Information based clustering
Noam Slonim, Gurinder Singh Atwal, GaSper Tkacik, and William Bialek

Joseph Henry Laboratories of Physics, and
Lewis—Sigler Institute for Integrative Genomics
Princeton University, Princeton, New Jersey 08544
{nslonim, gatwal, gtkacik, wbialek}@princeton.edu

In an age of increasingly large data sets, investigators in many different dis-
ciplines have turned to clustering as a tool for data analysis and exploration.
Existing clustering methods, however, typically depend on several nontrivial
assumptions about the structure of data. Here we reformulate the cluster-
ing problem from an information theoretic perspective which avoids many
of these assumptions. In particular, our formulation obviates the need for
defining a cluster “prototype”, does not require an a priori similarity metric,
is invariant to changes in the representation of the data, and naturally cap-
tures non-linear relations. We apply this approach to different domains and
find that it consistently produces clusters that are more coherent than those
extracted by existing algorithms. Finally, our approach provides a way of
clustering based on collective notions of similarity rather than the traditional
pairwise measures.

The idea that complex data can be grouped into clusters or categories is central to our
understanding of the world, and this structure arises in many diverse contexts (e.g., Fig.
1). In popular culture we group films or books into genres, in business we group com-
panies into sectors of the economy, in biology we group the molecular components of
cells into functional units or pathways, and so on. Typically these groupings are first con-
structed by hand using specific but qualitative knowledge; e.g., Dell and Apple belong in
the same group because they both make computers. The challenge of clustering is to ask
whether these qualitative groupings can be derived automatically from objective, quan-
titative data. Is our intuition about sectors of the economy derivable, for example, from
the dynamics of stock prices? Are the functional units of the cell derivable from patterns
of gene expression under different conditions (1, 2)? The literature on clustering, even
in the context of gene expression, is vast (3). Our goal here is not to suggest yet another
clustering algorithm, but rather to focus on questions about the formulation of the cluster-
ing problem. We are led to a new approach, grounded in information theory, that should
have wide applicability.



Our intuition about clustering starts with the obvious notion that similar elements should
fall within the same cluster while dissimilar ones should not. But clustering also achieves
data compression—instead of identifying each data point individually, we can identify
points by the cluster to which they belong, ending up with a simpler and shorter de-
scription of the data. Rate-distortion theory (4, 5) addresses both sides of this tradeoff,
searching for assignments to clusters such that the number of bits used to describe the
data is minimized while the average similarity between each data point and its cluster
representative (or prototype) is maximized. A well known limitation of this formulation
(as in most approaches to clustering) is that one needs to specify the similarity measure
in advance, and quite often this is done arbitrarily. Another issue, which attracts less
attention, is that the notion of a representative or ”cluster prototype” is inherent to this
formulation although it is not always obvious how to define this concept. Our approach
provides plausible answers to both these concerns, with further interesting consequences.

Theory
Theoretical Formulation. Imagine that there are NV elements (i = 1,2,---,N) and N,
clusters (C' = 1,2,---, N,.) and that we have assigned elements i to clusters C' according

to some probabilistic rules, P(Cli).! If we reach into a cluster and pull out elements at
random, we would like these elements to be as similar to one another as possible. Sim-
ilarity usually is defined among pairs of elements (e.g., the closeness of points in some
metric space), but as noted below we also can construct more collective measures of simi-
larity among r > 2 elements; perhaps surprisingly we will see that that this more general
case can be analyzed at no extra cost. Leaving aside for the moment the question of
how to measure similarity, let us assume that computing the similarity among r elements
i1,19, - - -, 1, returns a similarity measure s(iy, is, - - -, i,). The average similarity among ele-
ments chosen independently out of a single cluster is
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where P(i|C) is the probability to find element i in cluster C. From Bayes’ rule we have
P(i|C) = P(Ci)P(i)/P(C), where P(C) is the total probability of finding any element in
cluster C, P(C) = >; P(CJi)P(i). In many cases the elements i occur with equal proba-
bility so that P(i) = 1/N. We further consider this case for simplicity, although it is not

!Conventionally, one distinguishes “hard” clustering, in which each element is assigned to exactly one
cluster, and “soft” clustering in which the assignments are probabilistic, described by a conditional distri-
bution P(Ci); we consider here the more general soft clustering, and as we shall see, hard clusters emerge
as a limiting case.



essential. The intuition about the “goodness” of the clustering is expressed through the
average similarity over all the clusters,

(s)=>_ P(C)s(C). 2)

For the special case of pairwise “hard” clustering we obtain (s), = & >¢ \_é‘ls(i’ j) (where
|C| is the size of cluster C'). This simpler form was shown in (6) to satisfy basic invariance
and robustness criteria.

