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INTRODUCTION

Here we combine ideas from two lines of research in
visual information processing. The first is the study of
the fundamental limits to the reliability of selected
visual tasks as set by noise at the photoreceptor level.
The second is the attempt to describe certain visual
tasks, thought to be of critical importance, in a
functional mathematical framework.

Probably the clearest example of the latter approach
can be found in the work of Reichardt and
collaborators. Starting with a formulation for the
fundamental interactions involved in movement
detection (Reichardt 1957), this line of thought was
generalized to more complex visual computations,
such as figure-ground discrimination (e.g. Reichardt
and Poggio, 1976), and given a systematic
mathematical formulation in terms of Volterra series
(Poggio and Reichardt, 1976). These authors have
always emphasized the fundamental role played by
nonlinear interactions in solving nontrivial visual tasks.

Early examples of the first line of research are Hecht
et al. (1942) and van der Velden (1944), who were
interested in questions pertaining to the detectability of
single photons, and in de Vries (1943 ) and Rose (1948)
who analyzed the effects of photon shot noise on
simple perceptual tasks. The work in this field was
extended to measuring the reliability of nerve
responses by Barlow and Levick (1969). Research into
factors limiting the accuracy of vision has been very
productive, and over the years the results have lent
more support to the notion that visual signal
processing may approach optimal performance under
the right conditions (e.g. Savage and Banks 1992).
Generally speaking, however, this line of research has
been constrained to relatively simple stimuli where the
total energy could be well-defined, such as light
flashes, presentations of gratings for limited intervals
and the like. The detection task in such cases ultimately
consists of estimating a (positive or negative) excess
photon count over a linearly weighted area of the
retina. Although we certainly gain insight into the
statistical efficiency of various processing levels in the

visual system, many interesting higher visual functions
are not probed in this way.

To our knowledge, the case of nonlinear interactions
between noisy photoreceptor signals has received little
attention. In the following we therefore revisit the
problem of a well-defined nonlinear computation,
namely movement detection. Instead of assuming
noiseless input as in Reichardt’s original approach, we
will explicitly incorporate noise in the photoreceptors
that provide the input to the computation. For simple
movement stimuli such as sudden displacement steps
of wide field patterns, this problem is tractable.
Comparing measurements of the statistical efficiency of
the blowfly movement-sensitive neuron known as Hl1
with the performance of an ideal observer who uses
realistic photoreceptor signals (de Ruyter van
Steveninck 1986, de Ruyter van Steveninck and Bialek
1992), we find that over a 10 ms time interval the
neuron approaches the ideal observer closely. It thus
seems that under these simple conditions, the fly tries
to compute movement in an optimal way on a
behaviorally relevant time scale. One of the questions
prompted by this result is whether optimal processing
can be generalized to more complex visual tasks, and if
so, what role adaptational processes may play in this.

AN INTRODUCTORY EXAMPLE

It has been known for some time that the response
dynamics of H1 is highly adaptive (Zaagman et al
1983, Maddess and Laughlin 1985, de Ruyter van
Steveninck et al. 1986) over a wide range, with
characteristic response decay times ranging from over
300 ms to about 10 ms. The time constant can be set by
various dynamic parameters of the stimulus. In the
case of stepwise movement, it adapts to the time
interval between steps, independent of step size or
contrast (Zaagman et al. 1983). Also, sinusoidal flicker
of the full field (Borst and Egelhaaf 1987), and random
flicker of independent pixels as well as random pattern
movement (de Ruyter van Steveninck, unpublished),
influence the time constant. Further, in a situation
where moving gratings are used as a stimulus, the time
constant is set over a significant range by the velocity
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of the pattern, independent of its spatial wavelength or
contrast (de Ruyter van Steveninck et al. 1986). Finally,
the time constant is independent of the direction of
movement, and is set locally in the visual field.

Given the robustness and the magnitude of the
effects, it would be highly surprising if this form of
adaptation did not serve an important purpose. One
possibility is that the effects seen in H1 are the result of
adaptive low-pass filtering in retinotopic columns. The
idea is that the statistical structure of the signals
entering a photoreceptor is determined by the statistics
of the visual scene, the optical properties of the
photoreceptor, and the angular speed of the
photoreceptor relative to the scene. Consequently, a
measurement of pattern speed and salient contrast
parameters provides the animal not only with data for
direct use, but also gives it statistical information about
the signals it could expect next. Specifically, if a pattern
moves across the retina at angular velocity v, the

power density spectrum of the optical signal
transmitted by the photoreceptor optics is:

