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Animal behaviors often are decomposable into discrete, stereo-
typed elements, well separated in time. In one model, such beha-
viors are triggered by specific commands; in the extreme case, the
discreteness of behavior is traced to the discreteness of action
potentials in the individual command neurons. Here, we use the
crawling behavior of the nematode Caenorhabditis elegans to
demonstrate the opposite view, in which discreteness, stereotypy,
and long timescales emerge from the collective dynamics of the
behavior itself. In previous work, we found that as C. elegans
crawls, its body moves through a “shape space” in which four
dimensions capture approximately 95% of the variance in body
shape. Here we show that stochastic dynamics within this shape
space predicts transitions between attractors corresponding to
abrupt reversals in crawling direction. With no free parameters,
our inferred stochastic dynamical system generates reversal time-
scales and stereotyped trajectories in close agreement with experi-
mental observations. We use the stochastic dynamics to show that
the noise amplitude decreases systematically with increasing time
away from food, resulting in longer bouts of forward crawling and
suggesting that worms can use noise to modify their locomotory
behavior.

motor behavior ∣ stochastic transitions ∣ adaptation

Many organisms, from bacteria to humans, exhibit discrete,
stereotyped motor behaviors. A common model is that

these behaviors are stereotyped because they are triggered by
specific commands, and in some cases we can identify “command
neurons” whose activity provides the trigger (1). In the extreme,
discreteness and stereotypy of the behavior reduces to the discre-
teness and stereotypy of the action potentials generated by the
command neurons, as with the escape behaviors in fish triggered
by spiking of the Mauthner cell (2). But the stereotypy of spikes
itself emerges from the continuous dynamics of currents, vol-
tages, and ion channel populations (3, 4). Is it possible that, in
more complex systems, stereotypy emerges not from the dy-
namics of single neurons, but from the dynamics of larger circuits
of neurons, perhaps coupled to the mechanics of the behavior
itself? Here we explore this question in the context of abrupt re-
versals in the crawling direction of the nematode Caenorhabditis
elegans (5–7).

Reversal behaviors of C. elegans are particularly interesting
as the underlying neural circuitry includes a nominal command
neuron, AVA (8), whose activity is correlated with forward vs.
backward crawling (9). On the other hand, AVA is an interneuron
in a network, and it is unknown whether the decision to reverse
direction can be traced to a single cell. Even when AVA is ablated,
reversals occur, although the distribution of times spent in the
backward crawling state shifts (7). Further, most neurons in
C. elegans do not generate action potentials, so even if a single
neuron dominates the decision it is not obvious why the trajectory
of a reversal would be stereotyped. As a complement to probing
further into the neural circuitry, here we step back and provide a
more quantitative description of the reversal behavior itself.

Locomotion involves changes of body shape, and as C. elegans
crawls, its body moves through a low-dimensional “shape space”
in which four dimensions capture approximately 95% of the
variance (10). Oscillatory motions along the first two modes
correspond to the propulsive wave which passes along the worm’s
body and drives it forward or backward. Indeed, the phase velo-
city of this oscillation predicts, quantitatively, the velocity of the
worm’s centroid motion on an agar plate (11). As emphasized
in Fig. 1, this shape-to-motion correspondence includes the fact
that abrupt changes in the sign of the phase velocity predict
the points where the worm suddenly backs up and reverses its
crawling direction.

Focusing on the phase dynamics ϕðtÞ, we construct equations
of motion in best agreement with the observed trajectories (10);
an inverse problem [see, e.g., (12, 13)]. Because the worm can
crawl both forward and backward, the phase dynamic is minimally
a second order system. Because the motions are noisy, we seek
equations analogous to the Langevin equation for a Brownian
particle subject to forces:

dx
dt

¼ v; [1]

m
dv
dt

¼ f ðx;vÞ þ ξðtÞ; [2]

where m is the mass of the particle, f ðx;vÞ describes the average
forces acting on the particle, and ξðtÞ is the random force result-
ing from molecular collisions. Thus we write for the phase of the
worm’s shape oscillations

dϕ
dt

¼ ω; [3]

dω
dt

¼ Fðω;ϕÞ þ σðω;ϕÞηðtÞ; [4]

where hηðtÞηðt0Þi ¼ δðt − t0Þ. Here we allow the possibility that,
unlike a Brownian particle in equilibrium at a fixed temperature,
the strength of the noise ½σðω;ϕÞ� varies with the state of the sys-
tem. The results of this construction are shown in Fig. 2 A and B.

