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We develop model-independent methods for characterizing the infor-
mation carried by particular features of a neural spike train as it encodes
continuously varying stimuli. These methods consist, in essence, of an
inverse statistical approach ; instead of asking for the statistics of neural
responses to a given stimulus we describe the probability distribution of
stimuli that give rise to a certain short pattern of spikes. These ‘response-
conditional ensembles’ contain all the information about the stimulus
that a hypothetical observer of the spike train may obtain. The structure
of these distributions thus provides a quantitative picture of the neural
code, and certain integrals of these distributions determine the absolute
information in bits carried by a given spike sequence.

These methods are applied to a movement-sensitive neuron (H1) in the
visual system of the blowfly Calliphora erythrocephala. The stimulus is
chosen as the time-varying angular velocity of a (spatially) random
pattern, and we consider segments of the spike train of up to three spikes
with specified spike-intervals. We demonstrate that, with extensive
analysis, a single experiment of roughly one hour’s duration is sufficient
to provide reliable estimates of the relevant probability distributions.

From the experimentally determined probability distributions we are
able to draw several conclusions. (1) Under the conditions of our ex-
periment, observation of a single spike carries roughly 0.36 bits of in-
formation, but spike pairs carry an interval-dependent signal that can be
much larger than 0.72 bits; estimates of the total information capacity
are in rough agreement with the maximum possible capacity given the
signal-to-noise characteristics of the photoreceptors. (2) On average a
single spike signals the occurrence of a velocity waveform that is positive
(movement in the excitatory direction) at all times before the spike,
whereas spike pairs can signal both positive and negative velocities,
depending on the inter-spike interval. (3) Although inter-spike intervals
are crucial in extracting all the coded information, the code is robust to
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several millisecond errors in the estimate of spike arrival times. (4) Short
spike sequences give reliable information about specific features of the
stimulus waveform, and this specificity can be quantified. (5) Our results
suggest approximate strategies for reading the neural code —recon-
structing the stimulus from observations of the spike train — and some
preliminary reconstructions are presented. Some tentative attempts are
made to relate our results to the more general questions of coding and
computation in the nervous system.

1. INTRODUCTION

The sensory systems of even relatively primitive creatures receive information
from the environment at an enormous rate, and much of this sensory information
must be processed in real time. Seldom does an organism have the luxury of
expecting many precise copies of a stimulus to be transmitted in sequence, and the
time scales for behavioural decision-making are often comparable to the timescales
that characterize variations in the stimulus itself. This real-time mode of operation
of the nervous system should be contrasted with the conventional outlook in
neurophysiology. In most studies, especially on spiking neurons, stimulus
response relations are characterized by responses averaged over a large number of
presentations of identical stimuli. This averaging procedure provides an experi-
mentally convenient description of neural responses allowing, for example, the
definition of ‘receptive fields’ and other characteristics of filtering and signal
transduction in the nervous system. It should be clear, however, that these average
responses are of limited relevance for an organism that does not itself have the
opportunity to average.

This study is an attempt to characterize the spike train of a single neuron in a
way that conforms more directly to the problem faced by the organism. The aim
is to understand what inferences can be made about a time-dependent input signal
by a hypothetical observer of the ongoing spike activity. Because we are dealing
with a stochastic system this must necessarily be done in probabilistic terms.
Specifically, the goal of our experiment is to determine the probability distri-
butions that describe how short stretches of a continuously varying stimulus are
encoded in short spike sequences. Given these distributions, a variety of theoretical
results can be used to analyse the code quantitatively.

(i) We can determine the absolute information content, in bits, of particular
spike sequences without any a priori assumptions about the informational
significance of different features of the spike train.

(ii) We can characterize the way in which the space of all possible stimuli is
divided into regions represented by distinct spike sequences. Do variations, for
example, in inter-spike intervals correspond to variations in specific temporal
features of the stimulus waveform ?

(iii) We can define the degree of precision in spike timing that is required if the
maximum possible information is to be extracted from the neuron, or alternatively
the extent to which the neural code is robust to timing errors.

(iv) We can, at least approximately, combine information from successive spike
sequences literally to read the code, providing an algorithm for real-time stimulus
reconstruction using only the spike train as input.
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We wish to emphasize a key feature of this approach, namely that it is not tied
to any model of the coding process. On the contrary, if one has reason to suppose
that particular features of the spike train carry special significance then one can
actually use our methods to test this hypothesis.

In one sense our method of analysis is the opposite of the conventional one.
Rather than considering the set of responses induced by a certain type of stimulus,
we are interested in the set of stimuli leading to a certain type of response; it is
this inverse relation that allows us to interpret the response as representing certain
particular stimuli. In practice the stimulus is a computer-generated random wave-
form, and we will average continuous short stretches of this waveform that
immediately precede identical short spike sequences. The computation of such a
conditional mean stimulus waveform is in the spirit of de Boer’s reverse correlation
method (de Boer 1967; de Boer & de Jongh 1978); reviews on this and related
methods are given by Marmarelis & Marmarelis (1978) and by Eggermont et al.
(1983). A crucial extension is that here the events forming the conditions are
stretches of the neuronal response spread out in time, instead of single spikes.
Furthermore, we will characterize not only the conditional mean waveform but
rather the conditional probability distribution of waveforms. By estimating these
distributions we learn not only what waveform is most likely to have generated a
given spike sequence, but also the extent to which this most likely waveform can
be trusted as a reliable estimate of the actual stimulus. This quantitative notion
of reliability is essential for a meaningful characterization of the neural code.

It is clear that experiments of the sort described here must be done on rather
carefully chosen preparations. Obvious requirements, as we are trying to answer
intrinsically statistical questions, are long stable recordings that allow for large
and well-behaved data sets. More fundamentally, we would like to study a system
in which enough is known about both physiology and behaviour to be certain that
we are looking at biologically meaningful stimuli and at neural responses on
behaviourally relevant timescales. We have chosen to study H1, a wide-field
movement-sensitive neuron in the visual system of the blowfly Calliphora
erythrocephala. This neuron is directionally selective, its preferred stimulus being
horizontal inward (back to front) movement, and has a receptive field almost
covering one hemisphere (Hausen 1982). Vertical movement leaves the neuron
virtually unaffected, whereas movement in the horizontal outward (null) direction
suppresses its spontaneous activity. In the experiment described below, the fly
watches a wide-field pattern that moves randomly. The H1 neuron is described as
‘movement-sensitive’, but of course other parameters of the stimulus such as
contrast and spatial structure also influence its response. These parameters are
kept constant throughout the experiment, so that for most of the analysis we
characterize the stimulus by one function of time, the angular velocity of the
pattern. In §6¢ we return to the consideration of other stimulus variables in
connection with adaptation and coding ambiguity.

The starting point in our approach is the observation that the H1 neuron must
convey its messages rapidly, because it acts as a link in the optomotor course-
control loop (Hausen & Wehrhahn 1983 ; Hausen 1984). Typical response times in
visually induced behaviour of free-flying flies are of the order of 30 ms (Land &
Collett 1974), during which time the H1 neuron typically fires at most a few spikes.
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The neuroanatomy of the fly visual system (Hausen 1984) suggests that there is
little, if any, opportunity for averaging over several neurons, and the behavioural
timescales tell us that there is no opportunity to average over many spikes. This
system thus typifies the problem of real-time processing to which we alluded at the
outset.

In the following sections we present the theoretical foundations for our prob-
abilistic discussion, the methods required for the experiment itself, our approach
to processing the raw experimental data and finally the results and implications
derived from a specific experiment on H1.

2. THEORETICAL FOUNDATIONS
(a) A short review of earlier work

After Shannon (1948, 1949) published his classic work on information theory,
the concepts of coding and information transfer have been widely used in both
theoretical and experimental studies of neuronal signal transport. Following von
Neumann’s (1956) emphasis on the severity of reliability problems in computa-
tional systems the notions of reliability and redundancy in neural coding have also
been widely discussed.

A comprehensive review of the concepts involved in neural coding is provided
by Perkel & Bullock (1968). The authors give an exhaustive survey of possible
coding schemes, and illustrate various possibilities with experimental data on a
wide variety of preparations. The issue of reliability is treated by Bullock (1970),
who presents a critique of the view (see, for example, Burns 1968) that the brain
operates in a probabilistic manner with unreliable components. One of his
important points is that neurons perform with a degree of reliability that must be
quantified experimentally. In fact a quantitative experimental description of
neural reliability has been rather elusive.

McKay & McCulloch (1952) consider the maximum amount of information that
a spiking neuron can carry. Their analysis is based on interval coding, in which the
information transfer is limited both by the refractory time and by the smallest
discriminable time-interval between successive spike firing times. For typical
values of these parameters maximum information rates of the order of
1000 bits s7! are computed. In a comparable model, supplemented by experi-
mental data, Rapaport & Horvath (1960) estimate a maximum information
capacity of 4000 bits s™*.

