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Abstract

The dark-adapted visual system can count photons with a reliability lim-
ited by thermal noise in the rod photoreceptors - the processing circuitry
between the rod cells and the brain is essentially noiseless and in fact may
be close to optimal. Here we design an optimal signal processor which
estimates the time-varying light intensity at the retina based on the rod
signals. We show that the first stage of optimal signal processing involves
passing the rod cen output through a linear filter with characteristics de-
termined entirely by the rod signal and noise spectra. This filter is very
general; in fact it is the first stage in any visual signal processing task
at low photon flux. We identify the output of this first-stage filter with
the intracellular voltage response of the bipolar cel!, the first anatomical
stage in retinal signal processing. From recent data on tiger salamander
photoreceptors we extract the relevant spectra and make parameter-free,
quantitative predictions of the bipolar cen response to a dim, diffuse flash.
Agreement vvith experiment is essentiany perfect. As far as we know this
is the first successful predictive theory for neural dynamics.

1 Introd uction

A number of biological sensory cens perform at a level which can be called optimal
- their performance approaches limits set by the laws of physics [1]. In some cases
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the behavioral performance of an organism, not just the performance of the sensory
cells, also approaches fundamental limits. Such performance indicates that neur~l
computation can reach a level of precision where the reliability of the computed
output is limited by noise in the sensory input rather than by inefficiencies in the
processing algorithm or noise in the processing hardware [2]. These observations
suggest that we study algorithms for optimal signal processing. If we can make the
notion of optimal processing precise we will have the elements of a predictive (and
hence unequivocally testable) theory for what the nervous system should compute.
This is in contra.'3t to traditional modeling approaches which involve adjustment. of
free parameters to fit experimental data.

To further develop these ideas we consider the vertebrate retina. Since the classic
experiments of Hecht, Shlaer and Pirenne we have known that the dark-adapted
visual system can count small numbers of photons [3]. Recent experiments confirm
Barlow's suggestion [4,5] that the reliability of behavioral decision making reaches
limits imposed by dark noise in the photoreceptors due to thermal isomerization of
the photopigment [6]. If dark-adapted visual performance is limited by thermal noise
in the sensory cells then the subsequent layers of signal processing circuitry must be
extremely reliable. Rather than trying to determine precise limits to reliability, we
follow the approach introduced in [7] and use the notion of "optimal computation"
to design the optimal processor of visual stimuli. These theoretical arguments
result in parameter-free predictions for the dynamics of signal transfer from the
rod photoreceptor to the bipolar cell, the first stage in visual signal processing. We
compare these predictions directly with measurements on the intact retina of the
tiger salamander A mbystoma tigrinum [8,9].

2 Design of the optimal processor

All of an organism's knowledge of the visual world derives from the currents In{t)
flowing in the photoreceptor cells (labeled n). Visual signal processing consists of
est.imating various aspects of the visual scene from observation of these currents.
Furthermore, to be of use to the organism these estimates must be carried out in real
time. The general problem then is to formulate an optimal strategy for est.imating
some functional G[R(r, t)] of the time and position dependent ph9ton arrival rate
R(r, t) from real time observation of the currents InCt).

vVe can make considerable analytic progress towards solving this general problem
using probabilistic methods [7,2]. Start by writing an expression for the probability
of the functional G[R(r,t)] conditional on the currents InCt), P{G[R(r,t)]IIn(t}}.
Expanding for low signal-to-noise ratio (SNR) we find that the first term in the
expansion of P{ Gll} depends only on a filtered version of the rod currents,

P{G[R(r, t)]IInCt)} = ~G[F * In] + higher order corrections,

where * denotes convolution; the filter F depends only on the signal and noise
characteristics of the photoreceptors, as described below. Thus the estimation task
divides naturally into two stages - a universal "pre-processing" stage and a. task:
dependent stage. The universal stage is independent both of the stimulus R(r, t) and
of the particular functional G[R] we wish to estimate. Intuitively this separation
makes sense; in conventional signal processing systems detector outputs are first
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Figure 1: Schematic view of photon arrival rate estimation problem.

processed by a filter whose shape is motivated by general SNR considerations. Thus
the view of retinal signal processing which emerges from this calculation is a pre-
processingor "cleaning up" stage followedby more specialized processingstages. .