The task then is to choose the assignment rules P(C'|i) that maximize (s), while, as in
rate—distortion theory, simultaneously compressing our description of points as much as
possible. To impose this we maximize (s) while constraining the information carried by
the cluster identities (5),
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Thus, our mathematical formulation of the intuitive clustering problem is to maximize
the functional

F = (s) — TI(C;1), @)

where the Lagrange multiplier 7" enforces the constraint on /(C;i). Notice, the formal
similarity of F to the free energy in statistical mechanics where the temperature 7" speci-
fies the tradeoff between energy and entropy like terms.

This formulation is intimately related to conventional rate—distortion theory. In rate—
distortion clustering one is given a fixed number of bits with which to describe the data,
and the goal is to use these bits so as to minimize the distortion between the data ele-
ments and some data representatives. In practice the bits specify membership in a cluster,
and the representatives are prototypical or average patterns in each cluster. Here we see
that we can formulate a similar tradeoff with no need to introduce the notion of a repre-
sentative or average; instead, we measure directly the similarity of elements within each
cluster; moreover, we can consider collective rather than pairwise measures of similarity.
A more rigorous treatment detailing the relation between Eq. (4) and the conventional
rate—distortion functional will be presented elsewhere.

Optimal Solution. In general it is not possible to find an explicit solution for the P(C|i)
that maximize . However, differentiating F with respect to each of the variables P(C]i)



and equating the derivative to zero, we find after some algebra a set of implicit self-
consistent equations that any optimal solution must obey

PICT) = i exp { plrs(Cii) = (= Ds(C)] ) ®)

where Z(i; T') is the normalization constant and s(C’; 1) is the expected similarity between
iand r — 1 members of cluster C,

N N N
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The derivation of these equations from the optimization of F is reminiscent of the deriva-
tion of the rate—distortion (5) or information bottleneck (7) equations. This simple form is
valid when the similarity measure is symmetric (or, invariant) under permutations of the
arguments. In the more general case we have
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where s(C;i(™)) is the expected similarity between i and 7 — 1 members of cluster C, when
iis the 7" argument of s.

An obvious feature of Eq. (5) is that element i should be assigned to cluster C' with higher
probability if it is more similar to the other elements in the cluster. Less obvious is that
this similarity has to be weighed against the mean similarity among all the elements in the
cluster. Thus, our approach automatically embodies the intuitive principle that “tightly
knit” groups are more difficult to join. We emphasize that we did not explicitly impose
this property, but rather it emerges directly from the variational principle of maximizing
F; most other clustering methods do not capture this intuition.

The probability P(C|i) in Eq. (5) has the form of a Boltzmann distribution, and increasing
similarity among elements of a cluster plays the role of lowering the energy; the temper-
ature T sets the scale for converting similarity differences into probabilities. As we lower
this temperature there are a sequence of “phase transitions” to solutions with more dis-
tinct clusters that achieve greater mean similarity in each cluster (8). For a fixed number
of clusters, reducing the temperature yields more deterministic P(C|i) assignments.

Algorithm. Although Eq. (5) is an implicit set of equations we can turn this self-consistency
condition into an iterative algorithm that finds an explicit numerical solution for P(Cl|i)
that corresponds to a (perhaps local) maximum of F. Fig. 2 presents a pseudo-code of the
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algorithm for the case r = 2. Extending the algorithm for the general case (of more than
pairwise relations, » > 2) is straightforward. In principle we repeat this procedure for
different initializations and choose the solution which maximizes F = (s) — T1(C;i). We
emphasize that we utilize this algorithm mainly because it emerges directly out of the the-
oretical analysis. Other procedures that aim to optimize the same target functional are cer-
tainly plausible and we expect future research to elucidate the potential (dis)advantages
of such alternatives.