Stein (1967) challenges these results by stating that in most cases spiking
neurons convey their information by a rate code, i.e. the information is contained
in the number of spikes fired within a time window substantially longer than the
average spike-interval. This is an assumption, however, which lacks direct
experimental support. There are two more reasons why this assumption is unat-
tractive. First, the information transfer is made to depend on an arbitrary choice of
the duration of the time window, and it seems very difficult to make an inde-
pendent estimate of this duration. Secondly, only the total number of spikes in the
window is considered, so that all information carried by the structure of the spike
train within the window is discarded. A related problem is that the analysis is
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restricted to static stimuli. This difficulty is removed in two subsequent papers
(Stein & French 1970; Stein et al. 1972), where the information transfer of two
neuronal models is studied, by using the coherence function to describe the linear
part of the coupling between stimulus and response. The basic problem remains,
however, that these theoretical studies begin with definite postulates about the
nature of the neural code rather than providing a guide for experimental
exploration of the code.

In most experimental studies, assumptions are also made regarding the encoding
of stimulus signals by the nerve cell. Griisser (1962) and Griisser ef al. (1962) treat
information transfer in cat retinal-ganglion cells by using a spike-counting model as
in Stein’s work, considering the discrimination of different steady-state inputs
based on the number of spikes in a certain time-interval. An approach along the
same lines is taken by Werner & Mountcastle (1965) in their study on mechano-
receptive cutaneous afferents. A somewhat more sophisticated approach, but still
based on a frequency-coding model, is offered by Wallge (1970), who investigates
information transfer by stretch receptors. Finally, Férber (1968) considers the
possibility of distribution coding, in which the information is carried by more
statistical parameters than the mean rate alone, but again the analysis is limited
to static stimuli. The main drawback of these approaches is that they offer no
insight into the encoding of time-varying stimuli, and of course the results depend
on the particular choice of the encoding model.

A procedure in which no assumptions are made regarding the encoding is
described by Eckhorn & Popel (1974, 1975) in a study on the information capacity
of cat lateral geniculate nucleus cells. In their method, an input—output joint
distribution is computed from experimental data. Both the input, a pseudorandom
train of light flashes, and the input, a spike train, are considered binary functions
of time. As long as stationarity is a good approximation the method provides a
complete description of the joint distribution over limited time intervals. From
this the information transfer can be computed directly. The distribution’s dimen-
sionality grows linearly with the length of this time interval, hence the analysis
is restricted to very short stretches of stimulus and response signal. Furthermore,
the method is designed to avoid the question of encoding, so that the end result
is essentially only a number representing the average information transfer, and
no insight is obtained into the translation between stimulus signals and spike
sequences. Finally, binary strings describe at best a limited class of stimuli that
may not be typical of the cat’s sensory ecology.

A very different class of experiments was pioneered by Fitzhugh (1957) and by
Barlow & Levick (1969). These authors examine the reliability of neurons in
forced-choice discrimination tasks between pairs of known stimuli. Such experi-
ments are direct analogues of psychophysical experiments on humans, and they
provide a rather direct definition of neuronal reliability ; we have in fact general-
ized these ideas and applied them to H1 (de Ruyter van Steveninck et al. 1985;
de Ruyter van Steveninck 1986; Bialek et al. 1986). It should be clear that
the problem of discriminating among a discrete set of known possibilities is
quite distinct from the more natural problem of real-time signal processing and
estimation that we consider here.
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The study of neural coding has by now accumulated a rather long history, and
many specific experimental and theoretical results have been obtained. We hope
that this short review has made clear, however, that there is still a need for a more
direct experimental attack on the problem.

(b) Response-conditional ensembles and their information content

The neuronal response is a stimulus-dependent stochastic signal. This depen-
dence is partial because the system is not noise-free, one obvious source of ran-
domness in the visual system being photon shot noise (see §6d). The aim of the
following analysis is to give a probabilistic description of the relation between
both signals. To this end, neuronal responses are ordered in categories defined by
the inter-spike intervals. More precisely we imagine taking a snapshot of the spike
train at some observation time f,,.. At this instant a time ¢, has elapsed since the
last spike, while the second-to-last spike occurred a time ¢_, further in the past,
and so on; see figure 1 below. Let us call this particular snapshot of the spike train
R, because it is some particular response of the neuron. We would like to know
what the observation of this snapshot R tells us about the stimulus, which in the
H1 experiments is the angular velocity v(¢) of a pattern as it moves across the
visual field.

Everything that we know about v(¢) by virtue of observing R is by definition
contained in the conditional probability distribution P[v(¢) | R]. This distribution
measures the likelihood that any particular stimulus »(¢) gave rise to the observed
segment of the spike train. More precisely we might thus refer to P[v(t)| B] as a
distribution functional as it describes the probability that the function v(f) has a
certain form. From P[v(t)| R] we can find the most likely waveform and we can
estimate the expected fluctuations around this most likely signal. The problem is
thus to determine P[v(f) | R] experimentally.

Imagine that we have performed a very long experiment, presenting the system
with some randomly chosen, continuously varying v(¢). In such a long experiment,
the response R will have occurred many times; there will be many observation
times ¢, such that the last spike occurred at ¢, —¢,, and so on. Looking back-
wards in time from each such ¢, we will see some particular waveform v(¢,,,+7),
where 7 is negative. Let us imagine keeping a list of all these waveforms that
preceded the response R. What we have done in making this list is to choose out
of the statistical ensemble of all possible waveforms in our experiment a particular
sub-ensemble, the response-conditional ensemble. This sub-ensemble in fact consists
of waveforms that are chosen randomly out of the distribution P[v(t,,s+7)| E], so
that our experiment has given us a sort of Monte Carlo sampling of this distri-
bution. This sampling constitutes all our experimental knowledge of the response-
conditional ensemble. To parametrize this knowledge we can compute various
moments of the distribution, with more samples of course required if we are to
estimate the higher moments reliably.

Although we can continue to discuss abstract distributions, some practical
comments are in order. In principle, P[v(t,,s+7)| R] defines the probability dis-
tribution for a continuous function of time; in practice, of course, we must take
discrete time samples if our experimental data are to be processed digitally. This
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means that »(7) is a finite dimensional vector measuring the velocity at a discrete
set of times preceding ¢, . These distributions P|v(¢,, + 7)| ] are then probability
densities in that P[v]dv, dv,... vy is the probability that the N samples »; of the
waveform takes values in small regions of width dv,. Note that unless we build
correlations into the stimulus itself, a spike sequence consisting only of events
earlier than some observation time can, by causality, only inform us about stimuli
before this time. In the experiment described below we will in fact use uncorrelated
(white-noise) stimuli. Secondly, we clearly cannot attempt to evaluate all the
moments of the response-conditional distributions. In practice we will represent
this distribution as a multi-dimensional (taussian, characterized by the mean
velocity vector wg(7) and the covariance matrix C'x(7,,7,), with 7 the discrete time
index and R denoting the particular response that forms the condition. We will
check that this is a good approximation by computing a subset of the third and
fourth moments.

Consider again our hypothetical observer monitoring the spike train in real
time. Given that a response of a certain category has just occurred, the best
estimate he can make about the immediate past of the stimulus is the mean
waveform conditional on that response category. A measure of how good his
estimate is, i.e. how closely he can expect the actual waveform to match the
estimate, is given by the covariance of the conditional sub-ensemble. This can be
seen by observing that the covariance is the multi-dimensional analogue of the
variance, describing the ‘width’ of a distribution in the space of all possible
stimulus waveforms. The concept of coding thus emerges in a natural way : loosely
speaking the message conveyed by a particular spike sequence is the mean wave-
form conditional on that sequence, and the uncertainty in the message is given
by the conditional covariance.

In the absence of any observations on the spike train all we know is that the
stimulus waveform was chosen from some a priori probability distribution F[v(7)]
determined by the experimental or environmental conditions. The observation of
a certain response changes our statistical knowledge from the a priori ensemble to
the conditional ensemble: some classes of stimuli are judged more probable and
others less probable than before the observation of R. A useful measure of this
change is the Shannon (1948) information gained by observing such a response.
For each response category this quantity can be computed directly from the two
distribution functions P|v|R] and F,[v]. Let the information provided by the
occurrence of a response R about the occurrence of a particular waveform v»(7) be
denoted by I[v(7); R]. Then, with [ in bits we have (Fano 1961):

i B — 1 (EL | B]
I[v('r),R]—ln( Plo(m)] ) (1)

~ The average information carried by R about the complete set of stimulus velocity
waveforms is the expectation value of I[v(7); R], found by integrating over all
stimulus waveforms:

I(R) = JD?}P[U(T)IR]I[U(T); R, 2)
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where the integration is over the entire space of waveforms, and Dv represents the
infinitesimal volume element do(7,) dv(7,) ... dv(r,,).

