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Glossary

Dynamical system is a set of components the properties
of which (e. g. their quantity, activity level etc.) change
in time because the components interact among them-
selves and are also influenced by external forces.

Network node is a constituent component of the net-
work, in biological networks most often identifiedwith
a molecular species.

Interaction is a connection between network nodes; in
biological networks an interaction means that two

nodes chemically react, regulate each other, or effec-
tively influence each other’s activities. Interactions are
mostly pairwise, but can be higher-order as well; they
can be directed or undirected, and are usually charac-
terized by an interaction strength.

Network is a system of interacting nodes. A network can
be represented mathematically as a graph, where ver-
tices denote the nodes and edges denote the interac-
tions. Biological networks often are understood to be
dynamical systems as well, because the activities of net-
work nodes evolve in time due to the graph of interac-
tions.

Network state is the vector of activities of all nodes that
fully characterizes the network at any point in time;
since a biological network is a dynamical system, this
state generally changes through time according to a set
of dynamical equations.

Biological function refers to the role that a specific net-
work plays in the life of the organism; the network can
be viewed as existing to perform a task that enables the
cell to survive and reproduce, such as the detection or
transduction of a specific chemical signal.

Pathway is a subset of nodes and interactions in a net-
work along which information or energy and matter
flow in a directed fashion; pathways can be coupled
through interactions or unwanted cross-talk.

Curse of dimensionality is the rapid increase of com-
plexity encountered when analyzing or experimentally
observing network states, as more and more network
nodes are added. If there are N network nodes each
of which only has two states (for example on and off ),
the number of states that the network can be in grows
as 2N .

Design principle is an (assumed) constraint on the net-
work architecture, stating that a biological network, in
addition to performing a certain function, implements
that function in a particular way, usually to maximize
or minimize some further objective measure, for in-
stance robustness, information transmission, or des-
ignability.

Definition of the Subject

In cell biology, networks are systems of interacting mole-
cules that implement cellular functions, such as the regu-
lation of gene expression, metabolism or intracellular sig-
naling. While on a molecular level a biological network is
a mesh of chemical reactions between, for example, en-
zymes and their substrates, or DNA-binding proteins and
the genes that they regulate, the collective effect of these re-
actions can often be thought of as the enabling and regulat-
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ing the flow of matter and energy (in metabolic networks),
or of information (in signaling and transcriptional regula-
tory networks). The field is concerned primarily with the
description and properties of such flows and with their
emergence from network constituent parts – themolecules
and their physical interactions. An important focus is also
the question of how network function and operating prin-
ciples can be inferred despite the limited experimental ac-
cess to network states and building blocks.

Introduction

Biological network has come to mean a system of interact-
ing molecules that jointly perform cellular tasks such as
the regulation of gene expression, information transmis-
sion, or metabolism [28]. Specific instances of biological
networks include, for example, the DNA and DNA bind-
ing proteins comprising the transcriptional regulatory net-
work; signaling proteins and small molecules comprising
various signaling networks; or enzymes and metabolites
comprising the metabolic network. Two important as-
sumptions shape our current understanding of such sys-
tems: first, that the biological networks have been under
selective evolutionary pressure to perform specific cellular
functions in a way that furthers the overall reproductive
success of the individual; and second, that these functions
often are not implemented on a microscopic level by sin-
gle molecules, but are rather a collective property of the
whole interaction network. The question of how complex
behavior emerges in a network of (simple) nodes under
a functional constraint is thus central [144].

To start off with a concrete example, consider chemo-
taxis in the bacterium Escherichia coli [16,40], one of the
paradigmatic examples of signal transduction. This sys-
tem is dedicated to steering the bacteria towards areas high
in nutrient substances and away from repellents. Chemo-
effector molecules in the solution outside the bacterium
bind to receptor molecules on the cell surface, and the re-
sulting structural changes in the receptors are relayed in
turn by the activities of the intracellular signaling proteins
to generate a control signal for molecularmotors that drive
the bacterial flagella. The chemotactic network consists of
about 10 nodes (here, signaling proteins), and the inter-
actions between the nodes are the chemical reactions of
methylation or phosphorylation. Notable features of this
system include its extreme sensitivity, down to the lim-
its set by counting individual molecules as they arrive at
the cell surface [17], and the maintenance of this sensitiv-
ity across a huge dynamic range, through an adaptation
mechanism that provides nearly perfect compensation of
background concentrations [27]. More recently it has been

appreciated that aspects of this functionality, such as per-
fect adaptation, are also robust against large variations in
the concentrations of the network components [6].

Abstractly, different kinds of signaling proteins, such
those in chemotaxis, can be thought of as the building
blocks of a network, with their biochemical interactions
forming the wiring diagram of the system, much like the
components and wiring diagram of, for instance, a radio
receiver. In principle, these wiring diagrams are hugely
complex; for a network composed of N species, there are
! CN

k possible connections among any set of k compo-
nents, and typically we don’t have direct experimental
guidance about the numbers associated with each ‘wire.’
One approach is to view this as giant fitting problem:
once we draw a network, there is a direct translation of
this graph into dynamical equations, with many parame-
ters, and we should test the predictions of these dynam-
ics against whatever data are available to best determine
the underlying parameters. Another approach is to ask
whether this large collection of parameters is special in
any way other than that it happens to fit the data – are
there principles that allow us to predict how these systems
shouldwork? In the context of chemotaxis, wemight imag-
ine that network parameters have been selected to opti-
mize the average progress of bacteria up the chemical gra-
dients of nutrients, or to maximize the robustness of cer-
tain functions against extreme parameter variations. These
ideas of design principles clearly are not limited to bacte-
rial chemotaxis.

An important aspect of biological networks is that
the same components (or components that have an easily
identifiable evolutionary relationship) can be (re)used in
different modules or used for the same function in a dif-
ferent way across species, as discussed for example by Rao
et al. [118] for the case of bacterial chemotaxis. Further-
more, because evolutionary selection depends on function
and not directly on microscopic details, different wiring
diagrams or even changes in components themselves can
result in the same performance; evolutionary process can
gradually change the structure of the network as long as
its function is preserved; as an example see the discussion
of transcriptional regulation in yeast by Tanay et al. [148].
On the other hand, one can also expect that signal pro-
cessing problems like gain control, noise reduction, en-
suring (bi)stability etc, have appeared and were solved re-
peatedly, perhaps even in similar ways across various cel-
lular functions, and we might be able to detect the traces
of their commonality in the network structure, as for ex-
ample in the discussion of local connectivity in bacterial
transcriptional regulation by Shen–Orr et al. [136]. Thus
there are reasons to believe that in addition to design prin-



Cell Biology: Networks, Regulation and Pathways C 721

ciples at the network level, there might also be local or-
ganizing principles, similar to common wiring motifs in
electronic circuitry, yet still independent of the identity of
the molecules that implement these principles.

Biological networks have been approached at many
different levels, often by investigators from different dis-
ciplines. The basic wiring diagram of a network – the fact
that a kinase phosphorylates these particular proteins, and
not all others, or that a transcription factor binds to the
promoter regions of particular genes – is determined by
classical biochemical and structural concepts such as bind-
ing specificity. At the opposite extreme, trying to under-
stand the collective behavior of the network as a whole
suggests approaches from statistical physics, often look-
ing at simplified models that leave out many molecular
details. Analyses that start with design principles are yet
a different approach, more in the ‘top–down’ spirit of sta-
tistical physics but leaving perhaps more room for details
to emerge as the analysis is refined. Eventually, all of these
different views need to converge: networks really are built
out of molecules, their functions emerge as collective be-
haviors, and these functions must really be functions of
use to the organism. At the moment, however, we seldom
know enough to bridge the different levels of description,
so the different approaches are pursued more or less in-
dependently, and we follow this convention here. We will
start with themolecular building blocks, then look atmod-
els for networks as a whole, and finally consider design
principles. We hope that this sequence doesn’t leave the
impression that we actually know how to build up from
molecules to function!

Before exploring our subject in more detail, we take
a moment to consider its boundaries. Our assignment
from the editors was to focus on phenomena at the level
of molecular and cellular biology. A very different ap-
proach attempts to create a ‘science of networks’ that
searches for common properties in biological, social, eco-
nomic and computer networks [104]. Even within the bio-
logical world, there is a significant divide between work
on networks in cell biology and networks in the brain.
As far as we can see this division is an artifact of history,
since there aremany issues which cut across these different
fields. Thus, some of the most beautiful work on signal-
ing comes from photoreceptors, where the combination
of optical inputs and electrical outputs allowed, already in
the 1970s, for experiments with a degree of quantitative
analysis that even today is hard to match in systems which
take chemical inputs and give outputs that modulate the
expression levels of genes [14,121]. Similarly, problems of
noise in the control of gene expression have parallels in the
long history of work on noise in ion channels, as we have

discussed elsewhere [156], and the problems of robustness
have also been extensively explored in the network of in-
teractions among the multiple species of ion channels in
the membrane [51,88]. Finally, the ideas of collective be-
havior are much better developed in the context of neural
networks than in cellular networks, and it is an open ques-
tion how much can be learned by studying these different
systems in the same language [151].

Biological Networks and Their Building Blocks

Genetic Regulatory Networks

Cells constantly adjust their levels of gene expression. One
central mechanism in this regulatory process involves the
control of transcription by proteins known as transcrip-
tion factors (TFs), which locate and bind short DNA se-
quences in the regulated genes’ promoter or enhancer re-
gions. A given transcription factor can regulate either a few
or a sizable proportion of the genes in a genome, and a sin-
gle gene may be regulated by more than one transcription
factor; different transcription factors can also regulate each
other [166].

In the simplest case of a gene regulated by a single TF,
the gene might be expressed whenever the factor – in this
case called an activator – is bound to the cognate sequence
in the promoter (which corresponds to the situation when
the TF concentration in the nucleus is high), whereas the
binding of a repressor would shut a normally active gene
down. The outlines of these basic control principles were
established long ago, well before the individual transcrip-
tion factors could be isolated, in elegant experiments on
the lactose operon of Escherichia coli [69] and even sim-
plermodel systems such as phage! [115]. To a great extent
the lessons learned from these experiments have provided
the framework for understanding transcriptional control
more generally, in prokaryotes [114], eukaryotes [75], and
even during the development of complex multicellular or-
ganisms [8].

