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To evaluate the nature of the neural code in the cerebral cortex, we have used a combination of theory and
experiment to assess how information is represented in a realistic cortical population response. We have shown
how a sensory stimulus could be estimated on a biologically-realistic time scale, given brief individual responses
from a population of neurons with similar response properties. For neurons in extrastriate motion area MT, a
combinatorial code, one that keeps track of the cell identity of action potentials and silences in individual neurons
across the population, carries twice as much information about visual motion as does spike count averaged over
the same group of cells. The combinatorial code is more informative because of the diverse firing rate dynamics
of MT neurons in response to constant motion stimuli, and is robust to neuron-neuron correlations. We provide
a theoretical motivation for these observations that challenges commonly held ideas about the nature of cortical
coding at the level of single neurons and neural populations.

Our understanding of sensory representations
in the cerebral cortex is built on two fundamental
ideas, each of which emerged to some degree from
the study of simpler systems. First is the concept of
rate coding, that neurons respond to sensory inputs
by changing the rate at which they generate action
potentials or spikes1-3. Second is the idea of feature
selectivity, that neurons respond not to raw stimulus
variables such as light intensity but rather to specific
features such as spatial gradients and their orienta-
tion or motion4-7. Many neurons in a small neigh-
borhood of the cortex seem to have very similar fea-
ture selectivity8,9, suggesting that averaging over this
apparently redundant population is an essential com-
ponent of the cortical code.

There is no question that neurons respond to
sensory inputs by changing the rate at which they gen-
erate action potentials. However, the fact that neurons
modulate their spike rate in response to sensory stim-
uli is a statement about their average behavior in ex-
periments where the same stimulus is repeated many
times and responses are averaged to create the peri-
stimulus time histogram, or PSTH. The brain itself,
though, has no way of computing the average rate of
an individual neuron, and all decisions must be based

on single examples of the spike trains, albeit from a
populaton of cells. Furthermore, many behaviors are
guided by sensory information available in small time
windows, so that each neuron can contribute only a
handful of action potentials10,11. This raises the criti-
cal issue of how the nervous system extracts informa-
tion from such a small number of events.

While “rate coding” is viewed as well estab-
lished, codes based on the timing of spikes, whether in
sequence from a single neuron or across a population,
have been viewed as more speculative, except in spe-
cial cases. In particular, the fact that neurons in cortex
generate spike trains that are approximately described
by a modulated Poisson process means that the (time
varying) rate provides a nearly complete description
of the distribution out of which spikes are drawn, and
this has been taken as prima facie evidence against a
timing code. We will argue that this informal infer-
ence from the statistics of spike trains to the structure
of the neural code is incorrect, and we will reformu-
late the coding problem. Rather than seeing the issue
as “rate codes” vs. “timing codes,” we suggest that
one can ask directly about the nature of the symbols
that carry sensory information.
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Our paper begins by showing analytically that
once rates vary as a function of time, the best esti-
mate of rate from a single example of the spike train
depends on the detailed timing of spikes. This ef-
fect is clear in experiments conducted in visual area
MT as well, highlighting the limitations of the usual
“rate vs. timing” formulation of the coding problem.
We then demonstrate the analogous effect in popu-
lations of neurons, showing that diversity in the dy-
namics of responses—even among neurons with nom-
inally identical feature seelctivity—opens the possi-
bility of a combinatorial code10,12,13 in which stimu-
lus features are represented in patterns of spiking and
silence across a population of MT neurons. Even in
populations of modest size (N ∼ 20 cells), these pat-
terns provide more than twice the amount of informa-
tion about the stimulus than is available from pool-
ing the spike counts. While we do not know if the
cortex actually uses additional information in patterns
of spikes and silence across the population, we show
that the additional information does not require any
unusual properties of the neural spiking statistics, and
thus could exist in almost any population of cortical
neurons.

Results

Relationship of firing rate and spike timing for Pois-
son neurons

The time course of the firing rate of a neuron
can be estimated by accumulating a peri-stimulus time
histogram (PSTH) across multiple responses to the
same stimulus or motor response. In reality, however,
the nervous system does not have the opportunity to
estimate the underlying rate of a neuron’s response by
averaging across multiple nearly-identical behavioral
epochs. If it does estimate the time-modulated rate of
a neuron, r(t), then it must do so on the basis of one
sequence of all or nothing events at specified times.