In the case where the distributions are Gaussian I(R) can be evaluated directly.
Explicitly, we have the conditional distribution

Plo()| R] = [(21)" [CRl]* exp [ —4(v(1)) —wr(71))" CRM (11, T3) (0(75) —wg(7y)],

(3)
where |C'g| is the determinant of the covariance matrix, Czlisitsinverse, ()7 denotes
the transpose of a vector (), wg(7) is the mean velocity waveform conditional
on the response R, and 7 is the dimension of the vectors. For conciseness of
notation the time dependency will not be explicitly indicated in the following.
Similarly, the a priort probability density is given by

Pyv] = [(20)" [C,|]7* exp [ — W C ], (4)

in which by construction € is a diagonal matrix (there are no correlations in the
a priort ensemble), and the diagonal elements of C,, are the variance of the stimulus
velocity. After some calculation we find that the integral defining I(R) becomes

I(R) = gllog, (IC|/ICgl) +Tr (O3 Cr = U) +wi €y wp], ®)

with U the unit matrix and Tr () denoting the trace of the matrix ().

Through the first two terms in (5) the information content depends on the
change in the covariance, whereas the third depends on the shape of the conditional
mean waveform. The first term has a particularly simple interpretation. Because
the determinants are measures of the volume in stimulus space associated with the
two matrices, this term measures the information gained by the reduction in
volume of the a posteriori stimulus space relative to that of the a prior: distribution.

To summarize, we can characterize response-conditional ensembles by their
moments, which are directly estimated from experiment. Having done this we can
examine the structure of the ensemble, as described in detail below, and we can
also compute the information conveyed by each spike sequence R.

(c) Reconstruction of the stimulus waveform

Our methods, as described above, provide precise data on the information
conveyed by particular spike sequences R. Truly to read the neural code — provide
an algorithm for real-time reconstruction of the stimulus based on the spike train
alone — we must find a way to combine information from successive sequences. At
present we have no experimental guidance on how to do this combination, so we
will make what is admittedly a crude approximation, namely that successive spike
sequences R are generated independently. Note that if by ‘spike sequence’ we
simply mean a single spike, then we are assuming that neural firing is a Poisson
process, which is indeed a strong assumption. But if ‘spike sequence’ includes
groups of two or three spikes our assumption is progressively less stringent. Clearly
as our definition of the responses categories B becomes more refined — as we look
back further and further in time from ¢, — the assumption of independence is
more and more accurate. In any event, it is our only possibility given our present
data set, so it seems to be worth trying.
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Mathematically the independence assumption is
k
P[R,, R,, ..., By |v] = I P[R;|v]. (6)
i=1

We are interested in finding the function v(¢) = v, (¢f) that maximizes the con-
ditional probability P[v| R,, ..., R,], that is the most likely velocity given that the

responses R, ..., R, have been observed. Now, by Bayes’s theorem,
P[R,, ..., R, |v] P)v]
Pw|R,,....R,] = ! a Dot 7
[ | 1 k‘] P[Rl,-«-,Rk] ( )
from which, using (6):
Polv]
Plv|R,, ..., *( PR, v)———. 8
[ l 1 k] H [ | ] PlRl,...,Rk] ( )

Again applying Bayes’ theorem we have

pL, o) = PR PLE

Pylv]
which substituted in (8) yields
_ - Plv| R
Pl )= (g 10k e () o

in which the first factor is a constant, given that the particular combination of the
R, was observed, and the second factor is the a prior: probability density. The
third factor is a product of ratios of the probabilities of the relevant conditional
velocity waveforms to those of the a priori waveforms. The probability densities
involved in the second and third factor are the multi-dimensional Gaussians given
by (3) and (4).

We wish to maximize expression (10) to find the velocity with maximum
likelihood v,g. In the Gaussian approximation the probability distributions are
especially simple, and we can find the maximum likelihood » as usual by
demanding that the derivatives of P[v|R,,..., B,] with respect to each element
of the vector v be zero. The result is that

k -1 &
v =| 3 CR=C+3 | X Gy, (1)
i=1 i=1
where it should be remembered that v, is a function of time. In the computations
presented below, v, at a certain moment in time includes contributions from the
spike train up to 100 ms ahead. Through (11) all responses R, (i =1,2,...,k)
occurring in this time-window contribute to the calculation of v,. Of course, the
R, occur at different instants during this window, and the corresponding velocity
vectors wy and covariances U must be shifted in accordance with these occur-
rence times. Note that if this procedure is truly done in real time then the observer
may at a certain moment estimate the stimulus in the near past and then modify

this estimate at some later time in response to new incoming information.
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3. METHODS
(a) Preparation and recording

In the experiment described here we used female Calliphora erythrocephala from
the laboratory stock. Spike activity from the H1 neuron was recorded extra-
cellularly with a tungsten microelectrode, which penetrated the back of the head
through a small hole cut in the integument. Spike-interval times were digitized in
units of 500 ps. These digitized intervals were stored on disk for off-line analysis.
Further details are described in de Ruyter van Steveninck ef al. (1986).

(b) Stimulus generation and presentation

The stimulus was a pattern displayed on a cathode ray tube (CRT). 1t consisted
of 2048 vertical lines with a 0.029° spacing, set dark or bright at random with
equal probability. When viewed through the photoreceptor aperture this is
an excellent approximation to Gaussian white noise. The mean radiance was
32 mW m2sr! at a frame repetition frequency of 800 Hz. The fly viewed the
screen via a square (30.5°)% diaphragm.

To the X-deflection voltage on the CRT a pseudo-random signal was added,
generated by a Data-General MP/200 microcomputer. Each 500 ps, i.e. synchro-
nized with the spike-interval timer clock, a random-valued movement step was
selected from a sequence previously downloaded into core-memory. In this way
the entire pattern jittered by means of small movement steps in the horizontal
direction, with the time between steps much less than the integration time of the
fly’s photoreceptors (typically 13 ms under the conditions of this experiment, see
de Ruyter van Steveninck (1986)). The sizes of these steps were integer multiples
of 0.066°. The movement signal was cyclic, with a full period of 2'¢ timer ticks, or
about 33 s. During the second half of this period, the pseudo-random signal
repeated the sequence of the first half, except for a reversal of sign of the move-
ment. In this way, the stimulus pattern executed a random walk with mean
velocity zero. During the experiment the stimulus sequence was repeated until a
sufficient number of spikes was recorded. In the experiment described here, 100
complete sequences were presented during approximately 53 min.

The sizes of the movement steps were identically distributed and were set
independently at each clock pulse. The sizes were chosen from seven values,
generated with the probabilities listed in table 1. The mean value as well as the
skewness and the excess of this distribution are zero, and the variance is one unit.
The distribution was obtained by transforming a uniformly distributed sequence
generated by combining the outputs of a congruential generator and a shift register
(Marsaglia et al. 1973), as implemented in the POrT library routine uni (Fox
et al. 1976).

TABLE 1. PROBABILITY OF OCCURRENCE OF MOVEMENT STEPS IN THE
PSEUDO-RANDOM STIMULUS

(The unit step size in the experiment is 0.066°, and steps were presented at 500 ps intervals.)
value (units) -3 -2 -1 0 1 2 3
probability 1/216  12/216  51/216 88/216  51/216 12/216  1/216
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4. DATA ANALYSIS AND DEFINITIONS
(@) Accumulation of the conditional moments

The result of the experiment is a time-sequence of spike occurrences, together
with a stimulus velocity signal, both stored on disk. The principle employed in the
subsequent off-line analysis is shown in figure 1. The top of the figure shows a part
of the velocity signal u(t), together with the sequence of spikes it induces. For the
purpose of illustration the stimulus shown is a smoothed version of the actual
stimulus. A time pointer (arrow) shows the instant up to which the analysis has
proceeded. At this moment, ¢, the last occurrence of a spike was 20 ms earlier,
and the spike immediately preceding the latter occurred 30 ms ago. The immediate
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Ficure 1. Explanation of the procedure followed in off-line analysis. The two traces at the top
show a random stimulus (in this case the angular velocity in rigid movement of a wide-field
pattern) together with the neuron’s response, both as functions of time. In the large block
at the centre, the first through fourth moments of the stimulus waveform are summed,
conditional on different neuronal firing patterns. The bottom trace presents an example of
the end result for one response condition after the full experiment has been analysed.
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history of the neuron’s signal can be approximated by two numbers: the time since
the firing of the last spike, designated ¢,, and the spike-interval between this spike
and the preceding one, ¢_;. In the example ¢, = 20 ms, and ¢_; = 10 ms. This part
of the immediate past of the response is drawn in a heavy line.

Once the response category is determined, the counter for this category is
incremented by 1, while the velocity values u(t,,+ 7) of the stimulus waveform in
a time-window immediately preceding ¢, , (drawn in a heavy line) are added to a
vector labelled by the response category. (In all results shown here 7 runs from
—100 to 0 ms.) The counter and the velocity vector are represented by the small
cube and the bar respectively, drawn at the right inside the large block in figure 1.
In addition, the cross-products wu(t,,,+7;)u(l,,s+7,) of all pairs of velocity
values in the window are added into a matrix, and the third and fourth diagonal
moments u3(t,,, +7) and u*(t,,s +7) are added to two vectors. This matrix and both
these vectors are also labelled by the response category; they are represented in
figure 1 by the continuation of the bar to the left. All the labelled vectors are
composed of 50 time bins, each 2 ms wide. Because of its symmetry, the labelled
cross-correlation matrix can be stored in an array of 1275 (2 ms)?* elements instead
of the full 2500. When all parameters are updated, the time pointer moves one bin
ahead. In this next time bin, the pointer may or may not encounter a spike. If it
does not, the procedure described above is repeated for a response category with
an interval ¢, incremented by one time bin and ¢{_; remaining the same. If instead
a spike occurs at the new ¢, the new value of t_; takes the value of the previous
ty, the new ¢, is set to 0 and the cycle repeats, starting with this new response
category.