The advent of high throughput techniques for prob-
ing gene regulation has extended our reach beyond sin-
gle genes. In particular, microarrays [30] and the related
data analysis tools, such as clustering [36], have enabled
researchers to find sets of genes, ormodules, that are coex-
pressed, i. e. up- or down-regulated in a correlated fashion
when the organism is exposed to different external con-
ditions, and are thus probably regulated by the same set
of transcription factors. Chromatin immunoprecipitation
(ChIP) assays have made it possible to directly screen for
short segments of DNA that known TFs bind; using mi-
croarray technology it is then possible to locate the inter-
genic regions which these segments belong to, and hence
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find the regulated genes, as has recently been done for the
Saccharomyces cerevisiaeDNA-TF interaction map [86].

These high throughput experimental approaches,
combined with traditional molecular biology and com-
plemented by sequence analysis and related mathematical
tools [139], provide a large scale, topological view of the
transcriptional regulatory network of a particular organ-
ism, where each link between two nodes (genes) in the reg-
ulatory graph implies either activation or repression [5].
While useful for describing causal interactions and trying
to predict responses to mutations and external perturba-
tions [89], this picture does not explain how the network
operates on a physical level: it lacks dynamics and speci-
fies neither the strengths of the interactions nor how all the
links converging onto a given node jointly exercise control
over it. To address these issues, representative wild-type
or simple synthetic regulatory elements and networks con-
sisting of a few nodes have been studied extensively to con-
struct quantitative models of the network building blocks.

For instance, combinatorial regulation of a gene by
several transcription factors that bind and interact on the
promoter has been considered by Buchler et al. [31] as
an example of (binary) biological computation and syn-
thetic networks implementing such computations have
been created [56,170]. Building on classical work describ-
ing allosteric proteins such as hemoglobin, thermody-
namic models have been used with success to account
for combinatorial interactions on the operator of the !

phage [2]. More recently Bintu et al. [24,25] have reviewed
the equilibrium statistical mechanics of such interactions,
Setty et al. [134] have experimentally and systematically
mapped out the response surface of the lac promoter
to combinations of its two regulatory inputs, cAMP and
IPTG, and Kuhlman et al. [85] have finally provided a con-
sistent picture of the known experimental results and the
thermodynamic model for the combinatorial regulation of
the lactose operon. There have also been some successes
in eukaryotic regulation, where Schroeder et al. [132] used
thermodynamically motivated models to detect clusters of
binding sites that regulate the gap genes in morphogenesis
of the fruit fly.

Gene regulation is a dynamical process composed of
a number of steps, for example the binding of TF to DNA,
recruitment of transcription machinery and the produc-
tion of the messenger RNA, post-transcriptional regula-
tion, splicing and transport of mRNA, translation, mat-
uration and possible localization of proteins. While the
extensive palette of such microscopic interactions repre-
sents a formidable theoretical and experimental challenge
for each detailed study, on a network level it primarily in-
duces three effects. First, each node – usually understood

as the amount of gene product – in a graph of regulatory
interactions is really not a single dynamical variable, but
has a nontrivial internal state representing the configu-
ration on the associated promoter, concentration of the
corresponding messenger RNA etc.; the relation of these
quantities to the concentration of the output protein is not
necessarily straightforward, as emphasized in recent work
comparing mRNA and protein levels in yeast [46]. Second,
collapsing multiple chemical species onto a single node
makes it difficult to include non-transcriptional regulation
of gene expression in the same framework. Third, the re-
sponse of the target gene to changes in the concentrations
of its regulators will be delayed and extended in time, as in
the example explored by Rosenfeld and Alon [123].

Perhaps the clearest testimonies to the importance of
dynamics in addition to network topology are provided by
systems that involve regulatory loops, in which the output
of a network feeds back on one of the inputs as an activator
or repressor. McAdams and Shapiro [99] have argued that
the time delays in genetic regulatory elements are essen-
tial for the proper functioning of the phage ! switch, while
Elowitz and Leibler [38] have created a synthetic circuit
made up of three mutually repressing genes (the “repres-
silator”), that exhibits spontaneous oscillations. Circadian
clocks are examples of naturally occurring genetic oscilla-
tors [171].

In short, much is known about the skeleton of genetic
regulatory interactions for model organisms, and physical
models exist for several well studied (mostly prokaryotic)
regulatory elements. While homology allows us to bridge
the gap between model organisms and their relatives, it is
less clear how and at which level of detail the knowledge
about regulatory elements must be combined into a net-
work to explain and predict its function.

Protein–Protein Interaction Networks

After having been produced, proteins often assemble into
complexes through direct contact interactions, and these
complexes are functionally active units participating in
signal propagation and other pathways. Proteins also in-
teract through less persistent encounters, as when a pro-
tein kinase meets its substrate. It is tempting to define
a link in the network of protein–protein interactions by
such physical associations, and this is the basis of sev-
eral experimental methods which aim at a genome-wide
survey of these interactions. Although starting out be-
ing relatively unreliable (with false positive rates of up to
50%), high throughput techniques like the yeast two hy-
brid assay [68,161] or mass spectrometry [45,61] are pro-
viding data of increasing quality about protein–protein in-



Cell Biology: Networks, Regulation and Pathways C 723

teractions, or the “interactome” [84]. While more reliable
methods are being developed [5] and new organisms are
being analyzed in this way [49,91,125], the existing inter-
action data from high throughput experiments and cu-
rated databases has already been extensively studied.

Interpretation of the interactions in the protein net-
work is tricky, however, due to the fact that different ex-
perimental approaches have various biases – for exam-
ple, mass spectrometry is biased towards detecting interac-
tions between proteins of high abundance, while two hy-
brid methods seem to be unbiased in this regard; on the
other hand, all methods show some degree of bias towards
different cellular localizations and evolutionary novelty of
the proteins. Assessing such biases, however, currently de-
pends not on direct calibration of the methods themselves
but on comparison of the results with manually curated
databases, although the databases surely have their own
biases [70]. It is reassuring that the intersection of various
experimental results shows significantly improved agree-
ment with the databases, but this comes at the cost of
a substantial drop in coverage of the proteome [100].

In contrast to the case of transcriptional regulation, the
relationship between two interacting proteins is symmet-
ric: if protein A binds to protein B, B also binds to A, so
that the network is described by an undirected graph.Most
of the studies have been focused on binary interactions
that yeast two hybrid and derived approaches can probe,
although spectrometry can detect multiprotein complexes
as well. Estimates of number of links in these networks
vary widely, even in the yeast Saccharomyces cerevisiae:
Krogan et al. [84] directly measure around 7100 interac-
tions (between 2700 proteins), while Tucker et al. [158]
estimate the total to be around 13 000–17 000, and von
Mering et al. [100] would put the lower estimate at about
30 000. Apart from the experimental biases that can in-
fluence such estimates and have been discussed already, it
is important to realize that each experiment can only de-
tect interactions between proteins that are expressed under
the chosen external conditions (e. g. the nutrientmedium);
moreover, interactions can vary from being transient to
permanent, to which various measurement methods re-
spond differently. It will thus become increasingly impor-
tant to qualify each interaction in a graph by specifying
how it depends on context in which the interaction takes
place.

Proteins ultimately carry out most of the cellular pro-
cesses such as transcriptional regulation, signal propaga-
tion and metabolism, and these processes can be modeled
by their respective network and dynamical system abstrac-
tions. In contrast, the interactome is not a dynamical sys-
tem itself, but instead captures specific reactions (like pro-

tein complex assembly) and structural and/or functional
relations that are present in all of the above processes. In
this respect it has an important practical role of annotating
currently unknown proteins through ‘guilt by association,’
by tying them into complexes and processes with a previ-
ously known function.

Metabolic Networks
Metabolic networks organize our knowledge about an-
abolic and catabolic reactions between the enzymes, their
substrates and co-factors (such as ATP), by reducing the
set of reactions to a graph representation where two sub-
strates are joined by a link if they participate in the same
reaction. For model organisms like the bacterium Es-
cherichia coli the metabolic networks have been studied in
depth and are publicly available [77,78], and an increas-
ing number of analyzed genomes offers sufficient sampling
power to make statistical statements about the network
properties across different domains of life [72].

Several important features distinguish metabolic from
protein–protein interaction and transcriptional regulation
networks. First, for well studied systems the coverage of
metabolic reactions is high, at least for the central routes
of energy metabolism and small molecule synthesis; no-
tice that this is a property of our knowledge, not a prop-
erty of the networks (!). Second, cellular concentrations of
metabolites usually are much higher than those of tran-
scription factors, making the stochasticity in reactions due
to small molecular counts irrelevant. Third, knowledge
of the stoichiometry of reactions allows one to directly
write down a system of first order differential equations for
the metabolite fluxes [60], which in steady state reduces
to a set of linear constraints on the space of solutions.
These chemical constraints go beyond topology and can
yield strong and testable predictions; for example, Ibarra et
al. [66] have shown how computationally maximizing the
growth rate of Escherichia coli within the space of allowed
solutions given by flux balance constraints can correctly
predict measurable relationships between oxygen and sub-
strate uptake, and that bacteria can be evolved towards the
predicted optimality for growth conditions in which the
response was initially suboptimal.

Signaling Networks

Signaling networks consist of receptor and signaling pro-
teins that integrate, transmit and route information by
means of chemical transformations of the network con-
stituents. One class of such transformations, for exam-
ple, are post–translational modifications, where targets
are phosphorylated, methylated, acetylated, : : : on spe-



724 C Cell Biology: Networks, Regulation and Pathways

cific residues, with a resulting change in their enzymatic
(and thus signaling) activity. Alternatively, proteins might
form stable complexes or dissociate from them, again in-
troducing states of differential activity. The ability of cells
to modify or tag proteins (possibly on several residues)
can increase considerably the cell’s capacity to encode its
state and transmit information, assuming that the signal-
ing proteins are highly specific not only for the identity
but also the modification state of their targets; for a review
see [110].