We emphasize that this separation is a mathematical fact, not a model we have
imposed.

To fill in some of the details of the calculation we turn to the simplest. example of
the estimation tasks discussed above - estimation of the photon arrival rate itself
(Fig. 1): Photons from a light source are incident on a small patch of retina at
a time-varying rate R(t), resulting in a current 1(t) in a particular rod cell. The
theoretical problem is to determine the optimal strategy for estimating R( t) based
on the currents 1(t) in a small collection of rod cells. With an appropriate defini-
tion of "optimal" we can pose the estimation problem mathematically and look for
analytic or numerical solutions. One approach is the conditional probability calcu-
lat.iondiscussed above [7]. Alternatively we can solve this problem using functional
methods. Here we outline the functional calculation.

Start by writing the estimated rate as a filtered version of the rod currents:

Rest (t) J d;-F}(T)1(t - T)

J dT J dT'F2(T,T')1(t-T)I(t-T') + ...
(2)+

In the low SNR limit the rods respond linearly (they count photons), and we expect
that the linear term dominates the series (2). We then solve analytically for the
filt~r F}(T) which minimizes \2 = (Jdt IR(t) - R..,st(tW)- i.to the filterwhich
sahsfies 6,2/ 6Fd T) =O. The averages (. ..) are taken o~'er t.he ensemble of stimuli
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R(t). The result of this optimization is.

j
du; . IR(u;)

.

l*(u;»)
F1(T) = -e-"..JT \ .

27r (Ii(u;)12)
In the photon counting regime the rod currents are described as a sum of impulse
responses Io(t -t,..) occuringat the photon arrival times t,..,plus a noise term liI(t).
Expanding for lowSNR we find

( ) j du; il.o.'TS ( )
io(u;)

Fl T = 27re- RU; S/(u;) +"', (4)

where SR(U;) is the spectral density offluduations in the photon arrival rate, io(~)
is the Fourier transform of Io(t), and SI(U;) is the spectral density of current noise
H( t) in the rod.

The filter (4) naturally separates into two distinct stages: A "first" stage

hip(U;) == io(U;)/SI(U;) (5)
which depends only on the signal and noise properties of the rod cell, and a "sec-
ond" stage SR(U;) which contains our a priori knowledge of the stimulus. The first
stage filter is the matched filter given the rod signal and noise characteristics; each
frequency component in the output of this filter is weighted according to its input
SNR.

Recall from the probabilistic argument above that optimal estimation of some arbi-
trary aspect of the scene, such as motion, also results in a separation into two pro-
cessing stages. Specifically, estimation of ang functional of light intensity involves
only a filtered version of the rod currents. This filter is precisely the universal filter
Fbip(T) defined in (5). This result makes intuitive sense since the first stage of
filtering is simply "cleaning up" the rod signals prior to subsequent computation.
Intuitively we expect that this filtering occurs a.t an early stage of visual processing.
The first opportunity to filter the rod signals occurs in the transfer of signals be-
tween the rod and bipolar cells; we identify the transfer function between these cells
with the first stage of our optimal filter. More precisely we identify the intracellular
voltage response of the bipolar cell with the output of the filter Fbip( T). In response
to a dim flash of light at t = 0 the average bipolar cell voltage response should then
be

Vt,ip(t) ex:j dT Fbip(T)Io(t - T). (6)
Nowhere in this prediction process do we insert any information about the bipolar
response - the shape of our prediction is governed entirely by signal and noise
properties of the rod cell and the theoretical principle of optimalitg.

3 Extracting the filter parameters and predicting the
bipolar response

To complete our prediction of the dim flash bipolar response we extract the rod
single photon cUl:rent.Io(t) and rod current noisespectrum SI(U;)from experimen- '

.We define the Fourier Transform as j(u;) = f dte+i"Jt f(t).