In the analysis each of the dimensions (each interval) of the response category
is subdivided into 50 bins, each 1 ms wide, so that the total number of response
categories is 2500. Along each dimension the 50 bins are supplemented by an extra
bin in which the moments of all responses are summed for which the corresponding
interval lengths exceed the time-span of the 50 bins.

(b) Computation of the response-conditional ensemble

If the data of the complete experiment are processed in the way described above
we obtain, for each response category R, a count of the number of its occurrences
in the spike train, together with the corresponding time-dependent first through
fourth moments about the origin, summed over all occurrences of R. Each such
collection will be called a response-conditional sum (rcs). From every rcs the
following functions, acting as the parameters of a multidimensional distribution,
can be computed: (i) the mean velocity (wg(7) = {u(7))y); (ii) the covariance
matrix (Cg(7y,Ty) = {u(T)) u(Ty)) g —Wg(T) Wr(T,)); (iii) the diagonal skewness
(3(7) = <ubs(1)>p/[Ca(r,7)); and (iv) the diagonal excess (en(r) = Cudy(r)>p/
[Cr(1,7)]*—3), where { ) denotes averaging the quantity over all occurrences
of the response category R during the experiment, and w3}, and u}, are the third
and fourth moments about the mean. The latter can be found from the first through
third, and the first through fourth moments about the origin, respectively
(Abramowitz & Stegun 1965). The results of these computations are shown at
the bottom of figure 1. Together they constitute a parametric approximation
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representing a probability density of waveforms in stimulus space. Such a set
of waveforms with its associated probability distribution will be called a response-
conditional ensemble (rRCE), which is a sub-ensemble of the a prior: stimulus
ensemble £,. For each response category, the mean and the covariance of the rcE
describe a conditional multidimensional Gaussian approximation to the proba-
bility density in the vector space V of waveforms »(7), as defined in (3) above.

The diagonal skewness and excess are computed to check that the measured
distribution is a reasonable approximation to a Gaussian. If this approximation is
correct, these two should be zero which, as can be seen from figure 1, is approxi-
mately true. Examples (except the skewness) for other response categories are
shown in §5 (b). In no case did we find large deviations of either the skewness or
the excess, so we can be confident that the Gaussian approximation is reasonable.

In principle more complex response categories could be defined by taking
account of more intervals. This is precluded, however, both by limited storage
capacity and by limited experimental time. The latter limitation arises because a
sufficient number of occurrences (of the order of 300) in each response category is
required if we are to make a reliable estimate of the information content, as noted
below.

(c) Response categories and their notation

The response category R shown in figure 1 can be symbolized by R = ["t_;'t,7],
where the ordering of the superscripts (") and (7) provides a pictorial notation for
the type of firing pattern. The subscripted interval times denote the durations of
both parts of the response category. For specific cases these are given in ms, so
that here B = ["10’207]. The large block in the middle of figure 1 contains the rscs
with the response categories ["t_,’t,"] for all values of ¢{_; and ¢;,. From this entire
set of Ross we can compute subsets. For example, the rcs for the category R =
['t,"] — asingle spike occurring ¢, ms in the past — is found by summing all Rcss with
R =["t_,'t,”] over all values of {_,. In principle, response categories of the form
R =["t_,'t,’] —responses ending with a spike — can also be found from the set of
Ross with R = ['t_,’t,7] by taking the differences of ross with two adjacent values
of t,, but in practice it is easier to extract these cases directly from the spike train.
More complicated subsets could be constructed, e.g. one in which two spikes occur
at defined positions and a third spike at an unspecified time in between, but these
cases will not be treated.

Table 2 lists the symbolic notations for all response categories that are con-
structed, together with the way in which they are computed. Where appropriate,
pictorial notations for the response categories are used in the figures throughout,
as in the mean waveform depicted in figure 1. These notations are also given in
table 2. In specific cases the response acting as the condition on the mean velocity
waveform and the covariance is given in square brackets. For example, w['10"] and
C[’107] are the mean velocity and the covariance conditional on a 10 ms spike-
interval.

7 Vol. 234. B
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TABLE 2. SYMBOLIC AND PICTORIAL NOTATIONS FOR STRETCHES OF NEURONAL
RESPONSE ACTING AS CONDITIONS IN COMPUTING THE RESPONSE-CONDITIONAL
SUMS (RCSS), TOGETHER WITH THE STRATEGY FOR THEIR COMPUTATION

notation
symbolic pictorial computation
res ("t_,'ty) L.l directly from
experiment
RS (7t_,t,7) N > ros(‘a’ty”)
>ty
ROS ('ty7) | - > Res (‘a'ty)
a>0
ROS (7¢,7) — 2 ros (‘a”)
a>ty
Rres (07) = > res (‘o)
a>0
res (t_,'ty) | . | directly from
experiment
RCS (78, ty) weed > res(‘a'ty’)
a>t_y
Res ('ty) L > res (‘a'ty’)
a>0
ROS (Tt)) — S ros (&)
a>ty
res (07) | >, res(‘a’)

a>0

(d) The information content of the rcEs

Equation (5) defines the information content of an RCE in the Gaussian ap-
proximation. Naive attempts to evaluate this function by using experimental
estimates of the covariance matrix led to significant difficulties. The problem is
that the determinant of the covariance matrix is a strongly nonlinear function of
the matrix elements, so that random statistical errors in the matrix elements lead
to systematic errors in the estimate of the determinant. We have examined this
statistical problem both by analytical methods and by numerical simulations, and
found that to insure negligible systematic errors in the 50-dimensional problem
treated here requires at least 300-500 samples of any particular response category.
For several categories we have more than this number, and in these cases we
noticed a very important feature of the covariance matrix, namely that only a
small number, typically one or two, or its eigenvalues are different from the
eigenvalues of the a priori covariance matrix. These one or two distinguished
eigenvalues have associated eigenvectors that are smooth functions of time,
whereas the eigenvectors belonging to higher eigenvalues are not. (Some examples
of eigenvalue spectra and eigenvectors are shown in figures 8-10.) These results
suggest that we should approximate the determinant in all cases by the product
of the two lowest eigenvalues with all other eigenvalues replaced by their a prior:
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values (one, in suitable units). Again we emphasize that for those R with large
samples, we know experimentally that this approximation is excellent.

Note also that, because most of the power of the stimulus signal is above the
cutoff frequency of the visual system, one expects at the outset that the covariance
matrix contains meaningful components only in the low-frequency region. Because
of this, the off-diagonal elements can be smoothed to decrease the influence of
statistical errors in the computation of the eigenvalues themselves. In the results
presented in §5 the procedure followed is to subtract C, from Cp, then smooth
(Cr—0C,) with a symmetrical two-dimensional Gaussian filter of standard devia-
tion 4 ms, and finally add C, again. Note that 4 ms is much smaller than the
photoreceptor integration time (13 ms) under the conditions of our experiments
(de Ruyter van Steveninck 1986).

5. RESULTS
(a) General

Here we present the results of one experiment only. Although the results from
experiments done under different conditions differ in detail, the essential features
remain the same. For reference an overview is presented of the amount of data
processed, and some other global parameters of the experiment. The response
conditions of the form ['¢_,"¢,’], i.e. with a spike occurring at ¢, (closed intervals),
and of the form [t_,’t,"], i.e. with no spike occurring at ¢, , (open-ended intervals)
are worked out separately. Because the computations in the case of open-ended
intervals are much more time-consuming, these are done on a smaller body of
experimental data than for the closed intervals.

The experiment lasted 53 min, during which time 100 stimulus sequences were
presented. A total of 123077 spikes were recorded, with an average firing rate of
39 spikes s71. The full amount of spikes was processed for the closed intervals, and
about half this number for the open-ended intervals. Figure 2 shows the count

S 15 %108

10 X 103

T

count

5% 103

1 1 I
0 20 40

interval 't /ms

Ficure 2. Count histogram of the occurrences of closed spike intervals [¢,’]
over the entire experiment. The bin width is 1 ms.
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histogram for single intervals ['t,], which peaks at £, = 9 ms. The two-dimensional
count histogram for ["t_,’t,"] is presented as a contour plot in figure 3. The figure
is symmetrical under the interchange of the two intervals, but successive intervals
are not generated independently. This is demonstrated by figure 4, which shows
interval histograms for the second interval, conditional on three different choices
for the length of the first. Clearly, there is a preference for short intervals to be
followed (or, because of the time symmetry, preceded) by relatively short ones and
conversely for the long intervals. A possible mechanistic interpretation of this
behaviour is that the input signal of the spike generator has a correlation time of
the order of the mode of the interval distribution.