The analysis of motor behavior through nonlinear dynamical
systems has been applied in a wide variety of contexts, from
human limb movement [(14), see also, e.g., (15) for a recent re-
view] to gait transitions in animals (16). Although earlier work
focused on the deterministic properties of dynamical systems
such as bifurcations and attractors, the important role of noise
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in the motor system is also increasingly recognized, either as a
limitation that the systemmust overcome (17, 18) or as an imprint
of the inherent uncertainties in estimates of the input stimuli (19).
In movement science, there is thus increased attention to learning
stochastic dynamical systems from data (20). Our work expands
these directions by using dynamical variables that are derived
directly from low-dimensional projections of the full space of
natural postures, by treating stochastic and deterministic features
simultaneously, and by describing the motions of an entire organ-
ism—the scale on which many movement strategies operate.

The construction of the Langevin model requires only local
features of the phase trajectory; we do not use, directly, any in-
formation about what happens on long timescales. Nonetheless,
the model predicts a variety of phenomena that emerge on long
timescales. As described in ref. 10, the underlying deterministic
model (where we set σ ¼ 0) has multiple attractors: limit cycles
corresponding to forward and backward crawling and fixed points
corresponding to pauses. In the full dynamics with noise, the
system is predicted to remain near these attractors for extended
periods of time. The noise drives random motions in the neigh-
borhood of the attractors, as well as phase diffusion along the
limit cycles; these are effects that we can think of as perturbations
to the deterministic dynamics. There is also a nonperturbative
effect: Noise drives sudden transitions from one attractor to
another, as seen in Fig. 2C. In particular, there are transitions
from the ω > 0 attractor to the ω < 0 attractor, and these corre-
spond to reversals in the direction of crawling, as seen in Fig. 1A.

To quantify the predicted and observed reversals, we measure
the survival probability in the forward crawling attractor. In the
trajectory ϕðtÞ we choose, at random, a moment in time where the
phase velocity 0.1 < ω∕2π < 0.6 cycles∕s, a region indicated by
the dashed white lines in Fig. 2A. Then we declare a reversal
if the phase velocity falls below zero; the survival probability PðτÞ
is the probability that a reversal has not happened after a delay τ.

Importantly, by focusing on the survival time within the forward
state we remain agnostic about behaviors that may occur after
the reversal [e.g., Ω-turns (5)] and this definition simplifies our
interpretation. Also, the worm moves forward much more often
than it moves backward and thus PðτÞ is better sampled than any
alternate measures.