To see how this would work, consider a neu-
ral spike train that is a modulated Poisson process and
assume that we observe the spike train in a window
of time 0 < t < T . For a Poisson neuron with
rate r(t), the probability density for spikes to occur

at times t1, t2, . . . , tn in the window is given by

P [t1, t2, . . . tn| r(t)] =

1
n!

exp
[
−
∫ T

0
dtr(t)

]
r(t1)r(t2) . . . r(tn). (1)

To estimate the rate r(t) from observations on the
spike train, we use Bayes’ rule to construct the proba-
bility distribution of rates given our observations:

P [r(t)|t1, t2, . . . tn] =
P [t1, t2, . . . tn| r(t)]P [r(t)]

P [t1, t2, . . . tn]
(2)

where P [r(t)] is the probability distribution for the
rates r(t) accessed by the neuron over its dynamic
range of responses, and P [t1, t2, . . . tn] is the total
probability of observing this sequence of spikes, av-
eraged over stimuli. If r̄ = 1

T

∫ T
0 dtr(t) is the average

of this rate over the whole window T , then some aleg-
bra reveals that:

P (r̄|t1, t2, . . . tn) ∝ exp(−T r̄)〈r(t1)r(t2) . . . r(tn)〉r̄
(3)

where 〈. . .〉r̄ denotes an average over all the functions
r(t) used by the neuron that have the same average
value r̄. The important aspect of Equation 3 is that
the timing of the individual spikes has not disappeared
from the result; to estimate the underlying spike rate
from a single response, we need to know the timing of
the spikes.

Figure 1 amplifies the significance of Equation
3 on the basis of recordings from our sample of 36
MT neurons. For each neuron, we measured the un-
derlying rate by averaging across many trials to create
PSTHs with a time resolution of 2 ms. We then ana-
lyzed each trial individually, taking all 32 ms windows
in which there were n = 1, 2, . . . , 9 spikes and aver-
aging the underlying rates associated with each spike
count. In Figure 1a, we consider windows that con-
tain n = 2 spikes, and ask whether the rate in this
window, defined as an average over trials, was related
consistently to the timing of the spikes. The variation
in the color across the two dimensional map indicates
that spike timing was related to underlying rate in a
complex way. To ask whether the same complex rela-
tionship would appear when the within-trial structure
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Figure 1: Relationship between underlying rate and
spike count for single neurons and neural populations.
(a) Relationship between spike times and the underly-
ing mean rate for 32 ms analysis windows that con-
tain two spikes, based on the data from a single MT
neuron. The times of the two spikes are indicated on
the abscissa and ordinate, and the color code indicates
mean rate. (b) Same as (a), but after the spikes in
each time window had been shuffled across trials. (c)
Conditional mean rate, the average of observed rates
given a particular spike count in a 32 ms analysis in-
terval, plotted as a function of the number of spikes in
the window. Symbols show rate estimated from sin-
gle neurons individually then averaged over our sam-
ple of 36; gray ribbon shows rate estimated by count-
ing spikes across single trial draws from each of the
36 neurons (pooled count). Error bars on the one cell
pool indicate standard deviations of the mean over the
36 cells recorded. Dashed line shows the naı̈ve rate,
the number of spikes indicated on the abscissa divided
by the duration of the analysis interval, n/T . (d) In-
formation about underlying rate from spike counts as
a function of the number of cells in the population.
Different curves show calulations based on different
duration analysis intervals, indicated by numbers to
the right of each curve.

of spike timing was abolished, we randomized the trial
identity of the spike train independently within each 2
ms time window. The modulation of rate across the
map in Figure 1b shows that the relationship between
spike timing and underlying rate persists, as predicted
by Equation 3, even when we enforce the Poisson na-
ture of the spike train and eliminate any correlations
across time. Similar patterns appear when the same
analysis is performed on data from Poisson model
neurons with sinusoidal modulations of the underly-
ing firing rate (data not shown).

We emphasize that these results about the role
of timing in the estimation of rate are contrary to a
widely held intuition, namely that for Poisson pro-
cesses counting spikes in a window provides the best
estimate of the underlying rate. This is exactly cor-
rect for constant rates, but once rates vary in time the
estimation problem changes its structure. To explore
this further, we look in more detail at the relationship
between the spike count in a single trial and the un-
derlying rate as estimated by the PSTH. Although it
is well known that, especially when the counts are
small, there will be significant random errors in es-
timating the rate, Figure 1c (open circles) shows that
there are also large systematic errors. For almost all
counts, the average rate in windows with a particu-
lar spike count n falls far below the naı̈vely expected
value of spike count divided by analysis window du-
ration (n/T ). When we pool spikes from across our
full sample of 36 neurons (Fig. 1c, filled circles), the
rates are much closer to the “count per time” estimate,
but only over a highly restricted dynamic range.

To assess the cost of this reduced dynamic
range, we ask directly how much information the
spike counts provide about the underlying rates in our
sample of data from MT. Increasing either the time
window for counting or the number of neurons used
in the analysis increased the information about rate
from counts, as shown in Figure 1d. But these po-
tential gains are constrained by the time scales of be-
havior: for the example of smooth pursuit eye move-
ments, which are driven by the population responses
in MT14, the time window of analysis of visual motion
is approximately 25 ms15. In a 24-ms analysis inter-
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val (Fig. 1d), even pooling across 36 neurons allowed
spike counts to provide much less than 2 bits of infor-
mation about the underlying mean rate of the popula-
tion, meaning that only 4 different values of rate can
be distinguished perfectly. In contrast, the trajectory
of the smooth pursuit behavior itself provides roughly
12 bits of information about the parameters of target
motion16. While the brain probably pools over more
than 36 neurons, these results certainly suggest that
we should explore other possible coding schemes.