Information as a Similarity Measure. In formulating the clustering problem as the op-
timization of 7, we have used, as in rate-distortion theory, the generality of information
theory to provide a natural measure for the cost of dividing the data into more clusters.
On the other hand, the similarity measure remains arbitrary and commonly is believed
to be problem specific. Is it possible to use the generality of information theory to ad-
dress this issue as well? To be concrete, consider the case where the elements i are genes
and we are trying to measure the relation between gene expression patterns across a va-
riety of conditions p = 1,2,---, M; gene i has expression level ¢;(x1) under condition .
We imagine that there is some real distribution of conditions that cells encounter during
their lifetime, and an experiment with a finite set of conditions provides samples out of
this distribution. Then, for each gene we can define the probability density of expression
levels,

1 M
= 7 (e — ), ®
which should become smooth as M — oc. S1m11arly we can define the joint probability
density for the expression levels of r genes i1, 72, - -, %,
M
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Given the joint distributions of expression levels, information theory provides natural
measures of the relations among genes. For r = 2, we can identify the relatedness of
genes i and j with the mutual information between the expression levels,

Bj(er, e :
/ dey / des Py(e1, e2) log, [ﬁ} bits. (10)
J

This is naturally extended to measure the multi-information among multiple variables
(9), or genes:
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We recall that the mutual information is the unique measure of relatedness between a
pair of variables that obeys several simple and desirable requirements independent of
assumptions about the form of the underlying probability distributions (4). In particular,
the mutual (and multi-) information are independent of invertible transformations on the
individual variables. For example, the mutual information between the expression levels
of two genes is identical to the mutual information between the log of the expression
levels: there is no need to find the “right” variables with which to represent the data. The
absolute scale of information theoretic quantities also has a clear meaning: if two genes
share one bit of mutual information it means that knowing the expression level of one
gene allows one to determine whether the expression level of the other gene is in one of
two ranges; more than one bit of information means that co-regulation of genes involves
a biological mechanism more subtle than just turning expression on and off. In addition,
the mutual information reflects any type of dependence among variables while ordinary
correlation measures typically ignore nonlinear dependences.

While these theoretical advantages are well known, in practice information theoretic quan-
tities are notoriously difficult to estimate from finite data. We have addressed this issue
by adapting the direct estimation method, originally developed for the analysis of neu-
ral coding (10), and demonstrated that one can obtain reliable estimates of mutual (and
sometimes multi-) information values for a variety of data types, including gene expres-
sion data. See the supplementary material for details. In particular, experiments which
explore gene expression levels under > 100 conditions are sufficient to estimate the mu-
tual information between pairs of genes with an accuracy of ~ 0.1 bits.

To summarize, we have suggested a purely information theoretic approach to cluster-
ing and categorization: relatedness among elements is defined by the mutual (or multi-)
information, and optimal clustering is defined as the best tradeoff between maximizing
this average relatedness within clusters and minimizing the number of bits required to
describe the data. The result is a formulation of clustering that trades bits of similarity
against bits of descriptive power, with no arbitrary assumptions. A freely available web
implementation, of the clustering algorithm and the mutual information estimation pro-
cedure can be found at http://www.genomics.princeton.edu/biophysics-theory.?

Results

Gene Expression. As a first test case we consider experiments on the response of gene
expression levels in yeast to various forms of environmental stress (11). Previous anal-
ysis identified a group of ~ 300 stress—induced and ~ 600 stress-repressed genes with

2This site is temporarily password protected. Please use the login “biophys” and the password
“alphagamma”.



“nearly identical but opposite patterns of expression in response to the environmental shifts” (12),
and this was termed the environmental stress response (ESR) module. In fact, based on
this observation, these apparently stereotypical data were excluded from recent further
analysis of the entire yeast genome (13). Nonetheless, as we shall see next, our approach
automatically reveals further rich and meaningful substructure in these data.