Despite the seeming overlap between the domains of
protein–protein network and signaling networks, the fo-
cus of the analysis is substantially different. The inter-
actome is simply a set of possible protein–protein in-
teractions and thus a topological (or connectivity) map; in
contrast, signaling networks aim to capture signal trans-
duction and therefore need to establish a causal map, in
which the nature of the protein–protein interaction, its
direction and timescale, and its quantitative effect on the
activity of the target protein matter. As an example, see
the discussion by Kolch et al. [83] on the role of protein–
protein interactions in MAPK signaling cascade.

Experiments on some signaling systems, such as
the Escherichia coli chemotactic module, have generated
enough experimental data to require detailed models in
the form of dynamical equations. Molecular processes in
a signaling cascade extend over different time scales, from
milliseconds required for kinase and phosphatase reac-
tions and protein conformational changes, to minutes or
more required for gene expression control, cell movement
and receptor trafficking; this fact, along with the (often es-
sential) spatial effects such as the localization of signaling
machinery and diffusion of chemical messengers, can con-
siderably complicate analyses and simulations.

Signaling networks are often factored into pathways
that have specific inputs, such as the ligands of the G pro-
tein coupled receptors on the cell surface, and specific out-
puts, as with pathways that couple to the transcriptional
regulation apparatus or to changes in the intracellular con-
centration of messengers such as calcium or cyclic nu-
cleotides. Nodes in signaling networks can participate in
several pathways simultaneously, thus enabling signal in-
tegration or potentially inducing damaging “crosstalk” be-
tween pathways; how junctions and nodes process signals
is an area of active research [74].

The components of signaling networks have long been
the focus of biochemical research, and genetic methods al-
low experiments to assess the impact of knocking out or
over-expressing particular components. In addition, sev-
eral experimental approaches are being designed specifi-
cally for elucidating signaling networks. Ab-chips localize

various signaling proteins on chips reminiscent of DNA
microarrays, and stain them with appropriate fluorescent
antibodies [105]. Multicolor flow cytometry is performed
on cells immuno-stained for signaling protein modifica-
tions and hundreds of single cell simultaneous measure-
ments of the modification state of pathway nodes are col-
lected [113]. Indirect inference of signaling pathways is
also possible from genomic or proteomic data.

One well studied signal transduction system is the mi-
togen activated protein kinase (MAPK) cascade that con-
trols, among other functions, cell proliferation and differ-
entiation [32]. Because this system is present in all eu-
karyotes and its structural components are used in mul-
tiple pathways, it has been chosen as a paradigm for the
study of specificity and crosstalk. Similarly, the TOR sys-
tem, identified initially in yeast, is responsible for inte-
grating the information on nutrient availability, growth
factors and energy status of the cell and correspondingly
regulating the cell growth [95]. Another interesting exam-
ple of signal integration and both intra- and inter-cellular
communication is observed in the quorum sensing cir-
cuit of the bacterium Vibrio harveyi, where different kinds
of species- and genus-specific signaling molecules are de-
tected by their cognate receptors on the cell surface, and
the information is fed into a common Lux phosphorelay
pathway which ultimately regulates the quorum sensing
genes [165].

Models of Biological Networks

Topological Models

The structural features of a network are captured by its
connectivity graph, where interactions (reactions, struc-
tural relations) are depicted as the links between the inter-
acting nodes (genes, proteins, metabolites). Information
about connectivity clearly cannot and does not describe
the network behavior, but it might influence and constrain
it in revealing ways, similar to effect that the topology of
the lattice has on the statistical mechanics of systems liv-
ing on it.

Theorists have studied extensively the properties of
regular networks and random graphs starting with Erdös
and Rényi in 1960s. The first ones are characterized by
high symmetry inherent in a square, triangular, or all-to-
all (mean field) lattice; the random graphs were without
such regularity, constructed simply by distributing K links
at random betweenN nodes. The simple one–point statis-
tical characterization that distinguishes random from reg-
ular networks looks at the node degree, that is the proba-
bility P(k) that any node has k incoming and/or outgoing
links. For random graphs this distribution is Poisson,
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meaning that most of the nodes have degrees very close
to the mean, hki D P

k k P(k), although there are fluctua-
tions; for regular lattices every node has the same connec-
tivity to its neighbors.

The first analyses of the early reconstructions of large
metabolic networks revealed a surprising “scale free” node
degree distribution, that is P(k) ! k!! , with " between
2 and 3 for most networks. For the physics community,
which had seen the impact of such scale invariance on
our understanding of phase transitions, these observations
were extremely suggestive. It should be emphasized that
for many problems in areas as diverse as quantum field
theory, statistical mechanics and dynamical systems, such
scaling relations are much more than curiosities. Power
laws relating various experimentally observable quantities
are exact (at least in some limit), and the exponents (here,
" ) really contain everything onemight want to know about
the nature of order in the system. Further, some of the
first thoughts on scaling emerged from phenomenologi-
cal analyses of real data. Thus, the large body of work on
scaling ideas in theoretical physics set the stage for peo-
ple to be excited by the experimental observation of power
laws in much more complex systems, although it is not
clear to us whether the implied promise of connection to
a deeper theoretical structure has been fulfilled. For diver-
gent views on these matters see Barabási et al. [10] and
Keller et al. [81].

The most immediate practical consequence of a scale
free degree distribution is that – relative to expectations
based on random graphs – there will be an over-represen-
tation of nodes with very large numbers of links, as with
pyruvate or co-enzyme A in metabolic networks [72,163].
These are sometimes called hubs, although another conse-
quence of a scale free distribution is that there is no ‘critical
degree of connection’ that distinguishes hubs from non-
hubs. In the protein–protein interaction network of Sac-
charomyces cerevisiae, nodes with higher degree are more
likely to represent essential proteins [73], suggesting that
node degree does have some biological meaning. On the
theoretical side, removal of a sizable fraction of nodes from
a scale free network will neither increase the network di-
ameter much, nor partition the network into equally sized
parts [3], and it is tempting to think that this robustness
is also biologically significant. The scale free property has
been observed in many non-biological contexts, such as
the topology of social interactions,WorldWideWeb links,
electrical power grid connectivity . . . [144]. A number of
models have been proposed for how such scaling might
arise, and some of these ideas, such as growth by prefer-
ential attachment, have a vaguely biological flavor [11,12].
Finding the properties of networks that actually discrimi-

nate among different mechanisms of evolution or growth
turns out to be surprisingly subtle [173].

Two other revealing measures are regularly computed
for biological networks. The mean path length, hli, is the
shortest path between a pair of nodes, averaged over all
pairs in the graph, and measures the network’s overall
‘navigability.’ Intuitively, short path lengths correspond
to, for example, efficient or fast flow of information and
energy in signaling or metabolic networks, quick spread
of diseases in a social network and so on. The clustering
coefficient of a node i is defined as Ci D 2ni /ki (ki " 1),
where ni is the number of links connecting the ki neigh-
bors of node i to each other; equivalently, Ci is the ra-
tio between the number of triangles passing through two
neighbors of i and node i itself, divided by the maximum
possible number of such triangles. Random networks have
low path lengths and low clustering coefficients, whereas
regular lattices have long path lengths and are locally clus-
tered. Watts and Strogatz [167] have constructed an in-
termediate regime of “small world” networks, where the
regular lattice has been perturbed by a small number of
random links connecting distant parts of the network to-
gether. These networks, although not necessarily scale free,
have short path lengths and high clustering coefficients,
a property that was subsequently observed in metabolic
and other biological networks as well [163].

A high clustering coefficient suggests the existence
of densely connected groups of nodes within a network,
which seems contradictory to the idea of scale invari-
ance, in which there is no inherent group or cluster size;
Ravasz et al. [120] addressed this problem by introducing
hierarchical networks and providing a simple construc-
tion for synthetic hierarchical networks exhibiting both
scale free and clustering behaviors. Although there is no
unique scale for the clusters, clusters will appear at any
scale one chooses to look at, and this is revealed by the
scaling of clustering coefficient C(k) with the node de-
gree k, C(k) ! k!1, on both synthetic as well as natural
metabolic networks of organisms from different domains
of life [120]. Another interesting property of some bio-
logical networks is an anti-correlation of node degree of
connected nodes [96], which we can think of as a ‘disso-
ciative’ structure; in contrast, for example, with the asso-
ciative character of social networks, where well connected
people usually know one another.

As we look more finely at the structure of the graph
representing a network, there is of course a much greater
variety of things to look at. For example, Spirin and
Mirny [142] have focused on high clustering coefficients
as a starting point and devised algorithms to search for
modules, or densely connected subgraphs within the yeast
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protein–protein interaction network. Although the prob-
lem has combinatorial complexity in general, the authors
found about 50 modules (of 5–10 proteins in size, some of
which were unknown at the time) that come in two types:
the first represents dynamic functional units (e. g. signal-
ing cascades), and the second protein complexes. A similar
conclusion was reached by Han et al. [57], after having an-
alyzed the interactome in combination with the temporal
gene expression profiles and protein localization data; the
authors argue that nodes of high degree can sit either at the
centers of modules, which are simultaneously expressed
(“party hubs”), or they can be involved in various path-
ways and modules at different times (“date hubs”). The
former kind is at a lower level of organization, whereas the
latter tie the network into one large connected component.

Focusing on even a smaller scale, Shen-Orr et al. [136]
have explored motifs, or patterns of connectivity of small
sets of nodes that are over-represented in a given network
compared to the randomized networks of the same de-
gree distribution P(k). In the transcriptional network of
the bacterium E. coli, three such motifs were found: feed
forward loops (in which gene X regulates Y that regulates
Z, but X directly regulates Z as well), single input modules
(where gene X regulates a large number of other genes in
the same way and usually auto-regulates itself), and dense
overlapping regulons (layers of overlapping interactions
between genes and a group of transcription factors, much
denser than in randomized networks). Themotif approach
has been extended to combined network of transcriptional
regulation and protein–protein interactions [169] in yeast,
as well as to other systems [101].