40 |-
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T

interval t,"/ms

- [r:]] ]
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I | ! I
0 20 40

interval 't /ms

FicUure 3. Two-dimensional count histogram of interval pairs ¢_,’t," in (1 ms)? bins. The data
are represented as a logarithmic contour graph with a distance between successive contour
lines of one decade.
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Fieurk 4. Conditional interval histograms P('t,"|'t_,") for three different regions of 't_,". We see
that, on average, short intervals are followed by short intervals, and long by long.
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(b) Examples of rcus for different response conditions

Representations of response-conditional ensembles (rCEs) for a selection of
different responses are provided by figure 5a—A. Two simple conditions: a single
spike [0'] and a 50 ms period of non-firing [7507], are depicted in figure 5a and b.
The mean stimulus waveform conditional on a single spike is a smooth function of
time peaking 25 ms before the spike occurs. Its peak height is 16° s™*. The multiple-
line plot represents the covariance matrix, scaled by the a priori stimulus variance.
The elements on the top-left to bottom-right diagonal are set to zero to provide
a reference. In reality these elements are almost equal to the value of the nearest
off-diagonal elements plus one. Positive (negative) values are represented by
deviations in top-left (bottom-right) direction. The figure shows that the off-
diagonal elements have a region of negative covariance, centred at about 35 ms
before the spike occurs. The fact that the off-diagonal values are negative means
that the waveforms that constitute the RCE are constrained to deviations from the
mean that have less low-frequency power than waveforms from the a priori
ensemble £,. To put it in probabilistic terms, if a waveform deviates from the
mean in a certain sub-region close to 7 = — 35 ms, the probability associated with
the waveform in the conditional ensemble decreases. Because the off-diagonal
elements are negative this decrease can be partly compensated by a neighbouring
deviation of reversed sign. Loosely speaking, this means that the H1 neuron is not
sensitive to fluctuations in the stimulus with a period smaller than the width of the
region of negative covariance.

The waveform conditional on the long silent interval (figure 5b) is negative,
meaning that responses of this type are preferentially generated by movements in
the neuron’s null direction. As in the single-spike case, the off-diagonal covariances
are negative in a certain region of the covariance matrix. Here the region of
negative covariance is stretched out in time, much as the conditional mean
waveform is stretched.

Figure 5¢ shows the rROE for B = ['307]. The mean velocity exhibits a distinct
cross-over from positive to negative velocity. It is interesting to compare its shape
to w[0’], with the latter waveform shifted to align the spikes for both cases. For
times earlier than 40 ms preceding the spike in each case the mean velocity
waveforms w[0'] and w[’307] are equal within our experimental error. At about
35 ms before the spike, w['307] begins to deviate from w[0'], i.e. the extra condition
of non-firing during a 30 ms interval starts to have its effect. Correspondingly the
covariance matrix C['307] has a somewhat larger region of negative covariance
than C[0].

Starting from a given open-ended interval we can ask what happens if a spike
is subsequently fired. This is shown in figure 5d for the case B = ['30’], in which
the mean waveform shows an additional cross-over to positive velocities. Again,
a comparison can be made with the previously shown cases. If the first spike in
['307] is aligned with the spike in ['307] the mean waveforms associated with both
conditions are approximately equal up to 55 ms before the second spike in ['307].
If w[0] is aligned with the second spike of w['30"] we see that, looking backward
in time, the waveforms are equal up to the peak in velocity that precedes the spike.
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A comparison of figure 5¢ and d demonstrates a fundamental characteristic of
the neuronal code, i.e. that the occurrence of an action potential at a single point
in time contributes to a description of the stimulus over a certain more or less
extended region of time. Consequently, on the observation of an action potential
the best estimate of the stimulus changes discontinuously from one function of
time to another.

RrCEs conditional on the same firing patterns, but with interval lengths of 5 ms
and 10 ms respectively are shown in figure 5e and f. Contrary to the 30 ms case,
the mean waveforms shown here represent unitary events in the sense that there
are no zero-crossings (see also figure 6). The mean waveform w['10"] can be
approximately described as the sum of two waveforms conditional on a single
spike, with one of the two shifted backward in time by 10 ms. The waveform w['5]
can certainly not be constructed in this manner: its peak value is close to 50° 871,
i.e. three times as high as the peak of w[0"]. This implies that the stimulus is

%\\g\f

|
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(=]

time of first spike/ms

time/ms

Fieure 6. Compilation of conditional mean waveforms for different lengths of closed intervals
‘t,". The time of occurrence of the first spike relative to the second, i.e. —t,, is given by the
ordinate. The smallest value of ¢, shown is 4 ms. The calibration bar on top represents
10 deg. s on the velocity scale.

FicUure 5(a—h). Response-conditional ensembles (RcEs) for a selection of eight different response
categories. For each category the RCE is represented by the conditional average waveform
(bottom) and the covariance (middle); the diagonal excess (top) is shown to illustrate that
the Gaussian approximation is reasonable. The abscissae represent time with respect to ¢,
(the last point of the response). Covariance matrices are represented by consecutive sections
normal to the top-left bottom-right diagonal. The elements on this diagonal are set to zero
to provide a reference. The calibration bars in the top-right corners have a length equal to
0.05. Positive (negative) values are in the top-left (bottom-right) direction.

The error bars on the average waveforms (in some of the cases too small to be visible)
represent standard errors of the mean in each individual time bin to provide an indication
of how accurately the waveforms are determined by the experiment.



Real-time coding in short spike sequences 399

encoded in a distinctly nonlinear way. A further aspect of this nonlinearity is
that in the negative region of the covariance matrices the values are more negative
than for the previous cases, which means that the contribution of the covariance
to the information content is larger. Also, the border of this region tends to shift
somewhat toward {,,.. The covariance matrix for the 5 ms case appears to have
considerable structure, but most of this is due to statistical errors associated with
the finiteness of our experiment.

It is interesting to note that 10 ms is very close to the most probable interval
(compare figure 2), and it is only here that we observe simple linear superposition
of the single spike waveforms. Evidently the degree of nonlinearity in stimulus
encoding is larger with shorter intervals, which corresponds to the neuron
deviating further from its most probable firing pattern. This result is echoed in
the interval-dependence of the information content, as discussed below.

Finally, figure 5 g, » shows RCEs in which the previous conditions are extended by
an extra empty 20 ms interval. As before, the tails of w[’t_,t,”] agree reasonably
well with the shape of w[t_;’] if the latter is shifted by ¢, ms. The more recent
history of both conditional waveforms is characterized by a crossover to negative
velocities. A striking feature of these latter parts of the waveforms is that the
crossover has an amplitude roughly equal to that of the preceding positive peak.
Presumably this is related to the correlation among successive intervals demon-
strated in figure 4. The interpretation is that if a short interval occurs, the next
interval is preferentially shorter than average. If this preference is due to a
relatively long correlation time in the signal feeding the spike-generator, the
stimulus must be more strongly negative to compensate for this and hence generate
a long second interval.

A compilation of conditional waveforms for R = ['t,’] is shown in figure 6. The
functions plotted represent waveforms as a function of time along the abscissa,
parametrized by the interval length given by the ordinate. It is clear that for long
intervals we can distinguish three different phases in the average velocity wave-
form: two positive peaks occurring 25 ms before each of the two spikes, and a
trough in between. As the interval becomes shorter than 10-15 ms, these separate
phases merge into a single peak that becomes very high for the shortest intervals.
Interestingly, this transition occurs for intervals with a length of the order of the
photoreceptor integration time (13 ms) (see de Ruyter van Steveninck (1986)). A
functional interpretation is that, loosely speaking, structure in stimulus events on
a timescale below the photoreceptor integration time cannot be detected. How-
ever, the H1 neuron can generate intervals of shorter duration. These intervals
may therefore be used to encode higher stimulus amplitudes.

(¢) Information content of single intervals and rate of information transfer

The information content of the rRcEs conditional on ["#,"] and ['¢,"] as a function
of t, is given by figure 7. The values were computed from (5), approximating the
determinant as described in §4 (d) above.

For t, close to zero with R =[t,"] (heavy line) we obtain the information
associated with a single spike, which amounts to 0.36 bits. If the empty interval
becomes longer, the information associated with R first decreases, reaching a
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minimum of 0.23 bits for {; = 11 ms, and then rises again when the interval
becomes longer. The rising segment has a slope of 17 bits s~ which represents the
asymptotic rate of information transfer associated with the absence of spikes. The
dip in the information content occurring at £, = 11 ms may seem paradoxical at
first sight. After all, the occurrence of a longer open interval is necessarily preceded
by the occurrence of a shorter one, and additional information can be provided
during the extra stretch of time. Note, however, that this need not be true in
general. A simple counter-example is one in which the message provided by the
additional length is in conflict with what was received earlier. This increases the
uncertainty, and thus decreases the amount of information conveyed.

information content (bits)

L o 1 1 1
0 20 40

interval ¢;,/ms

Ficure 7. Information content of open intervals (heavy line) and closed
intervals (thin line) as a function of interval length.