As seen in Fig. 3A, differences in expression profiles within the ESR module indeed are
relatively subtle. However, while considering the estimated mutual information relations
(Fig. 3B) a relatively clear structure emerges. We have solved our clustering problem for
r = 2 and various numbers of clusters and temperatures. The resulting concave tradeoff
curves between (s) and /(C;1i) are shown in Fig. 4A. We emphasize that we generate not
a single solution, but a whole family of solutions describing structure at different levels of
complexity. With the number of clusters fixed, (s) gradually saturates as the temperature
is lowered and the constraint on I(C' 1) is relaxed. For the sake of brevity we focused our
analysis on the four solutions for which the saturation of (s) is relatively clear (1/7" = 25).
At this temperature, ~ 85% of the genes have nearly deterministic assignments to one
of the clusters [P(Cli) > 0.9 for a particular C]. As an illustration, three of the twenty
clusters found at this temperature are in fact the clusters presented in Fig. 1.

We have assessed the biological significance of our results by considering the distribu-
tion of gene annotations across the clusters and estimating the corresponding clusters’
coherence ® with respect to all three Gene Ontologies (14). Almost all of our clusters were
significantly enriched in particular annotations. We compared our performance to 18
different conventional clustering algorithms that are routinely applied to this data type
(15). We employed the clustering software, available at http://bonsai.ims.u-tokyo.ac.jp/ mde-
hoon/software/cluster/, to implement the conventional algorithms. In Fig. 5 we see that our
clusters obtained the highest average coherence, typically by a significant margin. More-
over, even when the competing algorithms cluster the log, of expression (ratio) profiles—a
common regularization pre—process in this application with no formal justification—our
results are comparable or superior to all of the alternatives.

Instead of imposing a hierarchical structure on the data, as done in many popular clus-
tering algorithms, here we directly examine the relations between solutions at different
numbers of clusters that were found independently.* In Fig. 6 we see that an approxi-
mate hierarchy emerges as a result rather than as an implicit assumption, where some

3Specifically, the coherence of a cluster (13) is defined as the percentage of elements in this cluster which
are annotated by an annotation that was found to be significantly enriched in this cluster (P-val < 0.05,
Bonferroni corrected). See the supplementary material for a detailed discussion regarding the statistical
validation of our results.

%In standard agglomerative hierarchical clustering one starts with the most detailed partition of single-
ton clusters and obtains new solutions through merging of clusters at a previous solution. Consequently,
one must end up with a tree-like hierarchy of clustering partitions, regardless of whether the data structure
naturally calls for this description.



functional modules (e.g., the “ribosome cluster”, C'ys) are better preserved than others.

Our attention is drawn also to the cluster C7, which is found repeatedly at different num-
bers of clusters. Specifically, at the solution with 20 clusters, among the 114 repressed
genes in C7, 69 have an uncharacterized molecular function; this level of concentration
has a probability of ~ 107 to have arisen by chance. One might have suspected that
almost every process in the cell has a few components that have not been identified, and
hence that as these processes are regulated there would be a handful of unknown genes
that are regulated in concert with many genes of known function. At least for this cluster,
our results indicate a different scenario where a significant portion of tightly co-expressed
genes remain uncharacterized to date.

Stock Prices. To emphasize the generality of our approach we consider a very different
data set, the day—to—day fractional changes in price of the stocks in the Standard and
Poor’s (S & P) 500 list (available at http://www.standardandpoors.com), during the trading
days of 2003. We cluster these data exactly as in our analysis of gene expression data. The
resulting tradeoff curves are shown in Fig. 4B, and again we focus on the four solutions
where (s) already saturates.

To determine the coherence of the ensuing clusters we used the Global Industry Classifi-
cation Standard (GICS) methodology which classifies companies at four different levels:
sector, industry group, industry, and sub-industry. Thus each company is assigned with
four annotations, which are organized in a hierarchical tree, somewhat similar to the Gene
Ontology hierarchical annotation (14).

As before, our average coherence performance is comparable to or superior to all the other
18 clustering algorithms we examined (Fig. 5). Almost all our clusters, at various levels
of N,, exhibit a surprisingly high degree of coherence with respect to the “functional la-
bels” that correspond to the different (sub) sectors of the economy. The four independent
solutions, at N. = {5,10, 15,20} and 1/7" = 35, naturally form an approximate hierarchy
(see Fig. 10 of Supporting Material).