If transitions are the result of brief events, well separated in
time, then there should be no memory form one to the next,
and we expect the survival probability to decay exponentially,
PðτÞ ¼ expð−τ∕hτiÞ; this exponential decay is what we observe
both in simulated trajectories and in the actual data, as shown
in Fig. 3. In the data, the mean interval is hτidata ¼ 16.3� 0.3 s,
where the error is the bootstrap error within an ensemble of 33
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Fig. 1. Reversals in shape space correspond to reversals in the crawling
direction. (A) Tracking video microscopy gives both the x-y trajectory of
the worm as it crawls on an agar plate, and the shape of the worm’s body
at high resolution. (B) Shape is described by the tangent angle θ vs. arc length
s, in intrinsic coordinates such that ∫ dsθðsÞ ¼ 0. (C) We decompose θðsÞ into
four dominant modes. (D) The joint probability density of the first two
modes. Amplitudes along the first two modes oscillate, with nearly constant
amplitude but time varying phase ϕ ¼ tan−1ða2∕a1Þ; here the amplitudes are
normalized so that ha2i i ¼ 1. (E) The phase trajectories exhibit abrupt rever-
sals, moments when ω≡ dϕ∕dt change sign. The red cross marks the onset of
a body wave reversal and the green and magenta dots mark times prior to
and during a reversal. These same times are also marked in A demonstrating
that phase reversals correspond to reversals in the crawling direction.
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Fig. 2. The Langevin model for the phase dynamics, Eqs. 3 and 4, reveals
discrete attractors and noise-induced transitions between them. (A) The
deterministic component of the force Fðω;ϕÞ, in units cycles∕s2. The black
lines are attracting limit cycles corresponding to forward and backward
crawling, and the white dashed lines mark boundaries for our analysis of
trajectories that start within the forward attractor. (B) The noise strength
σðω;ϕÞ, in units cycles∕s3∕2. (C) A sample of the trajectories resulting from
Eqs. 3 and 4, illustrating transitions between attractors at positive and nega-
tive ω, corresponding to forward and backward crawling.
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Fig. 3. Forward crawling survival times are well captured by noise-induced
transitions in the model phase dynamics. (A) The distribution of survival times
measured from worm data. We measure the probability that a worm’s
trajectory, which is in the neighborhood of the forward attractor at time
t, has not crossed to negative phase velocity by time t þ τ. The decay is ex-
ponential, with a mean time hτi ¼ 16.3� 0.3 s. (B) The predicted mean time
hτitheory as a function of the noise level. We scale the strength of the noise
σ2 by a factor 1∕β and solve Eqs. 3 and 4 for many noise realizations. The noise
at β ¼ 1 corresponds to the strength derived from actual worm motion and
the average survival time at the measured noise level (hτitheory ¼ 15.7� 1.3 s)
is in close agreement with worm data. In the low-noise limit (β ≫ 1)
we find 1∕hτitheory ∝ expð−βEÞ (blue line), analogous to the Arrhenius
temperature dependence of chemical reaction rates. Inset shows the region
near β ¼ 1 and the red point marks the measured 1∕hτidata. The red error bar
denotes the bootstrap error in the noise strength, β ¼ 1� 0.05.
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worms, each observed for 35 min; this dataset is completely
independent, with different individual worms, from that used
in learning the Langevin model. The model predicts hτitheory ¼
15.7� 1.3 s, which agrees within 4% accuracy. We emphasize
that the reversal events are emergent: There is nothing discrete
about the phase time series ϕðtÞ, nor have we labeled the worm’s
motion by subjective criteria.

The escape from one attractor to another under the influence
of noise is like the escape of a molecule from one metastable con-
figuration to another via Brownian motion—a chemical reaction
(21). The strength of the noise, σ2 plays the role of temperature,
and we expect that if the temperature changes we should see
the Arrhenius law, as shown in Fig. 3B. The actual noise level
is a bit too high for the Arrhenius law to be valid, but even with
large noise, the mean time between reversals is still an order
of magnitude longer than the characteristic times for motion
within the forward crawling attractor, τosc ¼ 1.90� 0.15 s. Also,
when we estimate the noise level from the trajectories, there is
an error in our estimate, and this error propagates to give an error
in the predicted mean time between attractors, which is compar-
able to the deviation between the prediction and the data. We
conclude that noise-driven escape from the forward crawling at-
tractor provides a quantitatively accurate model for the observed
rate of reversals, with no free parameters. Thus, the long time
between reversals emerges from the interplay between the land-
scape of Fðω;ϕÞ separating forward and reversal states and the
strength of the noise, in the same way the long time between che-
mical reaction events emerges from the fast Brownian dynamics
of the molecules.

