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Abstract

This study reports experimental results on the visual system
of the blowfly Calliphora vicina, in which we record analog
signals from photoreceptors and action potentials from wide-
field movement-sensitive cells. The photoreceptor data allow
us to quantify how much information is present at the input to
the visual brain. A mathematical analysis of the problem of
movement detection with noisy inputs shows that it is very
beneficial to adapt the computation to the statistics of the
incoming signalsl. The experimental results suggest that the
fly indeed adapts it computational strategy to a variety of
statistical parameters of the input in ways predicted by the
theory. Some examples of optimal processing and adaptation
are presented.

INTRODUCTION

An important task of the visual system, in fly as well as man, is to
provide information for use in navigating through a highly
complex and variable environment. Visual information processing
begins in the retina, where an array of photoreceptors encodes a
mapping of light intensities in the environment onto electrical
signals. This process has several physical limitations: Diffraction
by the optics, and waveguide coupling cut out high spatial
frequencies®, while photon shot noise limits intensity resolution.
Due to the combination of these two effects, visual resolution is
limited in both space and time. This must be especially relevant in
situations where fast and spatially precise judgments are called
for, movement detection being a case in point. Here we show that,
in a simple case, a fly movement sensitive neuron operates with a
reliability close to the photon shot noise limit at behaviorally
relevant light intensities. To estimate movement in a least-squares
optimal sense, given that the inputs are contaminated by noise, the
visual system should tune its computational strategies to the
statistical parameters of its environment'. The values of these
parameters may show huge variations, but if these changes are
slow compared to behavioral decision times, it will be to the
animal’s advantage to keep track of their value and adapt its
information processing strategies accordingly. Here we propose
that adaptation extends beyond the well known light adaptation
effects at the photoreceptor level, and into more “algorithmic”
levels that have to do with the type of computation the brain
performs to make the best of imperfect input data. We observe
several forms of adaptation in the response of movement sensitive
cells and these observations are consistent with an interpretation
in terms of optimal adaptive velocity estimation.

METHODS

Both intracellular recordings from photoreceptors, and
extracellular recordings from the H1 wide-field movement-
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sensitive cell in the blowfly visual system were made using
standard electrophysiological methods. Stimulus patterns were
generated electronically and displayed on a monitor (either HP
1311A (radiance 32.5 mW/(sr.m2)), or Tektronix 608 (radiance
165 mW/(sr.m%), with light intensities in the range of daytime
indoor levels). The estimated rate of photoconversion for the two
displays is about 9.10° resp. 4.10*s™ per photoreceptor”.

RESULTS

Figure 1 illustrates what happens to the encoding of a movement
stimulus when the input signal to noise ratio is switched from high
to low. The fly watched a wide-field pattern that moved rigidly
according to a computer-generated pseudorandom trajectory
while the response of H1 was recorded. Velocity information is
encoded in the neural signal much more accurately when contrast
is high, than when it is low, as expected if the movement
computation is noise-limited. To give this interpretation a more
quantitative backing we show (fig. 2) the performance of Hl in a
discrimination task for which it is relatively easy to compute the
theoretical limit to performance based on the photoreceptor signal
to noise ratio®. The data plotted in the figure represent the
performance of H1 in discriminating two small step sizes (0.24°
and 0.36° of visual angle (these sizes are within the hyperacuity

spikes

velocity (omm/s)

time (s)

Fig. 1: Response traces on top are from the same neuron, but
stimulated with velocity waveforms of opposite sign. This is done
because HI is directionally selective, being silent for movement
in the null direction. From these two response traces, we compiite
a linear reconstruction’ (heavy line) of the stimulus (thin line)
that induced the responses. The stimulus was a random rigid
motion of a random contrast pattern. At time t=10 s, the average
pattern contrast changed suddenly from 50% rms to 2.5% rms.
The reconstructed velocity waveform is clearly much closer to the
stimulus velocity waveform at high than at low contrast.
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Fig. 2. a,b: Photoreceptor impulse response and noise spectrum.
The low-frequency noise power is within 20% of the photon shot
noise limif*. ¢: Reliability, expressed as the discriminability d’(t)
between two small displacements (0.12° difference). Solid line:
HI performance, based on the timing statistics of the first and
second spike following stimulus presentation at t=0. Broken line:
performance of an ideal movement sensor operating on
photoreceptor signals typical for those in the HI experiment.
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Fig. 3 The fly saw a stationary pattern in which each bar stayed
constant (top) or flickered in luminance with a correlation time of
100 ms (bottom). After 4 seconds the flicker was switched off, and
at 4.2 seconds the pattern made a single step displacement. The
time course of H1's response to these test steps depends strongly
on the dynamics of the preceding adaptation stimulus.

range for fly vision). We analyze the time-dependent statistics of
spike arrival of the first two spikes generated after each of the
movement steps. From this we get d’(t), the discriminability
performance of H1. From the photoreceptor data we compute the
the performance of a noiseless Reichardt correlator model that
uses realistic, i.e. noisy, input signals. Over the behaviorally
relevant time scale (about 30 ms®), H1’s performance is within a
factor of two from ideal. The fact that the fly behaves close to
optimal in just these conditions is probably not an accident, but
most likely due to adaptation of the fly’s brain to the experimental
conditions. It is known for some time for example, that H1 adapts
its gain to contrast and mean luminance® and its dynamic:s7 to
temporal stimulus characteristics. Figures 3 has an example of the
latter, showing that the response decay time depends upon the
spectral width of random intensity modulations. Such effects can
be understood from the nonlinearity of movement detection: If the
input signals contain noise, it is a good strategy to filter out those
frequencies in the input which are known to have a low signal to
noise ratio, so as to minimize the spectral range where noise-noise
cross-interactions produce low-frequency intermodulations””.

DISCUSSION

The results presented here, and other observations, demonstrate
that H1’s response depends strongly on what the fly has seen in
the recent past. Most of this adaptation is not present in the sense
cells, but instead must be the result of the neural net adapting its
properties. The way in which these properties adapt to the
stimulus is qualitatively in accord with a view in which the system
chooses its settings so as to make the best least-squares velocity
estimate, given the input statistics. For example, it can be shown
that at low contrast the optimal movement sensor should behave
as a classical Reichardt correlator, whereas at high contrast it
should approach the gradient model of movement detection'. This
may resolve a long standing dispute among several authors
working on movement detection®,
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