The information carried by short closed intervals considerably exceeds that
of the corresponding open intervals. For intervals shorter than 10 ms the full
information content is greater than the sum of its parts: two spikes considered
independently carry 0.72 bits, and the stretch of empty interval between the
spikes contributes 0.17 bits at most (which is the value for a 10 ms interval
computed from the 17 bits s™' asymptotic rate mentioned above), whereas short
closed intervals carry more than 1 bit. This demonstrates that an important part
of the information is carried by interactions between spikes. The importance of
these short intervals in the total transfer of information can be appreciated by
observing that intervals shorter than 8.5 ms, just 16 % of the total population of
intervals, are responsible for half the average rate of information transfer as
computed below.

The information contents of open and closed intervals are equal for interval
lengths exceeding 17 ms. Given that a long empty interval has occurred, the
occurrence of an extra spike after 17 ms does not add to the information content
although it codes for a different event in stimulus space (cf. figure 5¢,d). In other
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words, the occurrence of the second spike codes for a different average event but
the precision of the estimate is the same as that of the empty interval. One
reasonably expects that if the intervals become longer the generation of the second
spike becomes independent of the time since the previous spike was fired, so that
no information is contained in the cross-interaction of the two spikes. This seems
to be the case for intervals exceeding 17 ms (see also figure 11).

The intervals in the tail of the interval distribution (see figure 2) are distributed
exponentially with a characteristic time of 7 = 35 ms. The self information (Fano
1961) of each set of interval lengths lying within a small time window d¢ is equal
to the logarithm of the probability. For the exponential distribution this is just
I =[(t/T—1In(dt/7)]/In 2. The time derivative of this, d//d¢ = (7 In2)~!, measures
the increase of information content with increasing interval length, amounting to
41 bits s™! here. Because of the properties of the exponential distribution this
result also holds for open intervals. This rate is more than twice as large as the
observed value of 17 bits s™, which means that there is a significant stimulus-
independent component in the generation of these long intervals. Intervals longer
than 17 ms contribute only 10% of the total information transfer rate.

We estimate the information rate carried by spikes in isolation by multiplying
the information contained in a single spike by the spike rate. The result is
14 bits s7*. Neglecting correlations in the coding among successive intervals we can
compute the average rate of information transfer based on single intervals under
the stimulus conditions used in the experiment. The rate of information transfer
associated with a certain interval is simply the information content of that interval
divided by its length. Averaging this quantity over all intervals, and weighting by
their probability of occurrence, we obtain a value of 87 bits s71, substantially more
than the value found for single spikes. Note that the information rate associated
with the different intervals varies drastically, and that it can be quite high; a
closed interval of 5 ms conveys its information at a rate of 500 bits s™*. In principle
the rate of information transfer could be computed along the same lines on the
basis of double intervals, but there are too few occurrences, especially of short
interval pairs, to allow a reasonably accurate estimate.

(d) Higenvalues and eigenvectors of the covariance matrix

As noted earlier, the ratio of the determinant of the conditional covariance
matrix to that of the a priori covariance matrix describes a contraction in the
space of stimulus waveforms associated with the response. In the experiment, the
waveforms that have given rise to a particular response belong to an ensemble
governed by a multi-dimensional Gaussian centred on the mean waveform which
is narrower in the space of stimulus waveforms than the a priori distribution. A
convenient way of representing such a distribution is by a hypersurface of constant
probability density. For a Gaussian this is a multi-dimensional ellipsoid. the prin-
cipal axes of which are given by the eigenvectors of the covariance matrix. We
will, for convenience, scale the covariance matrix to the a prior: stimulus variance,
so that the linear contraction in stimulus space along the principal axes is given
simply by the square roots of the corresponding eigenvalues. Because the dis-
tribution in stimulus space associated with a certain response is narrower along
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certain eigenvectors of (', the remaining part of the a priori stimulus ensembie
must be taken up by distributions associated with all other response conditions.
Thus the eigenvectors of Cp should point from the mean waveform wj in the
direction of mean waveforms wy conditional on other responses. This is demon-
strated below for some simple cases.

Figure 8 shows the three eigenvectors with the lowest eigenvalues for a covari-
ance matrix conditional on a single spike. The (scaled) eigenvalues are 0.69, 0.89
and 0.90 respectively. Of the three eigenvectors, only the one with the lowest
eigenvalue seems to have a clear structure, and this clearly corresponds to the
largest reduction in variance from the a priori value of 1. Thus this particular
neural event provides us with reliable information only about stimulus variations
along this one particular direction in the space of all possible stimuli. If the
stimulus deviates from the mean waveform w[’0’] in the direction of this eigen-
vector, the RCE tells us that that this deviant waveform has a lower probability
of generating a spike at f,,,. On the other hand, if the deviations are orthogonal
to this eigenvector they make little difference to the probability of a spike at ¢, .
In this sense observation of a single spike provides us with substantial informa-
tion about certain specific temporal features of the stimulus waveform, but
essentially no information about other features.
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Fieure 8. Eigenvectors corresponding to the three lowest eigenvalues
of the covariance matrix conditional on a single spike.

We can try to understand the encoding of particular ‘stimulus directions’ in
more conventional physiological terms. For negative-going deviations from the
mean waveform this is quite easy; if a stimulus waveform occurs with a lower
amplitude than the mean conditional waveform, the stimulus is simply less effec-
tive. For positive-going deviations the interpretation is slightly more compli-
cated : if the stimulus waveform has a higher amplitude than w[0’], the probability
of generating spikes goes up. Therefore, the probability of firing a spike shortly
before t,,, also increases. Because of the neuron’s refractoriness, however, the
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probability of generating an additional spike at ¢, drops again, and on the average
this may overcompensate the effect of the higher stimulus amplitude. In this
connection it is probably significant that the peak of the eigenvector occurs 35 ms
before ¢, i.e. 10 ms before the peak in wj (see figure 5a).

When the response is extended to a spike followed by an open interval, an
interesting transition occurs. For open intervals shorter than 5 ms the picture is
basically the same as for the single spike case, with the mean waveform and the
eigenvector shifted in time. But if the empty interval becomes longer than 6 ms,
a second eigenvector with an associated lower eigenvalue develops. This transition
can be seen from figure 9, where the lowest two eigenvalues for R = ['t,7] are shown
as a function of ¢,.
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F1cure 9. (a) The two lowest eigenvalues of the covariance matrix conditional on open intervals
of varying length. (b) Complete eigenvalue spectra conditional on open intervals for a
selection of interval lengths.

As an example, figure 10a shows the shape of the three eigenvectors of C['107]
with the lowest eigenvalues. Here we find two eigenvectors with a meaningful
structure. The one with the lowest eigenvalue (0.66) has roughly the same shape
as the one found for the single spike. The next eigenvector (eigenvalue 0.86) has
a different structure, exhibiting a zero-crossing 38 ms before ¢,,,. Now, various
combinations of these two eigenvectors map on to different responses. This is
shown in figure 10b-d for three classes of response. In these figures, the contri-
butions of the eigenvectors to the differences in the mean conditional waveforms
are found by a least-squares fit, or equivalently as the inner products of the
normalized eigenvectors with the velocity difference measured in units of the a
priors stimulus standard deviation. Figure 106 shows the difference waveform
(w['5’57]—w[’107]) in a heavy line, together with the fit. The contributions of the
two eigenvectors are 1.04 (lowest eigenvalue) and 1.45 respectively. For the case
(w['10"]—w['107]) the weights are 0.64 and 0.36, and for the case (w['167]—
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Fioure 10. () Eigenvectors corresponding to the three lowest eigenvalues of the covariance
matrix conditional on a 10 ms open interval ["107]. (b—d) Heavy lines are the differences
among the mean waveforms w['557]—w['107], w['10"]—w['107], and w['167]—w["107],
respectively. Thin lines are the fits to these difference waveforms using the first two
eigenvectors in (a).

w|’107]) these are —0.26 and —0.12 respectively. In each case the fit is very
good, so that these two eigenvectors indeed provide a good set of ‘coordinates’ for
describing the changes in stimulus waveform encoded by different spike sequences.

(e) Discriminability of waveforms conditional on different closed intervals

Within the framework of our interpretation, an interesting question concerns
the precision with which a hypothetical observer must make his observations —
how accurately must he time the neuronal signal — to obtain the maximum poss-
ible information. Clearly if two RCEs corresponding to different inter-spike inter-
vals, for example, are essentially indistinguishable, the observer loses very little
by lumping these two intervals in one bin. We can measure the distinguishability
of two RcEs R, and R, by using the discriminability parameter ¢’ familiar from
psychophysics (Green & Swets 1966; see also Van Trees 1967):

d'(R,, Ry) = [(wlel_UJIZZ)TC;ﬂl ) (u)Rl_u)Rz)]%' (12)

Quantitatively, if we were to be presented with the event R, or the event R,, d" is
related to the probability that we could distinguish these events by looking at the
stimuli that gave rise to them. If it is not possible to make this distinction then
d’ is near zero and from an informational point of view we might as well consider
R, and R, to be the same event. If the distinction is very easy then d’ is large ; the
crossover defining ‘reliable distinction’ is conventionally taken as d” = 1, and in
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figure 11 we show the interpolated contour line of the values of (f,[R,]—¢,[£,])
with d’ = 1, as a function of {[R,]. The results are for closed single intervals, i.e.
both responses are of the form ['¢,]. The figure shows that the observation of a
5 ms interval corresponds to a stimulus event that can be discriminated from an
event associated with a 7.5 ms interval, ¢ [ R,] —¢t,[B,] = 2.5 ms. As [ R,] becomes
longer, the required timing becomes less precise: the mean waveform for ¢[R,] =
10 ms can be discriminated only from mean waveforms corresponding to intervals
that are longer by 8 ms. For large values of ¢,|R,], d’ reaches unity for intervals
to[R,] that differ from ¢[R;] by about 17 ms.