Extra information about stimulus properties from pat-
terns of spikes

The coexistence of time-dependent Poisson fir-
ing with the importance of spike timing in single neu-
rons has an analog in populations of neurons. Thus, if
we have a group of cells in which rates vary across the
population, then the combinatorial patterns of spikes
and silence in a given small window of time may
provide extra information beyond that available from
pooling and counting the total number of spikes. What
is critical for thinking about this possibility in the cor-
tex is that even neurons with similar feature selectivity
can have very different responses dynamics, enabling
combinatorial coding even in a population of nomi-
nally redundant cells.

To evaluate the possible utility of a combinato-
rial code, we consider a population of MT neurons.
Experimentally, we have observed many responses
to each of a finite set of different stimuli11. Each
of the cells in our sample was directionally tuned,
with relatively similar selectivity and bandwidth when
responses are normalized (Figure 2a), although the
population had a wide range of maximal responses.
Further, in response to a step of stimulus motion at
the preferred speed and direction, different neurons
showed considerable diversity in the dynamics of their
firing rates (Figure 2b). If we assume that each neu-
ron responds independently to its sensory inputs, then
we can draw a single trial response from each neu-
ron in our data base to create a model population re-
sponse, even though the samples were recorded se-
quentially from many different neurons. Pooling the
draws in different ways creates many different hy-
pothetical neural populations of different sizes (see

Methods for details). We can then subject each draw
to various analyses to evaluate the possible nature of
the neural code in a population response. Finally we
create correlated populations and evalute their impact
on different coding schemes.

If we look in a small window of time ∆τ , then
the ith cell generates ni spikes, with i = 1, 2, . . . , N .
For small values of ∆τ , we will almost never see two
spikes from a single cell. Thus, the response of the
population {ni} can be treated as an N -letter binary
word, w (a pattern of 1’s and 0’s), as shown in Fig-
ure 2c. By keeping track of the combinations of spik-
ing and silence across the population, we can ask how
much information these code words carry about the
stimulus. At each instant of time, the stimulus in our
experiments is specified by the direction of motion
θ and the time, t − tonset, since the onset of motion,
and calculations described in the Methods allow us to
use the experimental data to estimate the information
that the number or pattern of spikes provides about the
stimulus, I(w; θ, t = tonset).

The results in Figure 2d demonstrate that the
information provided by binary code words increases
as a function of the number of cells that contribute
to the word, exceeding one bit for a population of
16 neurons. If we use the same draws from the ex-
perimental data to estimate the information that the
spike count n ≡

∑N
i=1 ni provides about the stimu-

lus, I(n; θ, t − tonset), we find that the total amount
of information from spike counts is smaller than the
total information from words, and never exceeds 1 bit
even when all neurons in the sample are pooled to ob-
tain spike counts. The combinations of of spiking and
silence in this model population provide more than
twice as much information as the pooled spike counts,
even though the cells we are pooling from have nom-
inally redundant feature selectivity.

To ascertain which feature of the neural re-
sponse was responsible for the extra stimulus informa-
tion available from words versus pooled spike counts,
we next created a number of carefully contrived pop-
ulations of 10 model Poisson units that preserved ei-
ther the diversity of time varying firing rates or the
diversity of direction tuning curves, or that eliminated
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Figure 2: Utility of patterns of spiking and silence across a diverse population of MT neurons for providing
information about a target motion stimulus. (a) The normalized tuning curves of four MT neurons, showing
firing rate versus direction of motion. Data were normalized by the response to the preferred direction, relative
to which all other directions are measured. (b) Responses of the same four neurons, plotting rate (from PSTH)
versus time in response to a 256 ms step of target speed in the preferred direction. Firing rate curves have been
offset horizontally to improve visibility. (c) Method for creating words to indicate spiking and silences across a
population of neurons, in 8 ms windows. In this example, the population response at time “t” is characterized by
the word: “01010”. (d) The information that counts and words carry about the visual motion stimulus plotted as
a function of the number of neurons in the analysis population.

all diversity (see Methods). For each population, we
then performed the same set of information calcula-
tions that led to Figure 2d. For a population of model
units that preserved the diversity of firing rate dy-
namics, r(t), but forced all the neurons to have the
same direction tuning curve (Fig. 3a, filled circles),
the amount of extra information from words was the
same as that for the draws from the experimentally
observed spike trains of MT neurons (open circles). If
we contrived each unit to have the same time-varying
trajectory of firing rate r(t), but retained the diversity
of directional tuning amplitudes, then about half of
the extra information from words was lost (open tri-
angles). The extra information that remains reflects
the fact that tuning curve diversity imposes different
time-averaged absolute firing rates across the popula-
tion, even if the trajectory of the trial-averaged firing
rate r(t) was the same for each model neuron. We
note that similar results on this latter point were ob-
tained by Shamir and Sompolinsky, examining the ef-
fects of simulated heterogeneities in static tuning on
population codes17. Finally, if we created populations

of fully redundant model units with one uniform tra-
jectory, r(t), and the same amplitude and width of di-
rection tuning curve, then the extra information from
words was lost, as expected (filled triangles). Analysis
of information as a function of time revealed that the
extra information from words was concentrated near
the time of the onset transients of the neural response,
where the diversity of response dynamics is greatest
(data not shown).