In the theory of thermally activated escape over a barrier,
the escape trajectories become stereotyped in the low-noise limit
(22, 23). By analogy, we expect that the trajectories that allow the
worm to escape from the forward crawling attractor should be
clustered around some prototypical trajectories. Detailed analysis
of the simulations show that there are in fact two such clusters,
corresponding to transitions in which the sign of ω changes while
the phase ϕ is positive or negative and this structure is also seen in
the data. Focusing on the transitions that occur with negative
phase, we align all the phase trajectories at the moment where
ω changes sign, and estimate the probability distribution ρðϕjtÞ
at times t before the switch. As we see in Fig. 4, both the real
data and the simulations show that this distribution is concen-
trated, and this pattern extends back for several seconds before
the moment of the reversal itself. Indeed, comparing Fig. 4 A and
B, we find that the conditional density derived from wormmotion
appears as a noisy version of the density derived from the theory.

In wild-type C. elegans, the frequency of turning behaviors and
reversals decreases with time away from resources, an adaptive
effect resulting in greater dispersal of the trajectories (7, 24, 25).
In our model, a change in the reversal behavior can be accom-
plished by a change in the deterministic dynamics, a change in

the stochastic dynamics, or a combination of both. Over long
timescales, we show that it is principally a decrease of the noise
amplitude that accompanies the increased survival time whereas
the deterministic dynamics is unchanged, Fig. 5 A and B. This
result suggests that the worms can use noise to adaptive benefit.
In detail, we divide long recordings into three 700 s epochs and
fit the stochastic dynamical system, Eqs. 3 and 4, separately within
each epoch. For each fit we then generate N ¼ 104 trajectories
with initial conditions in the forward crawling attractor and
evolve until a phase reversal. We then compute the trial-averaged
deterministic force and noise amplitude along these escape tra-
jectories. In all three epochs, the stochastic model provides
a good prediction of the mean forward survival time with
hτitheory ¼ ð11.8� 0.6 s; 14.6� 1.0 s; 17.6� 1.6 sÞ while
hτidata ¼ ð10.0� 1.7 s; 15.9� 3.5 s; 21.0� 4.5 sÞ from early to
late epochs, respectively. Note also that although the reversal
rate decreases, the mean forward speed remains constant with
hω∕2πi ¼ ð0.48� 0.14; 0.52� 0.14; 0.51� 0.16Þ ðcycles∕sÞ.

The form of the stochastic model encodes details of the signal-
ing networks within C. elegans, which we can perturb with genetic
manipulations. For comparison with wild-type behavior we in-
clude the analysis of goa-1(sa734), which contains a null mutation
in the goa-1 gene that encodes a homologue to the Gα protein
subunit in mammals. The mutation disrupts a variety of pathways
connected to the G-protein family [see, e.g., (26)]. Among other
phenotypes, these animals display hyperreversal behavior (27)
with a substantially shorter mean survival time in the forward
crawling state. Befitting its general nature, goa-1 is broadly
expressed in the nervous system and, relative to wild type, we
find both a different deterministic force and a different noise

A B

Fig. 4. The emergence of stereotyped behaviors in worm and model phase
dynamics. (A) The conditional density ρðϕjtÞ constructed from an ensemble
of N ¼ 469 worm trajectories aligned to exit the forward attractor at t ¼ 0

via a path with ϕð0Þ < 0. Color scale is for ln½ρ · ð1 radÞ�. (B) The same density
generated from simulations of the stochastic model, Eqs. 3 and 4.
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Fig. 5. The changes in the stochastic dynamical system, Eqs. 3 and 4, as a
consequence of increasing time away from food (A, B) and with genetic per-
turbations (C, D). (A) The mean deterministic force Fðϕ;ωÞ along escape tra-
jectories derived from wild-type worms in early (black), middle (red), and late
(blue) epochs. Units are cycles∕s2 and differences among the three 700 s
epochs are relatively small. Within each epoch we fit the stochastic model
and generate N ¼ 104 trajectories with initial conditions in the forward
crawling attractor. As before, we evolve each trajectory until a phase reversal.
The escape trajectories are aligned to the moment of the reversal (t ¼ 0) and
errors denote standard errors in the mean. (B) The mean noise amplitude
σ2ðϕ;ωÞ along escape trajectories in early, middle and late epochs. Units
are cycles2∕s3. The mean noise amplitude systematically decreases resulting
in longer times within the forward crawling state. (C, D) The mean determi-
nistic force and noise amplitude derived from a goa-1 mutant during the
early 700 s epoch. For comparison we also show the wild-type (N2) dynamics
from the same early epoch. Befitting the general nature of the goa-1 gene,
the mutant dynamics reveal substantial changes to both the deterministic
force and the noise.
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(Fig. 5 C and D). For the mean forward survival time the model
prediction is hτitheory ¼ 6.1� 0.4 s while hτidata ¼ 4.1� 0.3 s.