(3)
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Figure 2: Comparison of predicted dim flash bipolar voltage response (based entirely
on rod signal and noise characteristics) and measured bipolar voltage response. For
reference we show rod voltage responses from two different cells which show the typical
variations from cell to cell and thus indicate the variations we should expect in different
bipolar cells. The measured responses are averages of many presentations of a diffuse
flashoccurring at t = o and resulting in the absorption of an average of about 5 photons
in the rod cell. The errors bars are one standard deviation.
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tal data. To compare our prediction directly with experiment we must obtain the
rod characteristics under identical recording conditions as the bipolar measurement.
This excludes suction pipette measurements which measure the currents directly,
but effect.the rod response dynamics [10,11]. The bipolar voltage response is mea-
sured intracellularly in the eyecup preparation [8]; our approach is t.o use intracel-
lular voltage recordings to charact.erize the rod network and thus convert voltages
1.0currents, as in [12]. This approach 1.0the problem may seem overly complicated
-:- why did we formulat.e the theory in t.erms of currents and not voltages? It is
Important we formulate 0111'theory in terms of the i71dividua/ rod signal and noise
characteristics. The electrical coupling between rod cells in the retina causes the
~~Itage noise in nearby rods to be correlated; each rod, however, independently
Injects current noise into the network.

The impedances connecting adjacent rod cells, the impedance of the rod cell itself
and the spatial layout and connections between rods determine the relationship
between currents and voltages in the network. The rods lie nearly on a square
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lattice with lattice constant 20 Jlm. Using this result we extract the impedances from
two independent experiments [12]. Once we have the impedances we "decorrelate"
the voltage noise to calculate the uncorrelated current noise. We also convert the
measured single photon voltage response to the corresponding current Io(t). It
is important to realize that the impedance characteristics of the rod network: are
experimentally determined, and are not in any sense free parameters!

After completing these calculations the elements of our bipolar prediction are ob-
tained under identical conditions to the experimental bipolar response, and we can
make a direct comparison between the two; th.ere are no free parameters in th.is
prediction. As shown in the Fig. 2, the predicted bipolar response (6) is in excellent
agreement with the measured response; all deviations are well within the error bars.

4 Concluding remarks

'vVe began by posing a theoretical question: How can we best recover the photon
arrival rate from observations of the rod signals? The answer, in the form of a linear
filter which we apply to the rod current, divides into two stages - a stage which is
matched to the rod signal and noise characteristics, and a stage which depends on
the particular characteristics of the photon source we are observing. The first-stage
filter in fact is the universal pre-processor for all visual processing tasks at low SNR.
We identified this filter with the rod-bipolar transfer function, and based on this
hypothesis predicted the bipolar response to a dim, diffuse flash. Our prediction
agrees extremely well with experimental bipolar responses. 'vVe emphasize once
more that this is not a "model" of the bipolar cell; in fact there is nothing in our
theory about the physical properties of bipolar cells. Rather our approach results
in parameter-free predictions of the computational properties of these cells from the
general theoretical principle of optimal computation. As far as we know this is the
first successful quantitative prediction from a theory of neural computation.

Thus far our results are limited to the dark-adapted regime; however the theoreti-
cal analysis presented here depends only on low SNR. This observation suggests a
follow-up experiment to test the role of adaptation in the rod-bipolar transfer func-
tion. If the retina is first adapt,ed to a constant background illumination and then
shown dim flashes on top of the background we can use the analysis presented here
to predict the adapted bipolar response from the adapted rod impulse response and
noise. Such an experiments would answer a number of interesting questions about
retinal processing: (1) Does the processing remain optima.! at higher light levels?
(2) Does the bipolar cell still function as the universal pre-processor? (3) Do the
rod and bipolar cells adapt together in such a way that the optimal first.-stage filter
remains unchanged, or does the rod-bipolar transfer function also adapt?

Can these ideas be extended to other systems, particularly spiking cells? A number
of other signal processing systems exhibit nearly optimal performance [2]. One
example we are currently studying is the extraction of movement information from
the array of photoreceptor voltages in the insect compound eye [13]. In related
work, Atick and Redlich [14] have argued that the receptive field characteristics of
retina.! ga.nglion cells ca.n be quantitatively predicted from a principle of optimal
encoding (see also [15]). A more general question we are currently pursuing is
the efficiency of the coding of sensory information in neural spike trains. Our
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preliminary results indicate that the information rate in a spike train can be as high
as 80% of the maximum information rate possible given the noise characteristics of
spike generation [16]. From these examples we believe that "optimal performance"
provides a general theoretical framework which can be used to predict the significant
computational dynamics of cells in many neural systems.
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