At the risk of being overly pessimistic, we should con-
clude this section with a note of caution. It would be at-
tractive to think that a decade of work on network topol-
ogy has resulted in a coherent picture, perhaps of the fol-
lowing form: on the smallest scale, the nodes of biologi-
cal networks are assembled into motifs, these in turn are
linked into modules, and this continues in a hierarchical
fashion until the entire network is scale free. As we will
discuss again in the context of design principles, the no-
tion of such discrete substructure – motifs and modules –
is intuitively appealing, and some discussions suggest that
it is essential either for the function or the evolution of
networks. On the other hand, the evidence for such struc-
ture usually is gathered with reference to some null model
(e. g., a random network with the same P(k)), so we don’t
even have an absolute definition of these structures, much
less a measure of their sufficiency as a characterization of
the whole system; for attempts at an absolute definition
of modularity see Ziv et al. [174] and Hofman and Wig-
gins [62]. Similarly, while it is appealing to think about

scale free networks, the evidence for scaling almost always
is confined to less than two decades, and in practice scaling
often is not exact. It is then not clear whether the idealiza-
tion of scale invariance captures the essential structure in
these systems.

Boolean Networks

A straightforward extension of the topological picture that
also permits the study of network dynamics assumes that
the entities at the nodes – for example, genes or signal-
ing proteins – are either ‘on’ or ‘off’ at each moment of
time, so that for node i the state at time t is #i (t) 2 f0; 1g.
Time is usually discretized, and an additional prescrip-
tion is needed to implement the evolution of the sys-
tem: #i (t C 1) D fi(

˚
#"(t)

!
), where f i is a function that

specifies how the states of the nodes $ that are the in-
puts to node i in the interaction graph combine to de-
termine the next state at node i. For instance, f A might
be a Boolean function for gene A, which needs to have
its activator gene B present and repressor gene C absent,
so that #A(t C 1) D #B(t) ^ #̄C (t). Alternatively, f might
be a function that sums the inputs at state t with some
weights, and then sets #i D 1(0) if the result is above (be-
low) a threshold, as in classical models of neural networks.

Boolean networks are amenable both to analytical
treatment and to efficient simulation. Early on, Kauff-
man [80] considered the family of random boolean net-
works. In these models, each node is connected at random
to K other nodes on average, and it computes a ran-
dom Boolean function of its inputs in which a frac-
tion % of the 2K possible input combinations leads to
#i (t C 1) D 1. In the limit that the network is large, the
dynamics are either regular (settling into a stable fixed
cycle) or chaotic, and these two phases are separated by
a separatrix 2%(1 " %)K D 1 in the phase space (%;K).

Aldana and Cluzel [4] have shown that for connectiv-
ities of K ! 20 that could reasonably be expected in e. g.
transcriptional regulatory networks, the chaotic regime
dominates the phase space. They point out, however, that
if the network is scale free, there is no ‘typical’K as the dis-
tribution P(k) ! k!! does not have a well-defined mean
for " # 3 and the phase transition criterion must be re-
stated. It turns out, surprisingly, that regular behavior is
possible for values of " between 2 and 2.5, observed in
most biological networks, and this is exactly the region
where the separatrix lies. Scale free architecture, at least
for Boolean networks, seems to prevent chaos.

Several groups have used Boolean models to look at
specific biological systems. Thomas [150] has established
a theoretical framework in which current states of the
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genes (as well as the states in the immediate past) and
the environmental inputs are represented by Boolean vari-
ables that evolve through the application of Boolean func-
tions. This work has been continued by, for example,
Sanchez and Thieffry [128] who analyzed the gap-gene
system of the fruit fly Drosophila by building a Boolean
network that generates the correct levels of gene expres-
sion for 4 gap genes in response to input levels of 3 mater-
nal morphogens with spatially varying profiles stretched
along the anterior-posterior axis of the fly embryo. Inter-
estingly, to reproduce the observed results and correctly
predict the known Drosophila segmentation mutants, the
authors had to introduce generalized Boolean variables
that can take more than two states, and have identified the
smallest necessary number of such states for each gene.

In a similar spirit, Li et al. [91] studied the skeleton of
the budding yeast cell cycle, composed of 11 nodes, and
a thresholding update rule. They found that the topology
of this small network generates a robust sequence of tran-
sitions corresponding to known progression through yeast
cell-cycle phases G1 (growth), S (DNA duplication), G2
(pause) and M (division), triggered by a known ‘cell-size
checkpoint.’ This progression is robust, in the sense that
the correct trajectory is the biggest dynamical attractor of
the system, with respect to various choices of update rules
and parameters, small changes in network topology, and
choice of triggering checkpoints.

The usefulness of Boolean networks stems from the
relative ease of implementation and simple parametriza-
tion of network topology and dynamics, making them
suitable for studying medium or large networks. In addi-
tion to simplifying the states at the nodes to two (or more)
discrete levels, which is an assumption that has not been
clearly explored, one should be cautious that the discrete
and usually synchronous dynamics in time can induce un-
wanted artifacts.

Probabilistic Models

Suppose one is able to observe simultaneously the activity
levels of several proteins comprising a signaling network,
or the expression levels of a set of genes belonging to the
same regulatory module. Because they are part of a func-
tional whole, the activity levels of the components will
be correlated. Naively, one could build a network model
by simply computing pairwise correlation coefficients be-
tween pairs of nodes, and postulating an interaction, and
therefore a link, between the two nodes whenever their
correlation is above some threshold. However, in a test
case where A ! B ! C (gene A induces B which induces
C), one expects to see high positive correlation among all

three elements, even though there is no (physical) interac-
tion betweenA and C. Correlation therefore is not equal to
interaction or causation. Constructing a network from the
correlations in this naive way also does not lead to a gen-
erative model that would predict the probabilities for ob-
serving different states of the network as a whole. Another
approach is clearly needed; see Markowetz and Spang [94]
for a review.

In the simple case where the activity of a protein/gene
i can either be ‘on’ (#i D 1) or ‘off’ (#i D 0), the state
of a network with N nodes will be characterized by a bi-
nary word of N bits, and because of interaction between
nodes, not all these words will be equally likely. For exam-
ple, if node A represses node B, then combinations such as
1A0B : : : or 0A1B : : : will be more likely than 1A1B : : :. In
the case of deterministic Boolean networks, having node
A be ‘on’ would imply that node B is ‘off’ with certainty,
but in probabilistic models it only means that there is
a positive bias for node B to be ‘off,’ quantified by the
probability that node B is ‘off’ given that the state of node
A is known. Having this additional probabilistic degree of
freedom is advantageous, both because the network itself
might be noisy, and because the experiment can induce er-
rors in the signal readout, making the inference of deter-
ministic rules from observed binary patterns an ill-posed
problem.

Once we agree to make a probabilistic model, the
goal is to find the distribution over all network states,
which we can also think of as the joint distribution of
all the N variable that live on the nodes of the network,
P(#1; : : : ; #N jC), perhaps conditioned on some fixed set
of environmental or experimental factors C. The activities
of the nodes, #i , can be binary, can take on a discrete set of
states, or be continuous, depending on our prior knowl-
edge about the system and experimental and numerical
constraints. Even for a modest N , experiments of realistic
scale will not be enough to directly estimate the probabil-
ity distribution, since even with binary variable the num-
ber of possible states, and hence the number of param-
eters required to specify the general probability distribu-
tion, grows as ! 2N . Progress thus depends in an essential
way on simplifying assumptions.

Returning to the three gene example A ! B ! C, we
realize that C depends on A only through B, or in other
words, C is conditionally independent of A and hence no
interaction should be assigned between nodes A and C.
Thus, the joint distribution of three variables can be fac-
torized,

P(#A; #B; #C) D P(#Cj#B)P(#Bj#A)P(#A):

One might hope that, even in a large network, these sorts
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of conditional independence relations could be used to
simplify our model of the probability distribution. In gen-
eral this doesn’t work, because of feedback loops which, in
our simple example, would include the possibility that C
affects the state of A, either directly or through some more
circuitous path. Nonetheless one can try to make an ap-
proximation in which loops either are neglected or (more
sensibly) taken into account in some sort of average way;
in statistical mechanics, this approximation goes back at
least to the work of Bethe [19].

In the computer science and bioinformatics literature,
the exploitation of Bethe-like approximations has come to
be known as ‘Bayesian network modeling’ [43]. In prac-
tice what this approach does is to search among possible
network topologies, excluding loops, and then for fixed
topology one uses the conditional probability relationships
to factorize the probability distribution and fit the tables
of conditional probabilities at each node that will best re-
produce some set of data. Networks with more links have
more parameters, so one must introduce a trade-off be-
tween the quality of the fit to the data and this increasing
complexity. In this framework there is thus an explicit sim-
plification based on conditional independence, and an im-
plicit simplification based on a preference for models with
fewer links or sparse connectivity.

The best known application of this approach to a bi-
ological network is the analysis of the MAPK signaling
pathway in T cells from the human immune system [127].
The data for this analysis comes from experiments in
which the phosophorylated states of 11 proteins in the
pathway are sampled simultaneously by immunostaining
[113], with hundreds of cells sampled for each set of exter-
nal conditions. By combining experiments from multiple
conditions, the Bayesian network analysis was able to find
a network of interactions among the 11 proteins that has
high overlap with those known to occur experimentally.

