out of many 
contributing saddle-points. 

We now summarize the expression for the virtual rate at  small 
E, in the case of activationless reactions. We have assumed ((23 

- X 2 , ) 2 r ~ C 2 3 / h 2  >> 1, (y/w)(2R + 1) << 1, and T C O H  >> 7fc. We 
have 

b,[l + b2E2] k,*- v:2 v;3 
h 
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where 

and 

(53) 

if all the mode frequencies and damping coefficients are equal; 
in more complicated cases this gives the order of magnitude. 
Also, 

and 
N N 

8h3~4 
Furthermore, 

The dependence of the rate on small E is roughly 

The energy scale h / ~ p ( .  controls the E-dependence near E = 0, 
as has been noted by Hu and Mukamel in the continuum case.23*24 

IV. Summary and Discussion 

We have used saddle-point methods to investigate the problem 
of virtual transitions in vibrationally coupled three-state systems 
with a small number of vibronically coupled modes. We 
considered modes that are underdamped but have vibrational 
periods long compared to the coherence time. 

At large energy denominator, the method reveals the corrections 
to two-state behavior. The two-state approximation can be 
checked for a given system by comparing the leading term of eq 
39 with its higher terms. The physical interpretation of one of 
these corrections is the quantum-mechanical spreading of wave- 
packets about the initial/final crossing point. This leads to a 
spread of values for the energy denominator. Another correction 
is due to vibrational dynamics in the intermediate state. Because 
the virtual transition is energy nonconserving in this case, the 
uncertainty principle limits the time spent in the virtual inter- 
mediate to be no more than - h / E .  If this time becomes longer 
than the time scale on which vibrational dynamics occurs, T ~ ~ ,  

we can no longer ignore the dynamics in the intermediate state. 
For small values of the semiclassical energy denominator, the 

main results are contained in eqs 51-56. We found an inverse 
dependence of the virtual rate on the damping coefficient for 
light damping and an enhancement of the rate by thecontributions 
of many saddle-points. This has the physical significance that 
as the coherence time increases, the virtual rate increases. This 
is essentially due to the nature of virtual transfer, in which 
coherence is maintained in the intermediate state. This distin- 
guishes virtual transfer from direct transfer, where the rate is 
independent of damping in the regime we have considered. 

In systems that are candidates for virtual transfer, we often 
want to know if the initial-state decay is dominated by the virtual 
rate kYor by the first step of a two-step process, k12. We assume 
the dephasing rates ~ / T C O H  > V12, V23r so the density of states 
has no structure on the energy scale of the matrix elements and 
both rates k v  and kt2 are well-defined. We also assume kz3 << 
y, so that kz3 is well-defined. With a high-energy intermediate, 
k l z  is an uphill reaction and is exponentially attenuated. 
Meanwhile the virtual rate kvis of a higher order in perturbation 
theory. If the initial/final activation energy is 0, the approximate 
criterion for the dominance of virtual transfer is 

cv23/a2 > expl-42/k,T) (58 )  

where is the energy from the initial equilibrium up to the 
initial/intermediate crossing. At sufficiently low temperatures, 
virtual transfer dominates in this regime. As the temperature 
approaches 0, the two-step process shuts off completely, while 
the virtual process continues to proceed. 

In the case of a low-energy intermediate, the rate klz can be 
nearly activationless as well, and it is natural to ask whether 
virtual transfer can be dominant in that case. Under the 
approximations of semiclassical dynamics and short coherence 
time and assuming the state 2 equilibration rate is greater than 
the second two-step rate, virtual transfer cannot dominate the 
transfer but can make a significant contribution. This can be 
shown by examining the orders of magnitude of kv and k12, while 
ignoring factors of order unity. In the case of two or more lightly 
damped modes with equal frequencies and damping coefficients, 
we estimate from eqs 51-55 

while under the same assumptions 

If we require the rate k23 is slower than or on the order of the 
equilibration rate y in the intermediate, we must have 