What does the extra information tell us?

The results of of the previous section tell us how
much information the patterns of spiking and silence
can convey about the stimulus. The next step is to un-
derstand what these patterns are telling us about the
stimulus. To focus our attention on a manageable set
of patterns, we first computed the information carried
by words and counts for different total spike counts in
populations of N = 2 . . . 16 cells, drawn 100 times
from our 36 cortical neurons. Figure 4a shows that
most of the extra information carried by words vs.
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Figure 3: Combinatorial coding is enabled by a diver-
sity of response dynamics. Extra information from
words versus counts is plotted as a function of the
number of neurons in the analysis population. Dif-
ferent symbols show the results from populations of
real and model neurons with different features made
redundant. Open circles, data drawn from actual sin-
gle trial responses; filled circles, diversity of response
dynamics in model neurons mimics that in the data
but each neuron has been made to have the same time-
averaged direction-dependent response amplitude (i.e.
same tuning curve); open triangles, model neurons
that have the same time-varying firing rate, but re-
sponse amplitude varies as in the actual data; filled
triangles, model neurons that have the same time vary-
ing firing rate and direction-dependent response am-
plitudes but are independent Poisson processes.

counts comes from those words with relatively few
spikes, that is from analysis windows when only a few
of the neurons in the population emitted spikes and the
rest were silent. Further, most words had zero, one, or
two spikes and increasing numbers of spikes were pro-
gressively less common (Figure 4b). Combining these
two effects shows that the dominant term in the extra
information provided by words typically comes from
instances when only one neuron fired a spike. Even
when the size of the population was increased to 16,
most of the extra information still arose from words
of only one or a few spikes (Fig. 4c). To understand
what features of the stimulus are represented by dif-
ferent binary words, we therefore focused on words
with only one spike.

Our next step was to construct the response
conditional ensembles18, the distribution of stimuli
that were associated with a particular neural response.
We can think of these ensembles as “receptive fields”
for the population response defined by the occurrence
of a particular pattern of spiking and silences, and of
the process used to create them as a population word
variant of spike-triggered averaging. In the color maps
of Figure 5, the color of each pixel shows the probabil-
ity of a given direction of stimulus motion at a given
time between motion onset and the time of the word
in question. The responses were assembled across all
stimulus motions and all times for a sample of 9 neu-
rons. The occurrence of n = 1 spike in a population
of N = 9 neurons is highly ambiguous in terms of the
stimulus that elicited it, as seen in Figure 5a, where
the red ring shows the wide range of stimulus direc-
tions and times that had high probabilities for a count
of 1 spike.

The event that contains one spike from nine
neurons is composed of nine possible binary words,
from 10000000 through 000000001, in which each
single neuron spikes and all others are silent. Fig-
ure 5b shows that each binary word points to a differ-
ent distribution of stimuli, and that each word actually
represents a quite narrow range of stimulus directions
and times from motion onset. Importantly, the binary
words go a long way toward resolving the ambiguity
between motion direction and motion onset time that
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Figure 4: Added information from words analyzed separately for each spike count. (a) Comparison of informa-
tion from patterns of spiking and silences versus counts as a function of the number of spikes in the analysis
window. Information from words was calculated by averaging the information from words of a given count. (b)
The probability of observing each given spike count in 100 populations of 10 MT neurons. (c) Information from
words minus information from counts is plotted separately for each spike count and each number of neurons in
the analysis population. Connected sets of symbols show data for all counts in a given population size.

is present in the neural data analyzed for Figure 5a,
but not in a behavior driven by the MT population re-
sponse, namely smooth pursuit eye movements19. No-
tice that if the neurons really were redundant, as one
might have thought from their tuning curves, each of
the events would have to point to the same distribution
of stimuli, and each word would be associated with a
distribution identical to that found by counting the to-
tal number of spikes. The extra information in 1-spike
words versus counting 1 spike is a general property of
our cortical population and a similar plot to Figure 5
could be constructed for any group of cells.