A very different approach to simplification of proba-
bilistic models is based on the maximum entropy princi-
ple [71]. In this approach one views a set of experiments as
providing an estimate of some set of correlations, for ex-
ample the ! N2 correlations among all pairs of elements
in the network. One then tries to construct a probability
distribution which matches these correlations but other-
wise has as little structure – as much entropy – as possi-
ble. We recall that the Boltzmann distribution for systems
in thermal equilibrium can be derived as the distribution
which has maximum entropy consistent with a given aver-
age energy, and maximum entropy modeling generalizes
this to take account of other average properties. In fact one
can construct a hierarchy of maximum entropy distribu-
tions which are consistent with higher and higher orders

of correlation [130]. Maximum entropy models for binary
variables that are consistent with pairwise correlations are
exactly the Ising models of statistical physics, which opens
a wealth of analytic tools and intuition about collective be-
havior in these systems.

In the context of biological networks (broadly con-
strued), recent work has shown that maximum entropy
models consistent with pairwise correlations are sur-
prisingly successful at describing the patterns of activity
among populations of neurons in the vertebrate retina as
it responds to natural movies [131,153]. Similar results are
obtained for very different retinas under different condi-
tions [137], and these successes have touched a flurry of
interest in the analysis of neural populations more gen-
erally. The connection to the Ising model has a special
resonance in the context of neural networks, where the
collective behavior of the Ising model has been used for
some time as a prototype for thinking about the dynam-
ics of computation and memory storage [64]; in the max-
imum entropy approach the Ising model emerges directly
as the least structured model consistent with the experi-
mentally measured patterns of correlation among pairs of
cells. A particularly striking result of this analysis is that
the Ising models which emerge seem to be poised near
a critical point [153]. Returning to cell biology, the maxi-
mum entropy approach has also been used to analyze pat-
terns of gene expression in yeast [90] as well as to revisit
the MAPK cascade [151].

Dynamical Systems

If the information about a biological system is detailed
enough to encompass all relevant interacting molecules
along with the associated reactions and estimated reaction
rates, and the molecular noise is expected to play a negligi-
ble role, it is possible to describe the systemwith rate equa-
tions of chemical kinetics. An obvious benefit is the imme-
diate availability of mathematical tools, such as steady state
and stability analyses, insight provided by nonlinear dy-
namics and chaos theory, well developed numerical algo-
rithms for integration in time and convenient visualization
with phase portraits or bifurcation diagrams. Moreover,
analytical approximations can be often exploited produc-
tively when warranted by some prior knowledge, for ex-
ample, in separately treating ‘fast’ and ‘slow’ reactions. In
practice, however, reaction rates and other important pa-
rameters are often unknown or known only up to order-
of-magnitude estimations; in this case the problem usually
reduces to the identification of phase space regions where
the behavior of the system is qualitatively the same, for ex-
ample, regions where the system exhibits limit-cycle oscil-
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lations, bistability, convergence into a single steady state
etc.; see Tyson et al. [159] for a review. Despite the difficul-
ties, deterministic chemical kinetic models have been very
powerful tools in analyzing specific network motifs or reg-
ulatory elements, as in the protein signaling circuits that
achieve perfect adaptation, homeostasis, switching and so
on, described by Tyson et al. [160], and more generally in
the analysis of transcriptional regulatory networks as re-
viewed by Hasty et al. [59].

In the world of bacteria, some of the first detailed com-
puter simulations of the chemotaxis module of Escherichia
coli were undertaken by Bray et al. [29]. The signaling cas-
cade from the Tar receptor at the cell surface to the modifi-
cations in the phosphorylation state of the molecular mo-
tor were captured by Michaelis–Menten kinetic reactions
(and equilibrium binding conditions for the receptor),
and the system of equations was numerically integrated
in time. While slow adaptation kinetics was not studied
in this first effort, the model nevertheless qualitatively re-
produces about 80 percent of examined chemotactic pro-
tein deletion and overexpressionmutants, although the ex-
treme sensitivity of the system remained unexplained.

In eukaryotes, Novak and Tyson [107] have, for in-
stance, constructed an extensive model of cell cycle con-
trol in fission yeast. Despite its complexity (!10 proteins
and !30 rate constants), Novak and colleagues have pro-
vided an interpretation of the system in terms of three
interlocking modules that regulate the transitions from
G1 (growth) into S (DNA synthesis) phase, from G2 into
M (division) phase, and the exit from mitosis, respec-
tively. The modules are coupled through cdc2/cdc13 pro-
tein complex and the system is driven by the interaction
with the cell size signal (proportional to the number of
ribosomes per nucleus). At small size, the control circuit
can only support one stable attractor, which is the state
with low cdc2 activity corresponding to G1 phase. As the
cell grows, new stable state appears and the system makes
an irreversible transition into S/G2 at a bifurcation point,
and, at an even larger size, the mitotic module becomes
unstable and executes limit cycles in cdc2-cdc13 activity
until the M phase is completed and the cell returns to its
initial size. The basic idea is that the cell, driven by the
the size readout, progresses through robust cell states cre-
ated by bistability in the three modules comprising the cell
cycle control – in this way, once it commits to a transi-
tion from G2 state into M, small fluctuations will not flip
it back into G2. The mathematical model has in this case
successfully predicted the behaviors of a number of cell cy-
cle mutants and recapitulated experimental observations
collected during 1970s and 1980s by Nurse and collabora-
tors [108].

The circadian clock is a naturally occurring transcrip-
tional module that is particularly amenable to dynamical
systems modeling. Leloup and Goldbeter [87] have cre-
ated a mathematical model of a mammalian clock (with
!20 rate equations) that exhibits autonomous sustained
oscillations over a sizable range of parameter values, and
reproduces the entrainment of the oscillations to the light–
dark cycles through light-induced gene expression. The
basic mechanism that enables the cyclic behavior is neg-
ative feedback transcriptional control, although the actual
circuit contains at least two coupled oscillators. Studying
circadian clock in mammals, the fruit fly Drosophila or
Neurospora is attractive because of the possibility of con-
necting a sizable cataloge of physiological disorders in cir-
cadian rhythms to malfunctions in the clock circuit and
direct experimentation with light-dark stimuli [171]. Re-
cent experiments indicate that at least in cyanobacteria
the circadian clock can be reconstituted from a surpris-
ingly small set of biochemical reactions, without transcrip-
tion or translation [102,157], and this opens possibilities
for even simpler and highly predictive dynamical mod-
els [126].

Dynamical modeling has in addition been applied to
many smaller systems. For example, the construction of
a synthetic toggle switch [44], and the ‘repressilator’ – os-
cillating network of three mutually repressing genes [38] –
are examples where mathematical analysis has stimulated
the design of synthetic circuits. A successful reaction-
diffusion model of how localization and complex forma-
tion of Min proteins can lead to spatial limit cycle oscilla-
tions (used by Escherichia coli to find its division site) was
constructed by Huang et al. [65]. It remains a challenge,
nevertheless, to navigate in the space of parameters as it
becomes ever larger for bigger networks, to correctly ac-
count for localization and count various forms of protein
modifications, especially when the signaling networks also
couple to transcriptional regulation, and to find a proper
balance between models that capture all known reactions
and interactions and phenomenological models that in-
clude coarse-grained variables.

Stochastic Dynamics

Stochastic dynamics is in principle the most detailed level
of system description. Here, the (integer) count of every
molecular species is tracked and reactions are drawn at
random with appropriate probabilities per unit time (pro-
portional to their respective reaction rates) and executed
to update the current tally of molecular counts. An algo-
rithm implementing this prescription, called the stochas-
tic simulation algorithm or SSA, was devised by Gille-
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spie [47]; see Gillespie [48] for a review of SSA and a dis-
cussion of related methods. Although slow, this approach
for simulating chemical reactions can be made exact. In
general, when all molecules are present in large numbers
and continuous, well-mixed concentrations are good ap-
proximations, the (deterministic) rate dynamics equations
and stochastic simulation give the same results; however,
when molecular counts are low and, consequently, the
stochasticity in reaction timing and ordering becomes im-
portant, the rate dynamics breaks down and SSA needs to
be used. In biological networks and specifically in tran-
scriptional regulation, a gene and its promoter region are
only present in one (or perhaps a few) copies, while tran-
scription factors that regulate it can also be at nanomolar
concentrations (i. e. from a few to a few hundredmolecules
per nucleus), making stochastic effects possibly very im-
portant [97,98].

One of the pioneering studies of the role of noise in
a biological system was a simulation of the phage ! lysis-
lysogeny switch by Arkin et al. [7]. The life cycle of the
phage is determined by the concentrations of two tran-
scription factors, cI (lambda repressor) and cro, that com-
pete for binding to the same operator on the DNA. If cI
is prevalent, the phage DNA is integrated into the host’s
genome and no phage genes except for cI are expressed
(the lysogenic state); if cro is dominant, the phage is in
lytic state, using cell’s DNA replication machinery to pro-
duce more phages and ultimately lyse the host cell [115].
The switch is bistable and the fate of the phage depends
on the temporal and random pattern of gene expression of
two mutually antagonistic transcription factors, although
the balance can be shifted by subjecting the host cell to
stress and thus flipping the toggle into lytic phase. The
stochastic simulation correctly reproduces the experimen-
tally observed fraction of lysogenic phages as a function of
multiplicity-of-infection. An extension of SSA to spatially
extended models is possible.

Although the simulations are exact, they are computa-
tionally intensive and do not offer any analytical insight
into the behavior of the solutions. As a result, various
theoretical techniques have been developed for studying
the effects of stochasticity in biological networks. These
are often operating in a regime where the deterministic
chemical kinetics is a good approximation, and noise (i. e.
fluctuation of concentrations around the mean) is added
into the system of differential equations as a perturbation;
these Langevin methods have been useful for the study
of noise propagation in regulatory networks [76,111,149].
The analysis of stochastic dynamics is especially interest-
ing in the context of design principles which consider the
reliability of network function, to which we return below.

Network Properties and Operating Principles

Modularity

Biological networks are said to be modular, although the
term has several related but nevertheless distinct mean-
ings. Their common denominator is the idea that there
exist a partitioning of the network nodes into groups, or
modules, that are largely independent of each other and
perform separate or autonomous functions. Independence
can be achieved through spatial isolation of the module’s
processes or by chemical specificity of its components. The
ability to extract the module from the cell and reconstitute
it in vitro, or transplant it to another type of cell is a pow-
erful argument for the existence of modularity [58]. In the
absence of such strong and laborious experimental verifi-
cations, however, measures of modularity that depend on
a particular network model are frequently used.