Other situations have been discussed by Kuznetsov and U l s t r ~ p . ~ ~  
Allowing k23 > y invalidates the virtual rate expression we are 
using in these estimates (see Appendix A). Nonetheless, we expect 
that if k23 5 y the expressions we use here will be of the correct 
order of magnitude. We then obtain a limit for the relative 
contribution of virtual transfer: 

Requiring that the Landau-Zener probabilities are small com- 
pared to unity does not yield a stronger relation. At room 
temperature and using h = 1200 cm-I, the right-hand side of this 
relation can be estimated as = ( k ~ T / h ) ' / ~  = 0.3, which is not 
entirely negligible. Within these assumptions and approximations, 
therefore, it is possible for thevirtual rate to makean appreciable 
contribution at  small energy denominator along with two-step 
transfer. 
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Appendix A General Expression for the Virtual Rate in 
Perturbation Tbeory 

In this Appendix, we derive the general expression for the 
virtual rate perturbatively in the electronic matrix elements in a 
system with three electronic states and vibrational degrees of 
freedom y,. Suppose at  time f = 0 the system is in state 11) and 
the vibrational coordinates are in thermal equilibrium. Note 
that if one calculates the decay rate of the state 1 population 
through terms of order V:2Vi,, one cannot identify such terms 
with the virtual rate, because the rate k12 contributes to the state 
1 decay rate and it has perturbative corrections proportional to 
V:2V:3. Thus we examine the state 3 population instead. The 
population of state 13) a t  a later time t is P3(t) = &P(i). 
I(3f IU(r,0)lli)12, where we have summed over all final states of 
the y, and thermally averaged over initial states with the 
Boltzmann weightP(i). U(t,O) = Texp(-(i/h)JbdT H'(T)) is the 
time evolution operator in the interaction representation. We 
work in the Markovian limit,63 assuming that the reaction time 
is much longer than the coherence time for each reaction. We 
further assume that all the rate constants are well-defined, 
requiring that y, the rate of thermal equilibration in state 2, is 
much greater than k23, the rate of the second step. (As shown 
in section IV, this does not rule out a dominant virtual process 
a t  large energy denominator and does not necessitate a negligible 
virtual contribution a t  small energy denominator. Situations in 
which relaxation in the intermediate is incomplete have been 
studied by Kuznetsov and U l ~ t r u p . ~ ~  At times much shorter than 
reaction times but much longer than the coherence time, the 
population takes the form P, ( t )  H k13f + I/2k12k23t2, the short- 
time solution of the master equations 

dPj/dt = zki,Pi - P j c k j i  (63) 
i i 

Here kij is the rate constant to go from state li) with vibrational 
coordinates starting in thermal equilibrium to state b). The term 
'/&I 2k23t2 is due to the two-step process in which state 12) appears 
as a real intermediate, in distinction from the term k l ~ t ,  which 
is due to a transition from state 11 ) to state 13) through state 12) 
as a virtual intermediate (the "superexchange" process), direct 
transfer from (1) to 13) due to Vl3, and interference between the 
virtual and direct pathways. In order to calculate kl , ,  we must 
subtract from P3.roral(t)r the total population on state 13), a 
contribution that becomes 1/2k~2k23t2 + (0)r ast-  m ( t  >> TCOH).  

The remaining population is just proportional to t at large times, 
and the coefficient of proportionality can be identified as the rate 
constant kI3.  The total population on state 13) through order 

PjD(t) ,  where 
(V:,V:,, V13V12V23rV:3) is P3,rorol(l) = P3Joour-pr(t) + P3dO + 

with (...)I denoting thermal average in state 1. The operators 
H,, Vijli) 01 depend on time in the interaction picture. We must 
subtract from this the two-step contribution, which at  this order 
is 

where the subscripts 1 and 2 on the thermal averages indicate 
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that the averages are taken in states 1 and 2, respectively. This 
is thesame integral as inP3Jour.pr(t) but withonly thedisconnected 
part instead of the full perturbation correlation function. See 
below for the demonstration that this is indeed the contribution 
to the final-state population due to the two-step process. 