Figure 5 demonstrates that different patterns of
activity across a population of MT neurons can repre-
sent different stimuli, but not necessarily that the com-
bination of spiking and silence is telling us anything
that the spikes alone do not. We tested this directly
(Fig. 6) by constructing a set of response conditional
ensembles based on keeping track of the spike from a
single cell and progressively discarding knowledge of
silence in other cells. While the combination of spik-

ing in neuron #1 and silence in the rest of the popu-
lation (100000000, upper left color map) points to a
specific, small area in the space of stimuli, specificity
declines in the representation as we throw away the
knowledge of silence in more and more cells. Finally,
the occurrence of a spike in neuron #1 with no knowl-
edge about the state of the other cells (1********,
lower right color map) points to a large area with tens
of degrees of uncertainty about motion direction and
hundreds of milliseconds of uncertainty about the time
of motion onset. In the example illustrated in Figure 6,
it is striking that the most uncertain large blob in the
lower-right panel of Figure 6 has almost no overlap
with the original distribution of stimuli conditional on
spiking in neuron #1 and silence in the others: combi-
nations of spikes and silence not only carry more in-
formation than spike counts alone, but they also stand
for very different events in the sensory input. Synergy
of spikes and silence was a common feature of our MT
data, as observed previously in the retina20. For 10-
cell groups, approximately 30% of all 1-spike words
have significant spike-silence synergy. The prevalence
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Figure 5: Response conditional stimulus ensembles
for binary code words corresponding to a spike count
of n = 1 in a population of N = 9 neurons. (a) The
distribution of directions of motion and delays from
motion onset, P (θ, t− tonset|n), given that the popula-
tion of cells produced a total of one spike in window
of size ∆τ = 8 ms. (b) The same analysis, but now
performed separately for each combination of spiking
and silence where one neuron emitted a spike and all
the others were silent. The probabilities in (a) have
been normalized so that the total probability in the
square is unity, with red representing the highest and
dark blue the lowest values. The distributions in the
small panels are normalized so that the average of all
nine small panels yields the distribution in (a). Graphs
are based on analysis of draws from actual data in one
group of 9 MT neurons. N = 9 was chosen to allow
the 3x3 presentation.
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Figure 6: Contributions of silences in other neurons to
the distribution of stimuli conditional on a spike in one
neuron. Each pixel indicates the probability of a given
direction of target motion at a given time after the on-
set of target motion, given a particular word of spiking
and silences across the population of 9 MT neurons.
The string above each color map indicates the word
that was used to create each response conditional en-
semble, where a “1” or “0” indicates the presence or
absence of a spike in a neuron and a “*” indicates a
wildcard so that an interval was included in the aver-
age whether a spike was present or absent. Further
analysis revealed that the 100000000 and 1********
words contains 0.71 and 0.44 bits of information, re-
spectively, about the stimulus.

of synergy increases with N : more than 60% of 16-
cell, 1-spike words are synergistic.

Effect of neuron-neuron correlations

So far, our discussion of the population re-
sponses in MT has assumed that the cells respond in-
dependently to sensory inputs. We ignored correla-
tions between the responses of different neurons not
just for simplicity, but also to give the classical model
of averaging over multiple redundant cells the greatest
chance to succeed. We found that the diversity of tem-
poral dynamics in neuron responses makes a substan-
tial change in the structure of the problem, opening
the possibility for a form of combinatorial coding. We
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now ask whether correlations among neural responses
alter the utility of a combinatorial code.

Suppose that we know the average correlation
coefficient between pairs of cells in a neural popula-
tion. We would like to construct model population
responses that are consistent with this level of corre-
lation, and of course also with the observed time de-
pendent firing rates. There are many ways to construct
correlated populations, some of which correspond to
complicated patterns of correlation which will give an
obvious advantage to combinatorial codes. To avoid
this, we used the one parameter model described in
the Methods to achieve a model population with a pre-
defined mean level of correlations, but with a distribu-
tion that is otherwise is as random as possible. The
parameter in our model is a “coupling,” J (see Equa-
tion 11) that we varied systematically to control the
average pairwise correlation, which we assessed for
each model population. We then computed the statis-
tics of the model population responses with different
levels of mean correlation, and examined the informa-
tion content of these responses, as before.

In Figure 7, we illustrate the impact of corre-
lations on the information encoded by populations of
N = 10 neurons. As expected from prior work21-27,
the information available from counting spikes is re-
duced when we add positive correlations among cells
because it increases the trial-by-trial variance of the
spike counts we obtain by summing across the neu-
rons in a population. In contrast, negative correlations
reduce the count variance and enhance information
transmission. For coding based on patterns of spiking
and silence, small positive correlations also cause a
slight drop in information that reverses as correlations
become stronger, increasing the advantage of the com-
binatorial code over the spike count code at high levels
of correlation. Across correlation levels, the extra in-
formation from a code based on words versus counts
is greater than or approximately equal to that found
in the independent population. Thus, our conclusions
about the opportunities for combinatorial coding are
robust across a wide range of correlation strengths,
including those observed experimentally, which are
usually in the range of 0.1 to 0.225,28-33. We conclude
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Figure 7: Impact of neuron-neuron correlations on
coding based on population patterns of spikes and si-
lence verus spike counts. The values on the x-axis
are the calculated correlations between pairs of sepa-
rately sampled units after setting up correlated popu-
lations using Equations 11-13. Filled and open circles
show information about the stimulus from counts ver-
sus patterns of spiking and silence, respectively. Data
are shown as means and standard deviations across 50
groups of N = 10 cells drawn from our experimental
sample of 36 neurons.

that combinatorial codes neither require exotic corre-
lations among neurons, nor are they disrupted by the
modest levels of correlation consistent with available
data.