In topological networks, the focus is on the mod-
ule’s independence: nodes within a module are densely
connected to each other, while inter-modular links are
sparse [57,120,142] and the tendency to cluster is mea-
sured by high clustering coefficients. As a caveat to this
view note that despite their sparseness the inter-module
links could represent strong dynamical couplings. Mod-
ular architecture has been studied in Boolean networks
by Kashtan and Alon [79], who have shown that mod-
ularity can evolve by mutation and selection in a time-
varying fitness landscape where changeable goals decom-
pose into a set of fixed subproblems. In the example stud-
ied they computationally evolve networks implementing
several Boolean formulae and observe the appearance of
a module – a circuit of logical gates implementing a partic-
ular Boolean operator (like XOR) in a reusable way. This
work makes clear that modularity in networks is plausi-
bly connected to modularity in the kinds of problems that
these networks were selected to solve, but we really know
relatively little about the formal structure of these prob-
lems.

There are also ways of inferring a form of modularity
directly without assuming any particular network model.
Clustering tools partition genes into co-expressed groups,
or clusters, that are often identified with particular mod-
ules [36,133,140]. Ihmels et al. [67] have noted that each
node can belong to more than one module depending on
the biological state of the cell, or the context, and have
correspondingly reexamined the clustering problem. Ele-
mento et al. [37] have recently presented a general infor-
mation theoretic approach to inferring regulatorymodules
and the associated transcription factor binding sites from
various kinds of high-throughput data. While clustering
methods have been widely applied in the exploration of
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gene expression, it should be emphasized that merely find-
ing clusters does not by itself provide evidence for mod-
ularity. As noted above, the whole discussion would be
much more satisfying if we had independent definitions
of modularity and, we might add, clearly stated alternative
hypotheses about the structure and dynamics of these net-
works.

Focusing on the functional aspect of the module, we
often observe that the majority of the components of
a system (for instance, a set of promoter sites or a set of
genes regulating motility in bacteria) are conserved to-
gether across species. These observations support the hy-
pothesis that the conserved components are part of a very
tightly coupled sub-network which we might identify as
a module. Bioinformatic tools can then use the combined
sequence and expression data to give predictions about
modules, as reviewed by Siggia et al. [139]. Purely phyloge-
netic approaches that infer module components based on
inter-species comparisons have also been productive and
can extract candidate modules based only on phylogenetic
footprinting, that is, studying the presence or absence of
homologous genes across organisms and correlating their
presence with hand annotated phenotypic traits [141].

Robustness

Robustness refers to a property of the biological network
such that some aspect of its function is not sensitive to
perturbations of network parameters, environmental vari-
ables (e. g. temperature), or initial state; see de Visser et
al. [162] for a review of robustness from an evolution-
ary perspective and Goulian [53] for mechanisms of ro-
bustness in bacterial circuits. Robustness encompasses two
very different ideas. One idea has to do with a general prin-
ciple about the nature of explanation in the quantitative
sciences: qualitatively striking facts should not depend on
the fine tuning of parameters, because such a scenario just
shifts the problem to understanding why the parameters
are tuned as they are. The second idea is more intrinsic to
the function of the system, and entails the hypothesis that
cells cannot rely on precisely reproducible parameters or
conditions and must nonetheless function reliably and re-
producibly.

Robustness has been studied extensively in the chemo-
tactic system of the bacterium Escherichia coli. The sys-
tematic bias to swim towards chemoattractants and away
from repellents can only be sustained if the bacterium
is sensitive to the spatial gradients of the concentration
and not to its absolute levels. This discriminative ability
is ensured by the mechanism of perfect adaptation, with
which the proportion of bacterial straight runs and tum-

bles (random changes in direction) always returns to the
same value in the absence of gradients [27]. Naively, how-
ever, the ability to adapt perfectly seems to be sensitive to
the amounts of intracellular signaling proteins, which can
be tuned only approximately by means of transcriptional
regulation. Barkai and Leibler [13] argued that there is in-
tegral feedback control in the chemotactic circuit which
makes it robust against changes in these parameters, and
Alon et al. [6] showed experimentally that precision of
adaptation truly stays robust, while other properties of the
systems (such as the time to adapt and the steady state)
show marked variations with intracellular signaling pro-
tein concentrations.

One seemingly clear example of robust biological func-
tion is embryonic development. We know that the spa-
tial structure of the fully developed organism follows
a ‘blueprint’ laid out early in development as a spatial pat-
tern of gene expression levels. von Dassow et al. [34] stud-
ied one part of this process in the fruit fly Drosophila,
the ‘segment polarity network’ that generates striped pat-
terns of expression. They considered a dynamical system
based on the wiring diagram of interactions among a small
group of genes and signaling molecules, with ! 50 associ-
ated constants parametrizing production and degradation
rates, saturation response and diffusion, and searched the
parameter space for solutions that reproduce the known
striped patterns. They found that, with their initial guess at
network topology, such solutions do not exist, but adding
a particular link – biologically motivated though uncon-
firmed at the time – allowed them to find solutions by
random sampling of parameter space. Although they pre-
sented no rigorous measure for the volume of parameter
space in which correct solutions exist, it seems that a wide
variety of parameter choices and initial conditions indeed
produce striped expression patterns, and this was taken to
be a signature of robustness.

Robustness in dynamical models is the ability of the
biological network to sustain its trajectory through state
space despite parameter or state perturbations. In circa-
dian clocks the oscillations have to be robust against both
molecular noise inherent in transcriptional regulation, ex-
amined in stochastic simulations by Gonze et al. [52], as
well as variation in rate parameters [143]; in the latter work
the authors introduce integral robustness measures along
the trajectory in state space and argue that the clock net-
work architecture tends to concentrate the fragility to per-
turbations into parameters that are global to the cell (max-
imum overall translation and protein degradation rates)
while increasing the robustness to processes specific to the
circadian oscillator. As was mentioned earlier, robustness
to state perturbations was demonstrated by Li et al. [91] in
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the threshold binary network model of the yeast cell cycle,
and examined in scale-free random Boolean networks by
Aldana and Cluzel [4].

As with modularity, robustness has been somewhat re-
sistant to rigorous definitions. Importantly, robustness has
always been used as a relational concept: function X is
robust to variations in Y . An alternative to robustness is
for the organism to exert precise control over Y , perhaps
even using X as a feedback signal. This seems to be how
neurons stabilize a functional mix of different ion chan-
nels [93], following the original theoretical suggestion of
LeMasson et al. [88]. Pattern formation during embry-
onic development in Drosophila begins with spatial gra-
dients of transcription factors, such as Bicoid, which are
established by maternal gene expression, and it has been
assumed that variations in these expression levels are in-
evitable, requiring some robust readout mechanism. Re-
cent measurements of Bicoid in live embryos, however,
demonstrate that the absolute concentrations are actually
reproducible from embryo to embryo with ! 10% preci-
sion [54]. While there remain many open questions, these
results suggest that organismsmay be able to exert surpris-
ingly exact control over critical parameters, rather than
having compensation schemes for initially sloppy mech-
anisms. The example of ion channels alerts us to the pos-
sibility that cells may even ‘know’ which combinations of
parameters are critical, so that variations in a multidimen-
sional parameter space are large, but confined to a low di-
mensional manifold.

Noise

A dynamical system with constant reaction rates, starting
repeatedly from the same initial condition in a stable en-
vironment, always follows a deterministic time evolution.
When the concentrations of the reacting species are low
enough, however, the description in terms of time (and
possibly space) dependent concentration breaks down,
and the stochasticity in reactions, driven by random en-
counters between individual molecules, becomes impor-
tant: on repeated trials from the same initial conditions,
the system will trace out different trajectories in the state
space. As has been pointed out in the section on stochas-
tic dynamics, biological networks in this regime need to
be simulated with the Gillespie algorithm [47], or ana-
lyzed within approximate schemes that treat noise as per-
turbation of deterministic dynamics. Recent experimental
developments have made it possible to observe this noise
directly, spurring new research in the field. Noise in bio-
logical networks fundamentally limits the organism’s abil-
ity to sense, process and respond to environmental and

internal signals, suggesting that analysis of noise is a cru-
cial component in any attempt to understand the design of
these networks. This line of reasoning is well developed in
the context of neural function [20], and we draw attention
in particular to work on the ability of the visual system to
count single photons, which depends upon the precision
of the G-protein mediated signaling cascade in photo re-
ceptors; see, for example, [117].

Because transcriptional regulation inherently deals
with molecules, such as DNA and transcription factors,
that are present at low copy numbers, most noise studies
were carried out on transcriptional regulatory elements.
The availability of fluorescent proteins and their fusions
to wild type proteins have been the crucial tools, enabling
researchers to image the cells expressing these probes in
a controllable manner, and track their number in time and
across the population of cells. Elowitz et al. [39] pioneered
the idea of observing the output of two identical regulatory
elements driving the expression of two fluorescent pro-
teins of different colors, regulated by a common input in
a single Escherichia coli cell. In this ‘two-color experiment,’
the correlated fluctuations in both colors must be due to
the extrinsic fluctuations in the common factors that in-
fluence the production of both proteins, such as over-
all RNA polymerase or transcription factor levels; on the
other hand, the remaining, uncorrelated fluctuation is due
to the intrinsic stochasticity in the transcription of the gene
and translation of the messenger RNA into the fluorescent
protein from each of the two promoters [147]. Ozbudak
et al. [109] have studied the contributions of stochastic-
ity in transcription and translation to the total noise in
gene expression in prokaryotes, while Pedraza and van
Oudenaarden [112] and Hooshangi et al. [63] have looked
at the propagation of noise from transcription factors to
their targets in synthetic multi-gene cascades. Rosenfeld et
al. [124] have used the statistics of binomial partitioning of
proteins during the division of Escherichia coli to convert
their fluorescence measurements into the corresponding
absolute protein concentrations, and also were able to ob-
serve the dynamics of these fluctuations, characterizing the
correlation times of both intrinsic and extrinsic noise.