20 T T T
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—
S
I
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Ficure 11. Difference interval as a function of the interval length for which the corresponding
mean waveforms can be discriminated with d’ = 1. See text for details.

The conclusion from these results is that, once a spike is fired, the precision with
which the observer must remember its position as time proceeds should be high
shortly after the spike has occurred. As time goes on and no subsequent spike is
fired, his time resolution can be less and less precise. After about 17 ms, the mutual
timing of the two spikes is no longer important, and they can be considered as
representing independent events. In this event the observer may forget that there
was a spike, the only salient feature of the history being that no spike was fired
during the past 17 ms. Because the precision required for optimal information
extraction is not terribly great, we may say that the neural code is substantially
robust to timing errors, even in a single neuron.

(f) Reconstruction of the stimulus waveform based on the neuronal response

We now turn to the real-time estimation problem referred to in the Introduction.
Our general task is to reconstruct the stimulus waveform based on information
carried by the spike train alone. What we know from the experiments described
above concerns the information carried by short spike sequences, that is by
generalized neural events in isolation, so we shall have to make some approxi-
mation in order to combine information from successive events. As discussed
above, the only natural assumption not requiring us to fix some arbitrary par-
ameters is the assumption that, given a fixed input to the cell, these events are
generated independently. Again we emphasize that, although approximate,
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this reconstruction strategy is defined completely by the structure of the rcms
determined above.

The response events treated here are single spikes, closed intervals, and closed
double intervals. These cases are distinguished by the reconstruction depth: the
first has a reconstruction depth of one spike, the second of two, and the third of
three spikes, with the latter taken in a non-overlapping way, i.e. the last spike of
the previous event coincides with the first spike of the present event, and so on.
Because during the second half of each stimulus period the first half was repeated
with a change of sign, we symmetrize the reconstruction by combining the res-
ponses of the neuron that occur exactly half a stimulus period apart. This means,
in effect, that we reconstruct the stimulus by observing the responses from two
independent H1 neurons with opposite directional selectivities. Translated to the
fly, this procedure amounts to combining the responses of the two H1 neurons on
either side of the head, provided that the velocities on the left and right side are
the same, and that on both sides the stimulus intensity distributions have the
same statistics. These conditions would occur in natural situations when the fly
makes a turn in a static, statistically homogeneous environment.

Figure 12 presents stimulus reconstructions of 2s of the same trace of the
experiment for the three reconstruction depths, computed according to (11) (see
§2¢). The traces also show the stimulus waveform, and the spike sequences are
depicted at the bottom. The number of spikes fired during this time window is 131
for one direction of movement and 48 for the reverse direction. It is clear that the
reconstruction based on single spikes has much less structure than the other two.
Another noteworthy property is that in the region of high spike activity the
reconstruction generally overestimates the stimulus. The overestimate becomes
less pronounced, however, when the reconstruction depth increases to three spikes.
Therefore, the effect is most likely due to serial correlation in the spike train, the
explanation being that events that occur at larger separation in time are less
correlated. In other words, the assumption of statistical independence becomes a
noticeably better approximation as the reconstruction depth increases. To be fair,
it is not clear that a reconstruction depth of three spikes is sufficient to validate
the independence hypothesis convincingly, but the quality of the reconstruction
at this depth is already quite good. To our knowledge this is the first case in which
a quantitative attempt has been made literally to read the neural code; although
our reading is certainly not optimal, as there are obvious systematic errors in
the reconstruction, we find the results of figure 12 encouraging.

A rough indication of the quality of the fit is obtained by computing the
coherence function (Bendat & Piersol 1971) between actual stimulus and recon-
struction, and from that the average information transfer. If we think of the true
signal and the reconstructed signal as a pair of random (noise-like) waveforms, the
coherence function is essentially the frequency-dependent correlation coefficient
between these two random processes. As such, it measures any linear coupling of
signal and reconstructed waveforms, but does not take account of nonlinear
couplings. This implies that if our reconstruction procedure systematically distorts
the waveform —e.g. by overshooting — these systematic effects will degrade the
coherence function in the same way as would random noise in the reconstruction.
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Freure 12. Reconstructions of the stimulus waveform (heavy lines) together with the actual
waveform (thin lines) for a 2 s time window. The reconstructions are made on the basis of
combined neural responses, symbolized by the small vertical bars at the bottom of (a),
during two opposite phases of the stimulus. In the reconstruction we assume that () single
spikes, (b) spike pairs or (c) spike triplets are generated independently, as described in the
text.
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The results of the coherence calculations, derived from the 32 seconds of signal
of which figure 12 gives an example, are 16 bits s for the single-spike recon-
struction and 27 and 30 bits s™! respectively for single- and double-interval
reconstructions. From the results presented in §5¢ we would expect a maximum
of 28 and 174 bits s™* respectively for the case of single spikes and single intervals.
Comparing this with the values obtained from the coherence function we see that
our reconstruction procedure may still be far from optimal. More specifically, this
comparison suggests that our procedure does indeed systematically distort the
waveform, and there is thus some hope for systematic improvements in our reading
of the code.

6. DiscussIoN
(a) Review of the method

The method presented here offers the possibility of a systematic study of neural
coding and provides insight into the question of how the signal from a given
neuron is to be interpreted in real time. An important feature is that the method
allows a definition of ‘the code’ that is rigorous and model-independent, but at the
same time intuitively appealing and experimentally accessible. In addition, the
information transferred by the neuron can be directly quantified in terms of
Shannon’s (1948) information measures.

It should be emphasized that, although we quantify the information transfer in
short spike sequences, we do not have an estimate of the ultimate information
capacity of the neuron; we have made no attempt to choose stimulus conditions
that would maximize the transmitted information. On the contrary, we have used
relatively low-contrast stimuli in the hope of making our Gaussian approximation
(equation (3)) more reasonable.

It should be clear that our methods are generalizable to the study of simul-
taneous activity in several neurons. Conceptually this would involve extending
our definitions of response categories to include combinations of firing patterns
from more than one cell. In practice this approach may quickly become limited by
the available recording times, because as we define more and more response
categories we require more and more events to obtain good estimates of each
response-conditional ensemble. It should certainly be possible to give a complete
description based on combinations of single intervals from two neurons, but if a
signal is shared among a very large number of cells it may be necessary to give a
more approximate description of the encoding.

Based on the experimental description of coding by short sequences of spikes
the problem of literally reading the neural code —reconstructing the stimulus
waveform from the spike-train data alone — can be solved to a reasonable degree
using the approximation that successive spike sequences are generated inde-
pendently. It is clear that if by ‘spike sequence’ we mean a single spike, then our
approximation is seriously limiting the quality of the reconstruction. By extending
the depth of reconstruction to include spike triplets we substantially improve the
comparison between reconstructed and actual waveforms. Nonetheless, visual
inspection of figure 12 (and longer intervals as well) strongly suggests that even
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our deepest reconstruction contains significant systematic errors, such as ‘over-
shoots’ in regions of high firing rate, and our discussion of the coherence function
also points towards the possibility of systematic errors in the reconstruction. If
these impressions are confirmed by more detailed analysis we would have to
conclude that our independence approximation limits the reconstruction quality
even when the independent units are taken as spike triplets, or equivalently
double intervals. The complete solution to the problem of reading the code requires
finding the optimal way of combining the messages conveyed by successive spike
sequences, and most importantly of showing how the parameters of this optimal
combination can be determined experimentally. We hope to return to this issue in
a subsequent publication.

(b) Coding and refractoriness

If we assume that neurons can mark the arrival of spikes with some fixed
temporal precision, then the maximum rate of information transmission per spike
would be achieved for neural firing patterns that most closely approach a Poisson
process (Marko 1962); in this limit the information content of a given inter-spike
interval would be proportional to its length (Farber 1968). For the cell studied
here it is clear that the latter property obtains only at long intervals, and the
interval distribution itself deviates strongly from the Poisson (exponential) form
at short intervals. Most importantly, as shown in figure 7, the short intervals carry
relatively more information, so that messages with high information content are
transmitted very rapidly. These results indicate that, in this cell, coding has not
been optimized for the highest possible average transmission rate. Rather, the
emphasis seems to be on conveying relatively rare but important messages, in this
case sudden large movements, as rapidly as possible.