To get the rate kl, we now calculate the coefficient o f t  in the 
large-? limit of the expression P3.0ne.srPp(f) = PJdt) + P3dt) + 
P d ) ,  where P3dt) = P 3 ~ ~ ~ ~ . ~ ~ ( t )  - P3.rwo-srep(t). The simplest 
way to do this is to calculate 

Thus 

In each term we will change the integration variables so the 
arguments of the correlation function are Cdt3 + sI, t 3 ,  -s2,0). 
This changes the regions of integration, and we must find what 
region is filled as t - a. The first term covers the region defined 
by the inequalities 

t ,  < t ,  s2 < 0, 0 < s2 + t , ,  -t < sI < 0 (72) 

The second term covers the region defined by 

-t < s2 < 0, SI < 0, s2 + t ,  < 0, -t < SI + s2 + t ,  (73) 
As t - 01, the total region of integration becomes the quadrant 
sI < 0, s2 < 0. We may change variables sI - -sl, s2 - -s2, and 
t 3  - T .  This yields the virtual rate 

k, = LJmdT h4 -m Jomdsl Jmds2 C J T  - sI, T ,  s2, 0) (74) 

For some calculations it is convenient to make the change of 
variables T - T + s2 in the integral and then subtract s2 from 
all four arguments of the correlation function (allowed by 
stationarity of the equilibrium ensemble). This gives 

k, = 1 J - d .  h4 -- K d s ,  C d s 2  Cy(7 - sI, T ,  0, -s2) (75) 

This is the virtual rate for a vibrationally-assisted transition at  
lowest order in the perturbation theory, regardless of the potentials 
seen by the vibrational coordinates. 

The possibility that the above rate expression might be negative 
in some cases is not a great concern for the following reason. We 
are guaranteed that the final-state population is always positive, 
since it is the sum of squared amplitudes. At times greater than 
the coherence time but smaller than the reaction times we know 
this populationvaries with timeasP,(r) H kl,r + I/2kl2k23t2; this 
expression must be positive throughout this range of times. If 
k l : ,  < 0, this expression is negative for times t < Jki3)/('/&12k23) 
= tnrR, and thus we can conclude that tnrg < TCOH. This means 
Ikl,l< I / ~ ~ ~ ~ ~ I , T c . o H .  Ifk12andk2, arewell-definedrateconstants, 
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then each of them must be <<1/7coH. Thus Ik131 << k12 and Jk131 
<< k23, so the virtual process gives a negligible contribution to the 
final-state population compared to that of the two-step process. 
Therefore, if the virtual rate expression above ever does take on 
a negative value, its magnitude will be negligible and we may as 
well treat it as 0. 

In the presence of a matrix element VI 3 coupling the initial and 
final states directly, we also need the "interference" (kc)  and 
"direct" ( k ~ )  terms: 

(77) 

These can be obtained from P3c(t) and P3D(t), respectively, by 
the same technique we used to derive kv from P3 dt).  The general 
perturbative expression for the rate from state 1 to state 3, kl3 
= kv + kc + kD, is then given by eqs 75, 76, and 77. 

Finally, we show that the contribution to the final-state 
population due to the two-step process is 

(H,2(72)H21 (74) ) I (H23(TI)H32(73) )2 (78) 

We need to show that as I - - this becomes I/2k12k23r2 + (0)r 
+terms that remain bounded as I grows large. Denote the Fourier 
transforms of ( 1 /h2)  ( H,2(7)H21 (0) ) I and ( 1  / h 2 )  (H23(~) -  
H32(0))2 respectively by gI2(fl) and k23(fl). From its above 
definition. we can now write 

where we have introduced dimensionless frequencies Z I  rz2 choosing 
thetimet asthescale. Ast --,klz(z~/t) k12(0) + k'12(0)(~1t). 
Note that k12(0) = k12 and k23(0) = k23, so in order to show that 
the t 2  piece is I/2kl2k2312, we just have to show that the 
dimensionless integral is equal to ' / 2 .  Do the z integrals first. 