C(f/v)- M(f/v),
s(r) = UML) )

with C(k) the contrast power density of the pattern,
M(k) the modulation power transfer function, k the
spatial frequency (in cycles/degree), and f the induced
temporal frequency in Hz. Thus a spatial frequency k
will be mapped to a temporal frequency f=vk. Recently,
power spectra of natural scenes, woods in this case,
were measured (Ruderman and Bialek 1994), and
shown to have power-law behavior over at least three
decades of spatial frequency. Converted to the one-
dimensional case relevant here, C(k) is given as:

C(k)“(%l)l—ﬂ.

with n=0.19 and formally ky=1 cycle/° to make the
term in brackets dimensionless. Further, M(k) is
usually modeled as a Gaussian:

M(k) = exp[-(2rtk)* 05°)

with a spatial width 5,=0.51°. Next we must take into
account the signal transfer properties and the noise
power spectrum of the individual photoreceptor. These
were measured by intracellular recording, under the
same illumination conditions that were used in the
experiments on H1 (de Ruyter van Steveninck 1986).
For our purposes, signal transfer is described

adequately by a linear contrast power transfer function
T(f), while the noise is Gaussian and given by the
power density spectrum N(f). A good descriptive fit to

the ratio of these functions is:
N(f) —4 f *
N/ .
Neg(f) 0 1.25-10 I:1+( C] J )

which describes the equivalent noise power spectrum

referred back to the stimulus. f. is about 18 Hz. We

now assume the following:

e The visual system measures the speed and contrast
variance of the pattern.
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Fig. 1 Dots: values of the characteristic decay time of H1's
response to pattern steps, after preadapting the neuron with
movement at a velocity given by the abscissa. Square-wave
patterns were used with contrasts as shown in the figure. Solid
lines are filter time constants computed as described in text.
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e The cutoff frequency of a filter within the visual
system is adapted to filter out frequencies where the
signal to noise ratio (SNR) of the photoreceptor input
is too low.

The cutoff frequency fy can be found by assuming the

form of C(k) given above, scaling it with a prefactor to

make the contrast variance equal to the measured
value, measuring the speed and using knowledge of
the effective noise power spectrum. Figure 1 presents
the result of the computation of f;, and compares it to
data obtained from H1 published earlier (de Ruyter
van Steveninck et al. 1986). The results are expressed as
the measured quantity T=1/2nf,, which can be thought
of as the integration time of a filter, adjusted to
eliminate frequencies above f;. Obviously, the match
between theory and experiment is far from perfect. But
we must remember that the fly tries to solve a
complicated problem, of which our model description
can at best be a crude approximation. Also, there are
no free parameters in our calculation. In several
important respects there is agreement, however: First,
for most of the range the orders of magnitude
predicted for T are within a factor of three from the
measured values. Second, as also found for Hl, 1t
should depend only weakly on contrast for low
adaptation velocities. This is mainly due to the fact that
at low velocities the optical signal is low-pass filtered
with a very steep slope induced by the modulation
transfer function. Third, the point of breakaway from
the trend of decreasing t with increasing velocity, does
depend on contrast, which again is in line with the
observations on H1. What we mean to demonstrate
here is that the adaptive behavior of H1 is consistent
with a mechanism that could serve an important
purpose, namely suppressing high frequency
components for which the SNR drops below a criterion
value. This is a very useful thing to do prior to
combining signals in nonlinear interactions, because
such interactions mix frequencies. For example, the
low-frequency output of a second-order interaction
results from the convolution of the two input spectra.

Suppose that the inputs contain useful signals only at

low frequencies and that broad band noise is added.

Then, even if the low frequency SNR of the inputs to

the computation is high, the output of the computation

may be completely dominated by the noise, because in
the interaction the noise-noise cross product is
integrated over the full bandwidth. This argument is
quite general in the sense that the statistics of photon
arrival induces broad band noise in the photoreceptors.

Therefore, prefiltering signals prior to nonlinearities is

important. Further, prefiltering should be adaptive if

the computations are to span a reasonable dynamic
range.

These observations have prompted us to investigate
the question in a more general and perhaps more
natural situation, namely continuous estimation of the
velocity of a wide-field pattern subject to Brownian
motion. The full mathematical treatment of this
problem is beyond the scope of this paper, but is given
elsewhere (Potters 1994, Potters and Bialek 1994). Here
we present a more intuitive approach which can be
understood from first principles. Some of the
predictions are presented and compared to results
from experiments on the H1 neuron.