One of the likely physiological mechanisms underlying this apparent coding
strategy is the increase in firing threshold after a spike has been fired. In this way
the phenomenon of relative refractoriness may play an important role in neural
coding. If this interpretation is correct then similar coding strategies may be found
in a wider variety of neurons, especially in those that fire irregularly. We also note
that the correlations introduced into the spike train by refractoriness would aid in
the detection and correction of errors (Brillouin 1962) associated with, for example,
the failure of a synapse or interneuron to transmit a spike; we have no idea how
significant such errors might be, but the concept of an error-correcting neural code
remains intriguing.

(c) Extrapolation to natural conditions

An important caveat regarding our approach to the coding problem is that all
our results are specific to the particular conditions of our experiment. We believe
that this must be a general limitation for any experimental probe of neural coding.
The hope is of course that some qualitative features of the code may be uncovered
that may extrapolate to more general, and in particular ‘natural’, stimulus
conditions.

The basic problem in extrapolating from a single set of experiments is that the
response-conditional ensembles P[v(t)| R] depend on the a priori stimulus distri-
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bution F,[v(t)], as well as on other parameters of the sensory environment that we
have not chosen to include in our definition of ‘the stimulus’. If all these par-
ameters are held fixed, then reading the neural code requires learning a limited set
of probability distributions, essentially those we have measured or defined in our
experiment. The fact that reliable estimation in general requires such detailed
statistical knowledge of the possible stimuli and their representation in the nervous
system is a special case of the often-discussed problem of prior probabilities
(Jaynes 1968; Berger 1985). It is interesting that our difficulties in obtaining
experimental estimates of the response-conditional ensembles provide at least an
approximate view of the difficulties an organism would encounter if it had to learn
to read its own neural code.

The fact that an organism does not live in a world with fixed stimulus conditions
makes the coding problem much more difficult. In our specific case, the fly
encounters in nature a wide variety of velocity flow fields in a still wider variety
of images. By choosing ensembles of signals — random velocities against time and
random images — we have made an important step towards the natural sensory
environment, but in reality even these ensembles are subject to substantial
changes; a clear example is the change in image statistics upon flying from an
open field into a dense forest, or from clear air into a fog bank.

It is well known that sensory systems adapt to such changes in stimulus
parameters; the photoreceptors themselves adapt to changes in light level, and
there is movement-specific adaptation in the response of H1 (Maddess & Laughlin
1985; de Ruyter van Steveninck et al. 1986). Adaptation has generally been
viewed as a means of preserving sensitivity to small changes in a steady back-
ground signal. With the approach taken here it is clear that adaptation is ac-
companied by a problem of coding ambiguity, where the same spike train will
represent different stimuli if the organism finds itself in different states of adap-
tation. As a first step towards understanding these issues we would like to do the
experiments described here under different conditions, using the notion of dis-
criminability among RcEs (cf. §5¢), to quantify the ambiguity of coding under
different states of adaptation. In fact it may be possible to use such discrimin-
ability measures to quantify the ‘states of adaptation’ themselves, in effect de-
fining adaptation by changes in coding strategy. One interesting possibility is that
longer-timescale statistical properties of the firing pattern may contain enough
information to resolve ambiguities in the interpretation of short spike sequences,
so that our hypothetical observer need not have access to other cells in order to
understand the signals conveyed by H1 itself.

(d) Comparison with the theoretical limit

Movement information is present at the level of the retina in the form of
correlations among signals in the photoreceptor array, these correlations being
induced by the rigid motion of the stimulus pattern across the visual field. Photo-
receptor noise tends to destroy these correlations, so that the reliability of the
movement signal measured at H1 is ultimately limited by the photoreceptor noise
level. We have measured the signal transfer and noise properties of Calliphora
photoreceptors under the same conditions of illuminance used in the H1 experi-
ments. The main result (de Ruyter van Steveninck 1986) is that up to roughly
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10 Hz the photoreceptor is limited by photon shot noise, whereas above this cutoff
frequency the noise level begins to rise; this pattern of frequency dependence is
consistent with a model in which the ‘excess’ noise is contributed largely by
fluctuations in the latency of the single-photon response.

The photoreceptor noise data, together with the known geometry of the stimulus
and the photoreceptor array, allow us to estimate the total amount of movement
information available in the retinal signals (Bialek et al. 1986). For the conditions
of our experiment (the spatial structure of the pattern, the number (2640) of
photoreceptors illuminated, etc.) the result is 298 bits s™'. In comparing this with
our estimate of H1’s information transfer rate (87 bits s™*; cf §5¢) we should
keep several points in mind. (i) H1 is primarily responsive to movement in only
one direction, so presumably it can achieve at best half the calculated maximum
rate. (ii) The theoretical maximum is for a system that looks at a rigorously static
pattern moving rigidly through small angular displacements. Although this de-
scribes our experiment, it is unrealistic to assume that the visual system has made
this assumption; because of the need to continuously re-estimate the spatial
pattern the true information rate will be reduced. (iii) We have made no effort to
find special stimulus conditions under which the apparent efficiency of information
transfer would be optimized. Granting these remarks, we would find it quite
impressive if H1 approached optimal performance even within an order of
magnitude, whereas in fact the approach is within a factor of four.

The hypothesis that sensory and neural systems might approach some funda-
mental theoretical limits to their performance dates at least from the turn of the
century. Elsewhere one of us (Bialek 1987) has tried to bring the evidence on this
issue up to date, gathering results from several different sensory modalities. For
vision the approach to optimality has recently been re-emphasized by Barlow
(1980, 1981). We would like to postpone a complete discussion of the approach to
optimality in H1 until we can perform a more detailed and rigorous comparison
between theory and experiment. In fact such a comparison is much easier for
forced-choice discrimination experiments than for the real-time experiments dis-
cussed here. (See, for a preliminary account, de Ruyter van Steveninck (1986).)
We cannot resist, however, pointing out certain tentative conclusions.

First, to approach optimality the fly must both use a near-optimal algorithm for
the extraction of movement information and it must add very little noise as it
carries out this computation. Although this may not be obvious from our deri-
vation of the limiting information capacity (Bialek ef al. 1986), it turns out that
the optimal algorithm is essentially a computation of delayed near-neighbour
correlations, as proposed many years ago (Reichardt 1957); in this case a variant
of the simplest movement sensor is also the optimal movement sensor. Inde-
pendently of Reichardt’s arguments, the approach of H1 to optimal performance
thus allows us to conclude that the neural circuitry that underlies movement
computation in the blowfly must be functionally equivalent to a relatively simple
spatio-temporal correlator. The evidence that a generalized Reichardt model is in
fact applicable to H1 (see, for example, de Ruyter van Steveninck 1986) may
therefore also be viewed as confirming the existence of computational elements
required for the approach to optimality.

The detailed structure of the optimal computation depends on the a prior:
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stimulus ensemble, so that if the fly is to maintain optimality in a changing sensory
environment the parameters of H1’s dynamic response must change in a specific
manner as the global stimulus parameters are varied. This adaptation of the
dynamic response to maintain optimality is much more than a simple ‘resetting
of the operating point’ to maintain sensitivity in the presence of a steady back-
ground signal. In fact, adaptation of dynamic response parameters has been
reported for the H1 neuron (Maddess & Laughlin 1985 ; de Ruyter van Steveninck
et al. 1986), and the observed behaviour is qualitatively in accord with the view
of adaptation as a strategy for optimal computation in a dynamic environment.
We are currently attempting to put this broader notion of optimal performance to
a more quantitative test.

The preceding comments concern the algorithmic structure of the movement
computation. We may also draw some tentative conclusions regarding the imple-
mentation of these algorithms in neural hardware. Because there is no evidence
for significant anatomical redundancy in the pathway from retina to HI1
(Strausfeld 1976), we must assume that each element in the movement compu-
tation is in fact carrying out its function reliably, adding very little noise to the
photoreceptor signal. Specifically, in these and other experiments (de Ruyter van
Steveninck 1986) we have evidence for near-optimal computation under con-
ditions where the signal-to-noise ratio for the movement signal is near unity. But
this signal is the coherent sum of signals from roughly 2500 photoreceptors, so
that the elementary movement signals from each pair of correlated neighbouring
photoreceptors are at signal-to-noise ratios of roughly 1/4/2500 (ca. 1/50). Each
elementary correlator must thus preserve about 5-6 bits of accuracy in its output
(In (50) = 5.64) in order that the subsequent averaging among parallel channels
be effective in revealing the signal. We believe that this last argument is quite
general. Although it is popular to appeal to ‘square-root-of-N’ as a means of
increasing the signal-to-noise ratio, there are many cases, such as movement
detection, where non-trivial computations must be carried out before the averaging
is done. As shown here, in the absence of significant redundancy this may lead
to rather stringent requirements on the computational hardware.

To summarize, our comparisons of H1 performance with the theoretical
optimum lead to a tentative picture of the blowfly visual system as performing
optimal, nearly noiseless computations, with much of the low noise level ascribed
not to collective interactions among neurons but rather to the intrinsic precision
of individual cells. It seems fair to say that this has not been a common view of the
nervous system.
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