= Jldrl  Jor'dr2 = (80) 

The I piece is 0 since the corresponding dimensionless integrals 
can be shown to vanish. There is a contribution proportional to 
k'12(0)k23(0) and a, contribution proportional to k12(0)&'23(O). 
The coefficient of k',2(0)k23(0) is 

(81) 
Changingvariablesz, --zI,z~---z~,T~ -73,and 72-TggiveS 
J = -J = 0. The coefficient of k12(0)k'23(0) can be shown to 
vanish in the same way. 

-izl(rz-r,) - iq(rI-r ,)  ZIe  e 

Appendix B: The Importance of the Disconnected Part 

Here we determine the criteria for the validity of neglecting 
the second term of the integrand of k v  in eq 15. The virtual rate 
was expressed in section 11.2 as an integral of the difference of 
two terms. The integrand of the first term is a four-point 
correlation function of the interactions. The second term is the 
disconnected part of the correlation function. This corresponds 

to the final-state population resulting from the two-step process. 
In the case of harmonic vibrational coordinates, this subtraction 
resulted in the two terms in eq 15. In estimating the virtual rate 
at  large and small E in sections 111.2 and 111.3, we make saddle- 
point and short-time approximations on the integrand of only the 
first of the two terms of the integrand. Here we find the 
circumstances under which this is a valid procedure. It is 
important to emphasize at  the outset that the second term is 
crucial if k v  is to be finite. We will clarify how this can be 
consistent with the neglect of the second term in saddle-point 
expansions. 

Let s = I/2(s2 + SI), and a = s2 - SI. Notice that, if we fix 
sand imagine doing the 7 and a integrals, the remaining integrand 
is the difference of two functions of s, call them Zl(s) and Z2(s), 
each of which approaches the same finite constant k12k23 at  large 
s. This can be seen by examination of eqs 15,18,19, and 22. The 
first term has this value for s >> 1 /y. The second term attains 
this value after the time TFC, because beyond that the a integral 
can be extended to (--,+-I. Thus while the s integral of each 
of the two terms separately is infinite, the integral of the difference 
of the two terms is finite. The second term is crucial to arrive 
at  a finite rate constant in any case. It is useful to define new 
functions Fl(s) = I , ( $ )  - k12k23 and F2(s) = Z2(s) - k12k23. We 
then have k v  = kvl - k ~ 2 ,  where kvl = J,"& Fl(s) and kY2 = 
J;ds F2(s) are each finite. 

In cases with kn << kvl, we may neglect ku, but this does not 
correspond to neglecting the second term of eq 15. Rather it 
corresponds to neglecting the deviations of Z2(s) from theconstant 
k12k23, This constant is crucial for a finite rate, and indeed it is 
subtracted off from ZI (s). We will find approximate criteria under 
which k m  << kvl. 

Furthermore, the contributions to kvl from Zl(s) become 
negligible beyond a certain value of s. Let us refer to this value 
8 S s M A X .  Theexpansion ofsection 111.2 reveals that $MAX - h / E  
for large E. The expansion of section 111.3 shows that S M A X  - 
(o4/8u)I/2(l/y) for small E, where u is given by eq 55. We 
intend to show that these expansions can be self-consistent. We 
know that Z,(s) kl2k23 for s >> l /y;  this can be seen both from 
the general expression eq 15 and in the expansions at  large and 
small E. The time 1 /y is long compared to SMAX in both the large 
and small E cases. Therefore, k12k23 can be neglected in 
approximating kvl by saddle-point and short-time methods, as 
longas k12k23 ismuchsmaller thanthevaluesofZ,(s)contributing 
to kvl. We will determine when this is the case. 