Theoretical work has primarily been concerned with
disentangling and quantifying the contributions of differ-
ent steps in transcriptional regulation and gene expression
to the total noise in the regulated gene [111,146,149], of-
ten by looking for signatures of various noise sources in
the behavior of the measured noise as a function of the
mean expression level of a gene. For many of the exam-
ples studied in prokaryotes, noise seemed to be primarily
attributable to the production of proteins in bursts from
single messenger RNAmolecules, and to pulsatile and ran-
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dom activation of genes and therefore bursty translation
into mRNA [50]. In yeast [26,119] and in mammalian
cells [116] such stochastic synthesis of mRNA was mod-
eled and observed as well. Simple scaling of noise with the
mean was observed in !40 yeast proteins under different
conditions by Bar-Even et al. [9] and interpreted as origi-
nating in variability in mRNA copy numbers or gene acti-
vation.

Bialek and Setayeshgar [22] have demonstrated theo-
retically that at low concentrations of transcriptional regu-
lator, there should be a lower bound on the noise set by the
basic physics of diffusion of transcription factor molecules
to the DNA binding sites. This limit is independent of
(possibly complex, and usually unknown) molecular de-
tails of the binding process; as an example, cooperativity
enhances the ‘sensitivity’ to small changes in concentra-
tion, but doesn’t lower the physical limit to noise perfor-
mance [23]. This randomness in diffusive flux of factors to
their ‘detectors’ on the DNAmust ultimately limit the pre-
cision and reliability of transcriptional regulation, much
like the randomness in diffusion of chemoattractants to
the detectors on the surface of Escherichia coli limits its
chemotactic performance [17]. Interestingly, one dimen-
sional diffusion of transcription factors along the DNA
can have a big impact on the speed with which TFs find
their targets, but the change in noise performance that one
might expect to accompany these kinetic changes is largely
compensated by the extended correlation structure of one
dimensional diffusion [152]. Recent measurements of the
regulation of the hunchback gene by Bicoid during early
fruit fly development by Gregor et al. [54] have provided
evidence for the dominant role of such input noise, which
coexists with previously studied output noise in produc-
tion of mRNA and protein [156]. These results raise the
possibility that initial decisions in embryonic development
are made with a precision limited by fundamental physical
principles.

Dynamics, Attractors, Stability and Large Fluctuations

The behavior of a dynamical system as the time tends to
infinity, in response to a particular input, is interesting re-
gardless of the nature of the network model. Both discrete
and continuous, or deterministic and noisy, systems can
settle into a number of fixed points, exhibit limit-cycle os-
cillations, or execute chaotic dynamics. In biological net-
works it is important to ask whether these qualitatively dif-
ferent outcomes correspond to distinct phenotypes or be-
haviors. If so, then a specific stable gene expression profile
in a network of developmental genes, for example, encodes
that cell’s developmental fate, as the amount of lambda re-

pressor encodes the state of lysis vs lysogeny switch in the
phage. The history of the system that led to the establish-
ment of a specific steady state would not matter as long
as the system persisted in the same attractor: the dynam-
ics could be regarded as a ‘computation’ leading to the
final result, the identity of the attractor, with the activi-
ties of genes in this steady state in turn driving the down-
stream pathways and other modules; see Kauffman [80]
for genetic networks and Hopfield [64] for similar ideas
in neural networks for associative memory. Alternatively,
such partitioning into transient dynamics and ‘meaning-
ful’ steady states might not be possible: the systemmust be
analyzed as a whole while it moves in state space, and parts
of it do not separately and sequentially settle into their at-
tactors.

It seems, for example, that qualitative behavior of the
cell cycle can be understood by progression through well-
defined states or checkpoints: after transients die away,
the cell cycle proteins are in a ‘consistent’ state that reg-
ulates division or growth related activities, so long as the
conditions do not warrant a new transition into the next
state [33,103]. In the fruit fly Drosophila development it
has been suggested that combined processes of diffusion
and degradation first establish steady-state spatial profiles
of maternal morphogens along the major axis of the em-
bryo, after which this stable ‘coordinate system’ is read out
by gap and other downstream genes to generate the body
segments. Recent measurements by Gregor et al. [55] have
shown that there is a rich dynamics in the Bicoid mor-
phogens concentration, prompting Bergmann et al. [18] to
hypothesize that perhaps downstream genes read out and
respond to morphogens even before the steady state has
been reached. On another note, an interesting excitable
motif, called the “feedback resistor,” has been found in
HIV Tat system – instead of having a bistable switch like
the ! phage, HIV (which lacks negative feedback capabil-
ity) implements a circuit with a single stable ‘off’ lysogenic
state, that is perturbed in a pulse of trans activation when
the virus attacks. The pulse probably triggers a threshold-
crossing process that drives downstream events, and sub-
sequently decays away; the feedback resistor is thus again
an example of a dynamic, as opposed to the steady-state,
readout [168]. Excitable dynamics are of course at the
heart of the action potential in neurons, which results from
the coupled dynamics of ion channel proteins, and re-
lated dynamical ideas are now emerging other cellular net-
works [145].

If attractors of the dynamical system correspond to
distinct biological states of the organism, it is important
to examine their stability against noise-induced sponta-
neous flipping. Bistable elements are akin to the ‘flip-flop’
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switches in computer chips – they form the basis of cel-
lular (epigenetic) memory. While this mechanism for re-
membering the past is not unique – for example, a very
slow, but not bistable, dynamics will also retain ‘memory’
of the initial condition through protein levels that per-
sist on a generation time scale [138], it has the potential
to be the most stable mechanism. The naturally occurring
bistable switch of the ! phage was studied using stochas-
tic simulation by Arkin et al. [7], and a synthetic toggle
switch was constructed in Escherichia coli by Gardner et
al. [44]. Theoretical studies of systems where large fluctu-
ations are important are generally difficult and restricted
to simple regulatory elements, but Bialek [21] has shown
that a bistable switch can be created with as few as tens of
molecules yet remain stable for years. A full understand-
ing of such stochastic switching brings in powerful meth-
ods from statistical physics and field theory [122,129,164],
ultimately with the hope of connecting to quantitative ex-
periments [1].

Optimization Principles

If the function of a pathway or a network module can be
quantified by a scalar measure, it is possible to explore the
space of networks that perform the given function opti-
mally. An example already given was that of maximizing
the growth rate of the bacterium Escherichia coli, subject to
the constraints imposed by the known metabolic reactions
of the cell; the resulting optimal joint usage of oxygen and
food could be compared to the experiments [66]. If enough
constraints exist for the problem to be well posed, and
there is sufficient reason to believe that evolution drove the
organism towards optimal behavior, optimization princi-
ples allow us to both tune the otherwise unknown parame-
ters to achieve themaximum, and also to compare the wild
type and optimal performances.

Dekel and Alon [35] have performed the cost/benefit
analysis of expressing lac operon in bacteria. On one hand
lac genes allow Escherichia coli to digest lactose, but on
the other there is the incurred metabolic cost to the cell
for expressing them. That the cost is not negligible to the
bacterium is demonstrated best by the fact that it shuts
off the operon if no lactose is present in the environment.
The cost terms are measured by inducing the lac operon
with changeable amount of IPTG that provides no en-
ergy in return; the benefit is measured by fully inducing
lac with IPTG and supplying variable amounts of lactose;
both cost and benefit are in turn expressed as the change in
the growth rate compared to the wild-type grown at fixed
conditions. Optimal levels of lac expression were then pre-
dicted as a function of lactose concentration and bacteria

were evolved for several hundred generations to verify that
evolved organisms lie close to the predicted optimum.

Zaslaver et al. [172] have considered a cascade of
amino-acid biosynthesis reactions in Escherichia coli, cat-
alyzed by their corresponding enzymes. They have then
optimized the parameters of the model that describes the
regulation of enzyme gene expression, such that the to-
tal metabolic cost for enzyme production was balanced
against the benefit of achieving a desired metabolic flux
through the biosynthesis pathway. The resulting optimal
on-times and promoter activities for the enzymes were
compared to themeasured activities of amino-acid biosyn-
thesis promoters exposed to different amino-acids in the
medium. The authors conclude that the bacterium im-
plements a ‘just-in-time’ transcription program, with en-
zymes catalyzing initial steps in the pathway being pro-
duced from strong and low-latency promoters.

In signal transduction networks the definition of an
objective function to be maximized is somewhat more
tricky. The ability of the cell to sense its environment and
make decisions, for instance about which genes to up- or
down-regulate, is limited by several factors: scarcity of sig-
nals coming from the environment, perhaps because of the
limited time that can be dedicated to data collection; noise
inherent in the signaling network that degrades the qual-
ity of the detected signal; (sub-)optimality of the decision
strategy; and noise in the effector systems at the output.
A first idea would be to postulate that networks are de-
signed to lower the noise, and intuitively the ubiquity of
mechanisms such as negative feedback [15,53] is consis-
tent with such an objective. There are various definitions
for noise, however, which in addition are generally a func-
tion of the input, raising serious issues about how to for-
mulate a principled optimization criterion.

When we think about energy flow in biological sys-
tems, there is no doubt that our thinking must at least
be consistent with thermodynamics. More strongly, ther-
modynamics provides us with notions of efficiency that
place the performance of biological systems on an abso-
lute scale, and in many cases this performance really is
quite impressive. In contrast, most discussions of infor-
mation in biological systems leave “information” as a col-
loquial term, making no reference to the formal appara-
tus of information theory as developed by Shannon and
others more than fifty years ago [135]. Although many as-
pects of information theory that are especially important
for modern technology (e. g., sophisticated error-correct-
ing codes) have no obvious connection to biology, there is
something at the core of information theory that is vital:
Shannon proved that if we want to quantify the intuitive
concept that “x provides information about y,” then there
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is only one way to do this that is guaranteed to work un-
der all conditions and to obey simple intuitive criteria such
as the additivity of independent information. This unique
measure of “information” is Shannon’s mutual informa-
tion. Further, there are theorems in information theory
which, in parallel to results in thermodynamics, provide
us with limits to what is possible and with notions of effi-
ciency.