We have analyzed in detail the results for N, = 20 and 1/7" = 35 where selections from
three of the derived clusters are shown in Fig. 1. Eight of the clusters are found to be
perfectly (100%) coherent, capturing subtle differences between industrial sectors. For ex-
ample, two of the perfectly coherent clusters segregate companies into either investment
banking and asset management (e.g., Merill Lynch) or commercial regional banks (e.g.,
PNCQC). Even in clusters with sub-perfect coherence we are able to observe and explain
relationships between intra-cluster companies above and beyond what the annotations
may suggest. For example, one cluster is enriched with three “Hotel Resorts and Cruise
Line” companies with a coherence level of 30%. Nonetheless, the remaining companies in
this cluster seem also to be tied with the tourism industry, like the Walt Disney Co., banks



which specialise in credit card issuing and so on.

Movie Ratings. Finally, we consider a third test case of yet another different nature:
movie ratings provided by more than 70, 000 viewers (the EachMovie database, see
http://www.research.digital.com/SRC/eachmovie/). Unlike the previous cases, the data here is
already naturally quantized since only six possible ratings were permitted.

We proceed as before to cluster the 500 movies that received the maximal number of
votes. The resulting tradeoff curves are presented in Fig. 4C. Few clusters are preserved
amongst the solutions at different numbers of V., suggesting that a hierarchical structure
may not be a natural representation of the data.

The coherence of the clusters were determined with respect to the provided genre la-
bels: action, animation, art-foreign, classic, comedy, drama, family, horror, romance, and
thriller. Fig. 5 demonstrates that our results are superior to all the other 18 standard
clustering algorithms.

We have analyzed in detail the results for N. = 20 and 1/7" = 40 where, once again,
selections from three of the derived clusters are shown in Fig. 1. The clusters indeed
reflect the classes of provided genres, but also seem to capture subtle distinctions between
sets of movies belonging to the same genre. For example, two of the clusters are both
enriched in the action genre, but one group consists mainly of science-fiction movies and
the other consists of movies in contemporary settings.

Details of all three applications are given in the supplementary material.

Discussion

Measuring the coherence of clusters corresponds to asking if the automatic, objective pro-
cedure embodied in our optimization principle does indeed recover the intuitive labeling
constructed by human hands. Our success in recovering functional categories in differ-
ent systems using exactly the same principle and practical algorithm is encouraging. It
should be emphasized that our approach is not a model of each system and that there is
no need for making data—dependent decisions in the representation of the data, nor in the
definition of similarity.

Most clustering algorithms embody—perhaps implicitly—different models of the under-
lying statistical structure.” In principle, more accurate models should lead to more mean-
ingful clusters. However, the question of how to construct an accurate model obviously is

For example, the K-means algorithm corresponds to maximizing the likelihood of the data on the
assumption that these are generated through a mixture of spherical Gaussians.



quite involved, raising further issues that often are addressed arbitrarily before the clus-
ter analysis begins. Moreover, as is clear from Fig. 4, an algorithm or model which is
successful in one data type might fail completely in a different domain; even in the con-
text of gene expression, successful analysis of data taken under one set of conditions does
not necessarily imply success in a different set of conditions, even for the same organism.
Our use of information theory allows us to capture the relatedness of different patterns
independent of assumptions about the nature of this relatedness. Correspondingly, we
have a single approach which achieves high performance across different domains.

Finally, our approach can succeed where other methods would fail qualitatively. Conven-
tional algorithms search for linear or approximately linear relations among the different
variables, while our information theoretic approach is responsive to any type of depen-
dencies, including strongly nonlinear structures. In addition, while the cluster analysis lit-
erature has focused thus far on pairwise relations and similarity measures, our approach
sets a sound theoretical framework for analyzing complex data based on higher order re-
lations. Indeed, it was recently demonstrated, both in principle (16) and in practice (17),
that in some situations the data structure is obscured at the pairwise level, but clearly
manifests itself only at higher levels. The question of how common such data are, as well
as the associated computational difficulties in analyzing such higher order relations, is
yet to be explored.
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Clusters of genes