Discussion

For many years, the discussion of neural cod-
ing could be summarized along an axis that had two
endpoints: “rate” vs. “timing” codes34-36. There is
no question that neurons respond to sensory inputs by
changing the rate at which they generate action po-
tentials, and many therefore believe that rate coding
is firmly established. In contrast, codes based on the
timing of spikes, whether in sequence from a single
neuron or across a population, have been viewed as
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more speculative. Our goal in this paper has been to
replace the “rate vs. timing” debate with a sharper set
of questions about the nature of the neural code, and to
suggest that these questions have surprising answers.

Our argument begins with experimental support
for a purely conceptual point: “rate,” as it is defined
experimentally, cannot be a symbol in a code. Sym-
bols or code words must be observable directly in sin-
gle trials, as with the letters or words in text. In con-
trast, rate refers to the probability of generating spikes
and hence is by definition an average property of spike
trains over many trials. The point that rate cannot be a
symbol in the code would be pedantic if neurons oper-
ated in a regime where they generate large numbers of
spikes before the rate has a chance to change signifi-
cantly. In this limit, rate can be estimated by counting
spikes so that a “spike count” code becomes a reason-
able surrogate for a “rate code”. But real neurons do
not operate in this limit. For example, cells in MT pro-
vide most of their information about motion direction
with just a few spikes11, and estimates of the underly-
ing rate based on counting spikes in reasonable time
windows are both uninformative (Figure 1d) and sys-
tematically in error (Figure 1c). These problems are
not ameliorated by averaging across a population of
neurons with similar direction selectivity (Figure 1c).

The second step in our argument is to real-
ize that even precise statements about the statistics of
spike trains do not yield unique conclusions about the
symbolic structure of the code. Thus, even for neurons
whose spike train statistics are completely described
by their underlying time-varying rate, estimates of the
underlying rate from single spike trains depend on the
timing of individual spikes. The intuition that Poisson
statistics imply a code based on spike counts is valid
only in the limit where rates are nearly time indepen-
dent. Again, this analytical result is strongly reflected
in the operation of real neurons: for cells in MT, in the
exact timing of spikes within a reasonable window is
related to fluctuations of 25% in our best estimate of
the underlying rate (Figures 1a and b). The fact that
spike timing is critical for rate estimation in practice,
as well as in principle, requires revision of the usual
formulation of “rate vs. timing” arguments.

The third step in our argument arises from re-
alizing that the more important issue in neural cod-
ing and decoding is not the patterns of spike timing
in single neurons, but rather its parallel in the patterns
of spikes and silence across a population of neurons.
We found that patterns of spiking and silence across a
neural population contain twice as much information
about a sensory stimulus as does the spike count. The
extra information arises from the diversity of dynami-
cal response properties across a population of neurons
that otherwise have very similar tuning curves (e.g.,
for the direction of motion in MT). Indeed, it is this di-
versity of response dynamics that limits the effective-
ness of simple averaging strategies, and, as such, cor-
tical populations are only nominally redundant. Be-
cause we are considering the information carried by
patterns in a single small time window, these results
are unaffected by correlations across time (Poisson vs.
non-Poisson statistics), and we have checked that they
are also robust against reasonable levels of correlation
among pairs of cells. We refer to the code defined
by population words as combinatorial, because it de-
pends in a critical way on the combinations of spikes
and silence across the neural population. Indeed, for
particular code words, the combined response of the
population carries more information than would be
expected by adding up the information carried by the
responses of the individual cells (Fig. 6).

We have presented our arguments in the con-
crete context provided by the coding of visual mo-
tion in area MT of the primate cortex, but the results
should be much more general. Certainly the theoreti-
cal difficulties with the traditional formulation of the
coding problem as rate vs. timing are completely gen-
eral, as seen from Equation 3. The quantitative results
on the magnitude of the extra information carried in a
combinatorial code depend on the details of the neu-
ral population we are considering, but we emphasize
that there is nothing extreme about the population of
cells we have analyzed in detail. While the presence
of extra information in the combinatorial code does
not mean that brain uses this information to guide be-
havior, it is crucial that what might have seemed like
an exotic coding scheme does not in fact depend upon
the existence of unusual structures in the spike trains,

10
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either of single neurons or of populations. Rather, the
possibility of combinatorial coding is a previously un-
appreciated consequence of well-known dynamic re-
sponse properties of neural responses throughout the
cortex. While these cells encode stimuli by changing
their firing rates, the elementary symbols of this code
are the combinations of individual spikes and silences
across the population of cells.