There is a long history of using information theoretic
ideas to analyze the flow of information in the nervous
system, including the idea that aspects of the brain’s cod-
ing strategies might be chosen to optimize the efficiency
of coding, and these theoretical ideas have led directly to
interesting experiments. The use of information to think
about cellular signaling and its possible optimization is
more recent [154,175]. An important aspect of optimiz-
ing information flow is that the input/output relations of
signaling devices must be matched to the distribution of
inputs, and recent measurements on the control of hunch-
back by Bicoid in the early fruit fly embryo [54] seem re-
markably consistent with the (parameter free) predictions
from these matching relations [155].

In the context of neuroscience there is a long tradition
of forcing the complex dynamics of signal processing into
a setting where the subject needs to decide between a small
set of alternatives; in this limit there is a well developed
theory of optimal Bayesian decision making, which uses
prior knowledge of the possible signals to help overcome
noise intrinsic to the signaling system; Libby et al. [92]
have recently applied this approach to the lac operon in
Escherichia coli. The regulatory element is viewed as an
inference module that has to ‘decide,’ by choosing its in-
duction level, if the environmental lactose concentration is
high or low. If the bacterium detects a momentarily high
sugar concentration, it has to discriminate between two
situations: either the environment really is at low over-
all concentration but there has been a large fluctuation;
or the environment has switched to a high concentration
mode. The authors examine how plausible regulatory ele-
ment architectures (e. g. activator vs repressor, cooperative
binding etc.) yield different discrimination performance.
Intrinsic noise in the lac system can additionally compli-
cate such decision making, but can be included into the
theoretical Bayesian framework.

The question of whether biological systems are optimal
in any precise mathematical sense is likely to remain con-
troversial for some time. Currently opinions are stronger
than the data, with some investigators using ‘optimized’
rather loosely and others convinced that what we see today
is only a historical accident, not organizable around such
lofty principles. We emphasize, however, that attempts to

formulate optimization principles require us to articulate
clearly what we mean by “function” in each context, and
this is an important exercise. Exploration of optimization
principles also exposes new questions, such as the nature
of the distribution of inputs to signaling systems, that one
might not have thought to ask otherwise. Many of these
questions remain as challenges for a new generation of ex-
periments.

Evolvability and Designability

Kirschner and Gerhart [82] define evolvability as an or-
ganism’s capacity to generate heritable phenotypic varia-
tion. This capacity may have two components: first, to re-
duce the lethality of mutations, and second, to reduce the
number of mutations needed to produce phenotypically
novel traits. The systematic study of evolvability is hard
because the genotype-to-phenotype map is highly non-
trivial, but there have been some qualitative observations
relevant to biological networks. Emergence of weak link-
age of processes, such as the co-dependence of transcrip-
tion factors and their DNA binding sites in metazoan tran-
scriptional regulation, is one example. Metazoan regula-
tion seems to depend on combinatorial control by many
transcription factors with weak DNA-binding specificities
and the corresponding binding sites (called cis-regulatory
modules) can be dispersed and extended on the DNA.
This is in stark contrast to the strong linkage between
the factors and the DNA in prokaryotic regulation or in
metabolism, energy transfer or macromolecular assembly,
where steric and complementarity requirements for inter-
acting molecules are high. In protein signaling networks,
strongly conserved but flexible proteins, like calmodulin,
can bind weakly to many other proteins, with small mu-
tations in their sequence probably affecting such binding
andmaking the establishment of new regulatory links pos-
sible and perhaps easy.

Some of the most detailed attempts to follow the evo-
lution of network function have been by Francois and
coworkers [41,42]. In their initial work they showed how
simple functional circuits, performing logical operations
or implementing bistable or oscillatory behavior, can be
reliably created by a mutational process with selection by
an appropriate fitness function. More recently they have
considered fitness functions which favor spatial structure
in patterns of gene expression, and shown how the net-
works that emerge from dynamics in this fitness landscape
recapitulate the outlines of the segmentation networks
known to be operating during embryonic development.

Instead of asking if there exists a network of nodes such
that they perform a given computation, and if it can be
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found by mutation and selection as in the examples above,
one can ask howmany network topologies perform a given
computation. In other words, one is asking whether there
is only one (fine tuned?) or many topologies or solutions
to a given problem. The question of how many network
topologies, proxies for different genotypes, produce the
same dynamics, a proxy for phenotype, is a question of
designability, a concept originally proposed to study the
properties of amino-acid sequences comprising functional
proteins, but applicable also to biological regulatory net-
works [106]. The authors examine three- and four-node
binary networks with threshold updating rule and show
that all networks with the shared phenotype have a com-
mon ‘core’ set of connections, but can differ in the vari-
able part, similar to protein folding where the essential set
of residues is necessary for the fold, with numerous varia-
tions in the nonessential part.

Future Directions

The study of biological networks is at an early stage, both
on the theoretical as well as on the experimental side. Al-
though high-throughput experiments are generating large
data sets, these can suffer from serious biases, lack of tem-
poral or spatial detail, and limited access to the component
parts of the interacting system. On a theoretical front, gen-
eral analytical insights that would link dynamics with net-
work topology are few, although for specific systems with
known topology computer simulation can be of great as-
sistance. There can be confusion about which aspects of
the dynamical model have biological significance and in-
terpretation, and which aspects are just ‘temporary vari-
ables’ and the ‘envelope’ of the proverbial back-of-the-
envelope calculations that cells use to perform their bio-
logical computations on; which parts of the trajectory are
functionally constrained and which ones could fluctuate
considerably with no ill-effects; how much noise is tolera-
ble in the nodes of the network and what is its correlation
structure; or how the unobserved, or ‘hidden,’ nodes (or
their modification/activity states) influence the network
dynamics.

Despite these caveats, cellular networks have some ad-
vantages over biological systems of comparable complex-
ity, such as neural networks. Due to technological develop-
ments, we are considerably closer to the complete census
of the interacting molecules in a cell than we are generally
to the picture of connectivity of the neural tissue. Com-
ponents of the regulatory networks are simpler than neu-
rons, which are capable of a range of complicated behav-
iors on different timescales. Modules and pathways often
comprise smaller number of interacting elements than in

neural networks, making it possible to design small but
interesting synthetic circuits. Last but not least, sequence
and homology can provide strong insights or be powerful
tools for network inference in their own right.

Those of us who come from the traditionally quantita-
tive sciences, such as physics, were raisedwith experiments
in which crucial elements are isolated and controlled. In
biological systems, attempts at such isolation may break
the regulatory mechanisms that are essential for normal
operation of the system, leaving us with a system which
is in fact more variable and less controlled than we would
have if we faced the full complexity of the organism. It is
only recently that we have seen the development of exper-
imental techniques that allow fully quantitative, real time
measurements of the molecular events inside individual
cells, and the theoretical framework into which such mea-
surements will be fit still is being constructed. The range
of theoretical approaches being explored is diverse, and it
behooves us to search for those approaches which have the
chance to organize our understanding of many different
systems rather than being satisfied with models of partic-
ular systems. Again, there is a balance between the search
for generality and the need to connect with experiments
on specific networks. We have tried to give some examples
of all these developments, hopefully conveying the correct
combination of enthusiasm and skepticism.
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Glossary

Cellular automaton The classical fine-grained parallel
model introduced by John von Neumann.

Hyperbolic cellular automaton A cellular automaton re-
sulting from a tessellation of the hyperbolic plane.

Parallel Turing machine A generalization of Turing’s
classical model where several control units work co-
operatively on the same tape (or set of tapes).

Time complexity Number of steps needed for computing
a result. Usually a function t : NC ! NC, t(n) being
the maximum (“worst case”) for any input of size n.

Space complexity Number of cells needed for computing
a result. Usually a function s : NC ! NC, s(n) being
the maximum for any input of size n.

State change complexity Number of proper state
changes of cells during a computation. Usually a func-
tion sc : NC ! NC, sc(n) being the maximum for any
input of size n.

Processor complexity Maximum number of control
units of a parallel Turing machine which are simulta-
neously active during a computation. Usually a func-
tion sc : NC ! NC, sc(n) being the maximum for any
input of size n.

NC The set f1; 2; 3; : : : g of positive natural numbers.
Z The set f: : : ; "3; "2; "1; 0; 1; 2; 3; : : : g of integers.
QG The set of all (total) functions from a setG to a set Q.

Definition of the Subject

This article will explore the properties of cellular automata
(CA) as a parallel model.

The Main Theme

We will first look at the standard model of CA and com-
pare it with Turing machines as the standard sequential
model, mainly from a computational complexity point of
view. From there we will proceed in two directions: by
removing computational power and by adding compu-
tational power in different ways in order to gain insight
into the importance of some ingredients of the definition
of CA.

What Is Left Out

There are topics which we will not cover although they
would have fit under the title.

One such topic is parallel algorithms for CA. There are
algorithmic problems which make sense only for parallel
models. Probably the most famous for CA is the so-called
Firing Squad Synchronization Problem. This is the topic of
Umeo’s article (! Firing Squad Synchronization Problem
in Cellular Automata), which can also be found in this en-
cyclopedia.

Another such topic in this area is the Leader election
problem. For CA it has received increased attention in re-
cent years. See the paper by Stratmann and Worsch [29]
and the references therein for more details.

And we do want to mention the most exciting (in our
opinion) CA algorithm: Tougne has designed a CA which,
starting from a single point, after t steps has generated the
discretized circle of radius t, for all t; see [5] for this gem.

There are also models which generalize standard CA
by making the cells more powerful. Kutrib has introduced
push-down cellular automata [14]. As the name indicates,