OPTIMAL VELOCITY ESTIMATION

The desideratum is to make the best least-squares
estimate of the velocity of a wide-field pattern, given
the photoreceptor signal-to-noise characteristics.
Mathematically, the formulation is that of a statistical
estimation problem in which the trajectory of a
continuous random motion signal is estimated. One
implication is that qualitative aspects of the
computation should change when the signal-to-noise
ratio at the photoreceptor level changes from a high to
a low value. A rather dramatic demonstration of this is
the prediction that the pure velocity estimator in the
limit of high SNR should approach the gradient
scheme (Limb and Murphy 1975), whereas at low SNR,
the velocity estimator should shift its computation to a
form of the original Reichardt correlator, with a
multiplicative interaction between two linearly filtered
versions of the photoreceptor signals. The latter
situation is forced by a tradeoff between statistical and
systematic errors: At high SNR, the optimal estimator
can afford to compute high-order terms between
photoreceptor signals, thus improving its velocity
estimate by reducing systematic error. At low SNR,
however, the statistical error in higher order terms in
the computation grows faster than in lower order
terms. Therefore, at very low SNR only the lowest-
order term that contains any movement information,
the second-order one, should be used.

The transition between the two regimes is smooth,
and the particular version of the gradient model
predicted can be seen as a suitably normalized version
of a Reichardt correlator, where the normalization
adapts to the SNR. A simplified version of this
adaptive movement sensor is given by the following
relation:
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on contrast increases with decreasing light levels. This
is expected from the simple picture: at lower light
levels, the relative SNR decreases, thus widening the
contrast range over which correlation operations rather
than gradient schemes are optimal. In the experiment
presented here, the range should scale to first
approximation inversely with intensity, which is
roughly correct. Although the response at the lowest
light level increases slower than at the higher levels, its
value at maximum contrast is not that different from
the other cases. This is an interesting phenomenon, and
it could point to a mechanism in which the dependence
H1's response on contrast is gradually suppressed as
the SNR increases. The following experiment was
designed to test this more explicitly.

Adaptation to contrast

A more detailed way of looking at contrast dependence
is to probe adaptation to contrast. As an adaptation
stimulus, in this experiment the fly saw a Gaussian
random pattern pattern move at constant velocity (8
omm/s) in the neuron's null direction. (Adaptation
movement in the preferred direction gave qualitatively
the same results, although there were differences in
detail resulting from the tonic high firing rate induced
by such an adaptation stimulus.) After 3 seconds of
adaptation movement, the velocity changed sign, and
the contrast changed to a test contrast value. This test
phase lasted for 1 second, wherupon the adaptation
stimulus resumed. The estimated values of adaptation
contrast at the photoreceptor level in this experiment
were: 0.0, 0.02, and 0.2.

We probe Hl's response to the test contrast, given a
certain value of the adaptation contrast. To minimize
the effect of transients induced by the contrast switch
from adaptation to test, the movement response was
computed over the last 500 ms of the presentation of
the test stimulus. The results are shown in Fig. 3 at two
test contrast resolutions. The top figure shows that the
test response reaches a plateau as a function of test
contrast, and the plateau values do not depend very
much on adaptation contrast. On the other hand, the
contrast gain of the test response depends strongly on
the adaptation contrast in the region of low test
contrasts, as can be seen from the bottom figure. This
graph also shows that in the low contrast region, H1
shows typical correlator-like behavior, in that the
movement response is a quadratic function of contrast.
However, the gain of the correlator is very sensitive to
the adaptation contrast. In this case, the gain varies

from 2.5-10* to 0.3-10* spikes/[s-(rms contrast)2] when
rms adaptation contrast changes from 0 to 0.2.
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Fig 3. Dependence of H1's movement response on test contrast,
when adapted to different adaptation contrasts. The data in the
bottom figure are for the low contrast regime only, and the abscissa
is quadratic. The fact that straight lines on this plot fit the data
well means that for this test contrast range, H1 responds like a
correlator.

Dependence on contrast and velocity

Here we probe the simultaneous dependence of the
movement response on contrast and velocity. In order
to keep the neuron in a reasonably steady state of
adaptation we presented null-direction movement at a
constant velocity for periods of 3 seconds, interleaved
with preferred direction movement during 1 second.
Meanwhile the contrast of the pattern changed in
triangular fashion, with a period of 100 seconds so that
we probed the response to preferred direction
movement 25 times each period. The pattern consisted
of 1 omm. wide bars, set dark or bright randomly. The
result, expressed as the averaged firing rate during
each preferred-direction stimulation as a function of
both contrast and velocity, is shown in Fig. 4. Clearly
the response plateaus as a function of rms contrast for
contrast values above 0.1. However, even if the
response as a function of contrast is well in the plateau
region, the response still depends strongly on velocity
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with D the diffusion constant parametrizing the whole-
field Brownian motion of the pattern, and where S,
and S; are spatial and temporal derivatives of the
spatiotemporal function S(x,t). This function is in effect
the signal to noise ratio at the level of the
photoreceptors. At the intensities used in laboratory
conditions 5(x,t) is almost linearly related to the light
intensities. In the full description the differentiation
operations are implemented by biphasic filters, the
shapes of which depend on stimulus parameters. Here
we ignore these dependencies, as we are more

interested in the qualitative behavior. For a rigidly
moving pattern:
S(x,t)=S(x—v-t), (4)

and if noise were not present one could simply
estimate velocity by taking the ratio of the time and
space derivatives of S. This is what happens in the limit
of (3) when the integral dominates the denominator. At

low SNR, where D! dominates, the estimated velocity
is the product of two linearly filtered versions of the
spatiotemporal light intensity, which is in essence the
classical Reichardt correlator. If this type of flexibility is
built in to the fly visual system, we should be able to
adapt the fly's brain in different ways to regimes of
different  SNR and probe its properties. The
experiments described below are an attempt to do so.