Methods

Experimental methods

Experimental data have been published
previously11. To acquire these data, extracellular
single-unit microeletrode recordings were made
in 3 sufentanil-anesthestized, paralyzed monkeys
(Macaca fasicularis) according to a protocol that had
been approved in advance by the Institutional Animal
Care and Use Committee at UCSF. Using random
dot texture stimuli presented on a high-resolution
analog oscilloscope display, we mapped receptive
field location, determined the preferred direction
and speed of the neuron under study, and sized the
stimuli to maximally excite each neuron. The random
dot texture was moved behind a stationary aperture,
creating a moving stimulus at a fixed retinal location.

Visual stimuli were presented in discrete tri-
als. Each stimulus appeared and remained station-
ary for 256 ms, then stepped to a constant velocity
for 256 ms, and was again stationary for 256 ms.
A brief pause separated successive trials, and direc-
tions of motion were pseudorandomly interleaved. A
typical experiment included 13 motion directions that
spanned±90 degrees around the neuron’s preferred
direction in 15 degree increments. Each stimulus was
presented up to 222 times. Spike times were recorded
with 10 microsecond resolution.

Constructing a model population

From the independently recorded single unit re-
sponses, we constructed a model of the population
response to a motion stimulus. To create a popula-
tion with nominally redundant feature selectivity, we

aligned all cells by their preferred direction. Then, we
resampled the rasters of individual cells at ∆τ = 8 ms
resolution, labelling the occupancy of each time bin
with a “1” if there had been one or more spikes in the
time interval or a “0” if there had not. At this resolu-
tion, multiple spikes in a single bin were infrequent,
occurring in fewer than 10% of the spiking events we
recorded. We then created binary population “words”,
defined as patterns of 1’s and 0’s, at each time point
during the response by randomly drawing the N let-
ters of each word from the collection of stimulus rep-
etitions from all N cells in our sample in the appro-
priate bin. Each neuron in our sample corresponded
to a fixed position in the word, and we could con-
struct many different words by random draws from
the many repetitions of each stimulus for each neu-
ron. The probability of observing a particular word
then was measured by estimating the frequency of oc-
currence of that pattern of 1’s and 0’s within the entire
dataset.

Estimating information

To estimate the information carried by popula-
tion words about the stimulus, we first computed the
probability of observing particular N -neuron words
from our dataset P (n ≡ {ni}), where i labels the neu-
rons, over all time and for all motion directions. The
total entropy of the words is given by:

S[P (n)] = −
∑

n
P (n) log2 P (n) (4)

where is a label that indexes word identity. The prob-
ability of observing a word for a particular stimulus,
P (n|θ, t), was estimated in a similar manner to P (n)
but at particular time t relative to the onset of motion
in direction θ. The entropy of the conditional distribu-
tions is given by:

S[P (n|θ, t)] = −
∑

n
P (n|θ, t) log2 P (n|θ, t). (5)

The average amount of information that words carry
about the stimulus is given by the difference between
the total entropy and the average noise entropy:

Iwords = S[P (n)]−

(
1

13 · T
∑
t

∑
θ

S[P (n|θ, t)]

)
(6)
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where T represents the total number of time bins
in the response and θ indexes the 13 motion direc-
tions. In a similar way, we can compute the infor-
mation from counts using the same P (n) as before,
but collapsing over words with the same number of
spikes, such that P (count = n) =

∑
P (n), where

the sum runs over all words, n, with count equal to
n ≡

∑N
i=1 ni. Similarly, P (count = n|θ, t) =∑

P (n|θ, t). With this P (count) in hand, we com-
pute Icounts in a completely analogous fashion to the
calculation of Iwords.

In those cases where we generate samples of
population words directly from observed spike trains,
all entropy estimates were corrected for finite sam-
pling effects by taking multiple random samples of
fractions of the dataset and then performing a linear
extrapolation to infinite sample size37. Errors in es-
timates were estimated by extrapolating the standard
deviation of values computed from half the sample in
the same manner. Because we ask only about words
formed from responses in a single time bin, correla-
tions between time bins (and hence the question of
whether the neurons are exactly Poisson) are irrele-
vant; as a test of our computations we created shuffled
spike trains with exact Poisson statistics, and repro-
duced all of our results.

Calculations based on a model population sam-
pled from the real data have a strong intuitive con-
nection to experiment, motivating us to use the ap-
proach outlined above to make estimates of informa-
tion based on real data. However, we found that work-
ing with real data was unsatisfactory in some ways; in-
formation rates converge only for a very large number
of samples, which becomes increasingly cumbersome
as the number of neurons,N , exceeds 16. Because the
statistics we wish to reproduce in this model popula-
tion are just the time dependent, experimentally ob-
served firing rates for each neuron, it was possible to
do the same analysis after simply calculating P (word)
using Equation 10 (see below). This approach works
because the spike rate of each model neuron, at each
moment of time, is determined by our experimental
data with small error bars, and hence there are no free
parameters in the construction of our model popula-

tion. We checked that this approach yielded the same
answers as the data-based approach for values of N
where the calculations were tractable. In those cases
where we computed word probabilities directly from
Equation 10, we propagated the errors in measured
firing rates to obtain errors in the derived information
measures.