To summarize, we constructed a model for the phase dynamics
of C. elegans crawling by analyzing trajectories over very short
timescales, essentially mapping the acceleration as a function
of position and velocity in a simple phase space. But using this
local description, we predict phenomena on much longer time-
scales. As with models of single neurons and small circuits,
our model has multiple attractors, which we can identify with dis-
crete behavioral states, and spontaneous transitions among these
attractors. Because the transitions are driven by noise, the rate of
transitions is suppressed exponentially relative to the natural
timescales of the dynamics, in the same way that chemical reac-
tion rates are exponentially slower than the timescales of small
amplitude molecular motions. Indeed, this stochastic model of
behavior suggests that the control of noise may be part of an over-
all movement strategy. We find that the reversal rates predicted
by the model agree with experiment with an accuracy of 4%, with-
in the errors of our estimates of the underlying noise levels. We
also predict that the reversals occur via stereotyped trajectories,
and these too agree with experiment. Rather than being traced to
discrete commands, the stereotypy of reversals is an emergent
property of the behavioral dynamics as a whole.

Materials and Methods
The experimental conditions, worm shape data and construction of the
eigenworms were described previously (10, 11). Here we detail the construc-
tion of Langevin models from real data; see, for example, refs. 28 and 29. A
central difficulty is not to overfit by allowing for arbitrarily complex functions
describing the force. To regularize the learning problemwewrite the force as
a polynomial in ω and a Fourier series in ϕ,

Fðω;ϕÞ ¼ ∑
P

p¼0
∑
M

m¼−M

αmpe−imϕωp: [5]

Then the parameters αmp are those which minimize

χ2 ¼
��

dω
dt

− Fðω;ϕÞ
�
2
�
; [6]

where the average is computed over the long trajectory. The optimal choice
of the series orders P and M are found by fitting to 90% of the data and
minimizing the generalization error computed on the remaining 10%; we
find P ¼ M ¼ 5. Note also that the trajectories are given experimentally as
discrete time samples and to minimize the impact of measurement errors
we smooth the mode amplitudes a1ðtÞ and a2ðtÞ with fourth order polyno-
mials before computing the phase. Finally, the noise strength is defined by

σ2ðω;ϕÞ ¼ Δt
��

dω
dt

− Fðω;ϕÞ
�
2
�

ω;ϕ
; [7]

where the average now is taken over those moments in the data when the
state of the system is characterized by particular values of ω and ϕ. We obtain
similar results for the mean escape time and the stereotyped escape trajec-
tories when σðω;ϕÞ is averaged across states. Using these procedures the
dynamical system (Eqs. 3 and 4, Fig. 2 A and B) was constructed by averaging
five trajectories of length 125 s sampled at (Δt ¼ 1∕32 s) from each of twelve
worms. To obtain enough reversal trajectories to adequately sample the
escape time distribution (Fig. 3A) and the escape trajectory (Fig. 4A) we used
a long (35 min) run from each of 32 worms sampled at (Δt ¼ 1∕4 s) under
identical environmental conditions. The data underlying Fig. 5 was recorded
from N ¼ 11 wild type and N ¼ 13 mutant worms, both imaged with time
resolution Δt ¼ 1∕32 s. Each wild-type recording lasted 2,100 s whereas
themutants were recorded for 700 s and all recordings started approximately
5 min after the worms were removed from a bacteria-strewn agar plate. Both
datasets were preprocessed as described previously (10).
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