METHODS

The experiments were performed on female wild type
Calliphora vicina, caught outdoors. The fly was put in a
plastic tube, its wings, thorax and head fixed with wax.
Care was taken to leave the proboscis free so that the
animal could be fed occasionally. The H1 neuron was
recorded by an extracellular tungsten electrode
reaching the lobula plate through a small hole cut in
the back of the head.

Patterns were generated using a Digital Signal
Processor board (Ariel) based on a Motorola 56001
processor, and consisted of frames of nominally 200
vertical lines, written at a frame rate of 500 Hz. Thus
the patterns were essentially 1-dimensional, but
extended in the vertical direction. They were displayed
on a Tektronix 608 monitor (phosphor P31), at a

radiance of 165 mW/(‘sr’cmZ). Taking spectral and
optical characteristics of the photoreceptor lens-wave
guide into account, we estimate a flux of effectively

transduced photons of about 410%™ (de Ruyter van
Steveninck, 1986).

Prior to each set of experiments the distance of the fly
to the screen was adjusted so that 4 lines on the screen

corresponded to 1 horizontal interommatidial angle,
which for the fly is about 1.35°. All velocity values in
the subsequent experiments are therefore given in
units of ommatidia of the fly's horizontal sampling
raster per second, i.e. omm/s.

RESULTS

Contrast and light intensity

In this experiment the fly watched a pattern moving in
the preferred direction of H1, at a speed of 8 omm/s.
The pattern consisted of vertical lines with intensities
set independently from the others according to a
Gaussian distribution with rms value 0.5 and mean 1.0.
However, because the line width was set at one quarter
of the interommatidial angle, the lines were
substantially blurred by the photoreceptor optics,
resulting in an estimated rms contrast value of 0.2. The
experiment was done for three values of the light
intensity, by having the fly look at the screen either
directly, or through a D=1 or D=2 neutral density filter.
Figure 2 shows the result of this experiment for the
three light levels. For D=0 the response of H1 increases
steeply as contrast increases and reaches a plateau
value at relatively low contrast values. A noteworthy
feature of the curve is also that it is not symmetric: the
response to the downward contrast flank is different
from that to the upward one. As the stimulus period
was 300 seconds, this means that long-term adaptation
effects play a role in shaping the response. For lower
light intensities, it can be seen that the range over
which the response depends more or less quadratically

rate (spikes4)

0 50 100 150 200 250 300
time (s)

Fig 2. Response of H1 to movement in the preferred direction, at
moderate speed (about 8 ommatidia/s). During movement the
contrast of the random bar pattern was ramped from 0 to 0.2 and
back, as shown. Three levels of illumination were used: low (black
curve), middle (dark gray curve), and high (light gray curve).
INMumination levels were spaced by factors of ten.
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Fig. 4: Firing rate of H1 as a function of both contrast and velocity.
Velocity was presented alternatingly in null direction (3 s, v=8
omm/s, and preferred direction (1 s, v as given by axis). Rate in
this figure is the average response to the 1 second test stimulus.

over a wide dynamic range. So, at low contrast the
output of H1 is ambiguous in the sense that it depends
both an contrast and velocity. At higher contrasts,
however, H1 seems to have normalized contrast away,
and is sensitive to velocity only. This is in line with the
behavior predicted by Eq. 3, but we should of course
be careful interpreting these results, as there are other
parameters that influence H1's response, such as the
spatial structure of the stimulus.

CONCLUSION

Probably the most important conclusion we can draw
from our results, is that the visual system of the fly
seems to be very adaptive in its computations.
Furthermore, we tentatively understand some of the
observed behavior as the result of incorporating
statistical knowledge about stimulus structure into
neural computations, in order to optimize the
processing of signals that are ultimately derived from
noisy photoreceptor voltages. If our interpretations are
correct, adaptation of the kind we observe here should
be much more widespread. Another important lesson
is that experimental conditions can be manipulated
such that H1 shows distinct features of either a
correlator, or of a pure velocity sensor. Thus,
proponents of the correlator scheme, and those in favor
of gradient models (see e.g. Buchner 1984) may really
be looking at two sides of the same coin, namely the
adaptive movement sensor described by Eq. 3.
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