First we establish when wecan neglect k12k23 in estimating kvl  
by saddle-point and short-time approximations. Within the 
Gaussian energy-gap law, 

k , 2 k 2 3  a exPk1/2(c12 - X12)27$C12/h2 - 
I /2(f23 - X2,)27iQ3h2) (82) 

where 7pc12 and 7 ~ ~ 2 3  are defined as analogous to 7 ~ ~ 1 ~  in eq 29. 
(Deviations from energy-gap law behavior lead to corrections to 
the criteria derived here.) In this work, we only consider cases 
in which the activation energy for kl3 is given by the initial/final 
crossing. For large E, Zl(s) oscillates on a time scale h / E  at 
short times with some amplitude Z I M A X  0: exp{-I/2(el3 - 
h13)2&-13/h2). For small E, we confine ourselves to nearly 
activationless situations. The function Zl(s) is approximated in 
this case in section 111.3 as the integrand of eq 45. The 
contributions from successive saddle-points become negligible 
after a time SMAX - (~~/8u)~/~(l/y). This occurs before the 
time l/y, which is when the saddle-points approach the value 
kl2k23. It will therefore be sufficient to require 

- X,2)27iC12/h2 + (e23 - X23)27i(23/h2 - 
( c 1 3  - X13)27i(',3/h2 >> (83) 

This implies that k12k23 is much smaller than the values of Zl(s) 
contributing to k v l .  
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At high temperatures, this is tantamount to requiring that the 
activation energies of the reactions satisfy Ea12 + E.23 - EaI3 >> 
keT. For large E this is easily satisfied, while for small E and 
small activation energy this is equivalent to assuming that k23 is 
far from activationless. Note that coherent recurrence alters the 
prefactor but does not affect this relative exponential attenuation. 
The requirement of eq 83 is therefore sufficient to ensure that 
the saddle-point and short-time methods of sections 111.2 and 
111.3 are self-consistent means of approximating k v l .  

To find when ku is negligible compared to kvl, we compute 
the exponentially small factor in ku. We write 

where u = T + a and 
N 

r= 1 

To make further progress, we make the short-time approximations 
/12(u) i ( c12  - A12)u- 1 / 2 u 2 / ~ i c 1 2  and similarly for f23(~). This 
leads to 

The exponentially small factor in Z(s) attains its maximum for 
s 5 h/X, where the function sin(2Sls)lQ is approximately constant 
over the range of !l covered by the two Gaussians in the above 
expression. Let us assume that Z2(s S h/A) >> k12k23. [If this 
is not the case, then ka a e ~ p ( - ~ / ~ ( e ~ ~  - A12)~&2/h* - I / 2 ( t 2 3  

- A23)2&3/h2], which by the above criterion is negligible 
compared to kvl . ]  Treating the function sin(2Qs)/Sl as a constant 
and performing the Gaussian integrals gives a proportionality of 

This holds for sufficiently small E.13. In particular, for small E 
this isequivalent tok23 beingactivated. Note that theinequalities 
of eqs 83 and 88 really need only be weakly satisfied, because of 
the exponential dependence on their left-hand sides. 

Under the criteria stated in this Appendix, self-consistent and 
valid approximations to the virtual rate can be obtained by 
performing an asymptotic expansion (saddle-point for small E or 
saddle-point/short time for large E) on only the first term of the 
integrand of eq 15. When these conditions are met, what 
essentially happens in the case of small E is that the function 
Il(s) consists of a series of peaks whose heights decreases 
appreciably over the time SMAX. The heights of the peaks are 
much greater than k12k23 through that time. At the later time 
117, the peaks decay to the constant value k12k23. Meanwhile, 
the function Iz(s) is always exponentially smaller than those peaks 
of I ! ( $ )  that contribute appreciably to k v l .  Thus, it would be 
accurate to say that, although the disconnected correlation 
function in eq 15 is crucial to have a finite rate constant, there 
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are circumstances in which it can be neglected for the purpose 
of obtaining valid approximations for the rate. 
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