To create the model populations with identical
time varying firing rates or directional tuning curves
used to generate the data in Figure 3, we used each
neuron in turn as a template. For each group of
10 model cells, we randomly chose another neuron
from the population, using its tuning curve, r̄(θ)∗

(the bar indicates a time average), and the shape of
its temporal modulations in rate at the preferred ori-
entation, r(t)∗ = r(t, θ = 0)/r̄(θ = 0), to serve
as a template for fixing the tuning or firing rate dy-
namics of the group. To fix the tuning of the pop-
ulation, we allowed each cell to retain its own r(t),
but rescaled each curve by a constant factor which
forced the cell’s tuning curve to follow r̄(θ)∗, such
that r(t, θ) = [r(t, θ)/r̄(θ)] · r̄(θ)∗. To fix the firing
rate dynamics, each cell retained its own directional
tuning curve, but temporal dynamics were set by the
template, r(t)∗, so that r(t, θ) = r(t)∗r̄(θ).

Spike-silence synergy

To measure the synergy between spikes and si-
lences in our population words, we simply took the
difference between the stimulus information that word
captured and the sum of the information from each
component spike and silence20,38,

Isynergy = I({ni})−
∑
i

I(ni). (7)

The stimulus information, I , is computed as in Bren-
ner et al., 200038, and is given by:

I(stimulus) =
1
T

∫ T

0
dt

r(t)
〈r(t)〉t

log2

(
r(t)
〈r(t)〉 t

)
(8)

where r(t) is the modulation of the rate for a given
event, the occurrence of a given work or a spike or
silence from a particular cell.

Constructing a correlated population
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We continue to work in small time windows, of
duration ∆τ , such that the response of each neuron
i consists either of a spike (n = 1) or silence (n =
0). Then if all cells respond independently, we can
write the probability distribution for the population’s
response {ni} at some moment of time t in the form:

P ({ni}|t) =
N∏
i=1

[qi(t)]ni

1 + qi(t)
(9)

where qi(t) denotes the probability of a spike from the
ith neuron at time t, and in the limit ∆τ → 0 we can
identify the time dependent firing rate of each neuron
ri(t) = qi(t)/(∆τ). Equation 9 can be rewritten as:

P ({ni}|t) =
1

Z(t)
exp

[
N∑
i=1

φi(t)ni

]
(10)

where Z(t) is a normalization constant and φi(t) =
ln qi(t). This form suggests that we can add correla-
tions among neurons by adding an explicit term to the
exponential that couples the responses of the different
cells:

P ({ni}|t) =

1
Z(t)

exp

 N∑
i=1

φi(t)ni +
J

2

N∑
i=1

∑
j 6=i

ninj

 (11)

In the independent model, there are no correlations
between the responses ni and nj once we know the
stimulus, while Equation 11 predicts that there will
be non-zero correlations; for small J , the strength of
these correlations is proportional to J . In fact, Equa-
tion 11 is the least structured, or maximum entropy
model that generates some average level of correla-
tions among all the pairs of cells39-41.

To produce a model population of neurons with
an average pairwise coupling, J , which respects each
cell’s average firing rate as a function of time ri(t), we
need to solve for the φi(t)’s in Equation 11, subject to
the constraints:∑

n
nk(t)P (n|t) = rk∆τ (12)

where the rk(t)’s are measured single cell firing rates,
averaged over a small time window, ∆τ = 8 ms.

Since the cells are not coupled in time, we can solve
for the fields at each time point independently. We
have an analytical solution for the fields with J = 0
and we can proceed from this solution using perturba-
tion theory, from which we obtain an equation relating
small changes in to their effect on the fields, φ:

∆φi =

∆J
2

∑
α 6=β
〈nαnβ〉〈nk〉 − 〈nαnβnk〉

χ−1
ik

(13)
where α and β index neurons in the group cells and
χ is the connected part of the two-point correlation
function, χik = 〈nink〉 − 〈ni〉〈nk〉. We solve for
the fields at very small increments, ∆J/J = 0.001,
checking satisfaction of the constraints on the firing
rates at each step. This perturbative approach is fast,
but accumulates errors. To correct for the accumu-
lated errors we perform local function minimization
whenever the fractional error in the single cell rates
exceeds 10−8, and then return to the perturbative step-
ping until the error bound is again reached.

Once we create a model population response,
we sum the spike counts across the full time window
of the response to motion, and compute the correlation
coefficients between counts in all pairs of cells in our
model population The mean of these coefficients pro-
vides an index for the overall strength of the correla-
tions. Experimentally, for neurons in MT, the correla-
tion coefficients are in the range from 0.1 to 0.225,28-33,
which corresponds to J = 0.11 to 0.16 in our models.
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