Cis Ci5 Ca
RPS10A FRS1 PGM2
RPS10B KRS1 UGP1
RPS11A SEsS1 TSL1
RPsS11B TYS1 TPS1

RPS12 VAS1 TPS2

Proteins of the
small ribosomal
subunit

Enzymes that
attach amino
acids to tRNA

Enzymes involved
in the trehalose
anabolism pathway,|

Clusters of stocks
Ci7 Ci2 Cz
Wal-Mart Microsoft NY Times
Target Apple Comp. | Tribune Co.
Home Depot | Dell Meredith Corp.
Best Buy HP Dow Jones & Co.
Staples Motorola Knight-Ridder Inc.
Clusters of movies
Ci2 Ci C7
Snow White | Psycho Star Wars
Cinderella Apocalypse Now | Return of the Jedi
Dumbo The Godfather The Terminator
Pinocchio Taxi Driver Alien
Aladdin Pulp Fiction Apollo 13

Figure 1: Examples of clusters in three different data sets. For each cluster, a sample
of five typical items is presented. All clusters were found through the same automatic
procedure.
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Input:
Pairwise similarity matrix, s(iy,d2), Vi; =1,...,N, ig =1,..,N .
Trade-off parameter, 1" .
Requested number of clusters, V. .
Convergence parameter, € .
Output:

A (typically “soft”) partition of the N elements into N, clusters.

Initialization:

m=20.
P (C|i) « A random (normalized) distribution Vi =1,...,N .

While True

Foreveryit=1,...,N :
o PO o POV (C) exp {$26(C31) = s (O] ¥ € = L N

pm+1) (i P41 (i) ,VC=1,..,N,.
i ( ‘1) — glc-:l P(m+1)(C'i)

em«+—m+1.

If Vi=1,..,N, VC =1,.., N, we have |[P("1)(Cli) — P™(Cli)| <e,
Break.

Figure 2: Pseudo-code of the iterative algorithm for the case of pairwise relations (r = 2).
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Figure 3: ESR data and information relations. (A) Expression profiles of the ~ 900 genes
in the ESR data across the 173 microarray stress experiments (11). (B) Mutual information
relations (in bits) among the ESR genes. In both panels the genes are sorted according to
the solution with 20 clusters and a relatively saturated (s). Inside each cluster, genes are
sorted according to their average mutual information relation with other cluster mem-
bers.
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Figure 4: Tradeoff curves in all three applications. In every panel, each curve describes the
solutions obtained for a particular number of clusters. Different points along each curve
correspond to different local maxima of F at different 7" values. (A) Tradeoff curves for
the ESR data with = = {5,10,15,20,25}. In Fig. 6 we explore the possible hierarchical
relations between the four saturated solutions at & = 25. (B) Tradeoff curves for the S&P
500 data with = = {15,20,25,30,35}. (C) Tradeoff curves for the EachMovie data with

1 — {20,25,30,35,40}.

15



100

EachMovie

75

50 -

Coherence

25 A

0w u e [ )] [ )] e
5 & f 5 & g 5 & f
A R
oy 3 R g 0 ]

I I I

Figure 5: Comparison of coherence results of our approach (yellow) with conventional
clustering algorithms (15): K—means (green); K—medians (blue); Hierarchical (red). For
the hierarchical algorithms, four different variants are tried: complete, average, centroid,
and single linkage, respectively from left to right. For every algorithm, three different
similarity measures are applied: Pearson correlation (left); absolute value of Pearson cor-
relation (middle); Euclidean distance (right). The white bars in the ESR data correspond
to applying the algorithm over the log, transformation of the expression ratios. In all
cases, the results are averaged over all the different numbers of clusters that we tried:
N. = 5,10,15,20. For the ESR data coherence is measured with respect to each of the
three Gene Ontologies and the results are averaged.
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Figure 6: Relations between the optimal solutions with N, = {5,10, 15,20} at % = 25
for the ESR data. Every cluster is connected to the cluster in the next — less detailed —
partition that absorbs its most significant portion. The edge type indicates the level of
inclusion. The independent solutions form an approximated hierarchical structure. At
the upper level the clusters are sorted as in Fig. 3. The number above every cluster in-
dicates the number of genes in it, and the text title corresponds to the most enriched GO
biological-process annotation in this cluster. The titles of the five clusters at the lower
level are their most enriched GO cellular-component annotation. Most clusters were en-
riched with more than one annotation, hence the short titles sometimes are too concise.
Red and green clusters represent clusters with a clear majority of stress—induced or stress—
repressed genes, respectively.
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