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IDENTIFYING THE SUCCESSIVE BLUMENTHAL–GETOOR
INDICES OF A DISCRETELY OBSERVED PROCESS

BY YACINE AÏT-SAHALIA1 AND JEAN JACOD

Princeton University and Universitè Pierre and Marie Curie

This paper studies the identification of the Lévy jump measure of
a discretely-sampled semimartingale. We define successive Blumenthal–
Getoor indices of jump activity, and show that the leading index can always
be identified, but that higher order indices are only identifiable if they are
sufficiently close to the previous one, even if the path is fully observed. This
result establishes a clear boundary on which aspects of the jump measure can
be identified on the basis of discrete observations, and which cannot. We then
propose an estimation procedure for the identifiable indices and compare the
rates of convergence of these estimators with the optimal rates in a special
parametric case, which we can compute explicitly.

1. Introduction. Let X be a one-dimensional semimartingale defined on a
finite time interval [0, T ]. Our objective is to make some progress toward the iden-
tification of the jump measure of X at high frequency. The motivation for what
follows has its roots in a family of econometric problems, which can be stated as
follows. We observe a single path of X, but not fully: although other observation
schemes are possible, the most typical is one where we observe the variables Xi�n

for i = 0,1, . . . , [T/�n], where [x] denotes the integer part of the real x, over a
fixed observation span T and where �n is small. Asymptotic results are derived in
the high-frequency limit where the sequence �n going to 0. The overall objective
is to find out what can be recovered, that is, identified, about the dynamics of X,
in this setup where a single path, partially observed at a discrete time interval, is
all that is available. For those parameters which can be identified, we also want
asymptotically consistent estimators, with a rate whenever possible.

For the dynamics of X, we restrict our attention to Itô semimartingales, meaning
that the characteristics (B,C, ν) of X can be written as follows:

Bt(ω) =
∫ t

0
bs(ω)ds,

(1)

Ct(ω) =
∫ t

0
cs(ω)ds, ν(ω, dt, dx) = dt ⊗ Ft(ω, dx)
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for some adapted processes bt and ct and measure Ft(ω, dx). Recall that B is the
drift, C is the quadratic variation of the continuous martingale part and ν is the
compensator of the jump measure μ of X [see Jacod and Shiryaev (2003) for more
details on characteristics]. As is well known, these are the canonical models for
arbitrage-free asset prices.

A sizeable part of the paper, however, is concerned with the much-restricted
class of Lévy processes. A semimartingale X is a Lévy process if and only if (1)
holds with bt (ω) = b ∈ R and ct (ω) = c ≥ 0 and Ft(ω, dx) = F(dx) independent
of ω and t . The measure F is the Lévy measure, and it integrates x2 ∧ 1. The
(deterministic) triple (b, c,F ) is then the characteristic triple coming in the Lévy–
Khintchine formula, providing the characteristic function of Xt ,

E[eiuXt ] = exp t

(
iub − cu2

2
+

∫ (
eiux − 1 − iux1{|x|≤1}

)
F(dx)

)
.(2)

This completely characterizes the entire law of X.
Ultimately, we would like to identify as much as we can of the characteristics

B , C and ν, and give consistent estimators for the identifiable parameters. The
situation is well understood for the first two characteristics, B and C. When X

is fully observed on [0, T ], one knows the jumps (size and location) occurring
within the interval, and the quadratic variation of X on [0, T ], hence the function
t �→ Ct on [0, T ]. On the other hand, and at least when C is strictly increasing
(which is the case in almost all models used in practice), nothing can be said about
the drift B . When the process is observed only at discrete times, Ct is no longer
exactly known, but there are well established methods to estimate it in a consistent
way as the observation mesh goes to 0, even in the presence of jumps.

We focus on the remaining open question, which concerns identifiability and es-
timation for the third characteristic, ν, or equivalently Ft , for a discretely sampled
semimartingale. The measure Ft in a sense describes the law of a jump occurring
at time t , conditionally on the past before t . There is a vast literature on identifying
the Lévy measure when the time horizon T is asymptotically infinite, and when
X is a Lévy process; see, for example, Basawa and Brockwell (1982), Figueroa-
López and Houdré (2006), Nishiyama (2008), Neumann and Reiss (2009) and
Comte and Genon-Catalot (2009). But over a finite time horizon T , we cannot
reconstruct ν fully because there are only finitely many jumps on [0, T ] with size
bigger than any ε > 0. The open question which we seek to address in this paper
is: what can we and can we not identify about ν? High-frequency data analysis
has proved a very fruitful area of research. As we will see, however, it is not able
to achieve everything, and our objective in this paper is to pinpoint exactly the
limitations, or frontier, involved in using high-frequency data over a fixed time
span.

We can say something about the concentration of ν around 0. For example, we
can decide for which p ≥ 0 we have

∫ T
0 ds

∫
Ft(ω, dx)(|x|p ∧ 1) < ∞, because
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outside a null set again these are exactly those p’s for which
∑

s≤T |�Xs(ω)|p <

∞, where �Xs = Xs − Xs− is the size of the jump at time s, if any. The infimum
of all such p’s is a generalization of the Blumenthal–Getoor index (or BG index) of
the process up to time T , and it is known when X is fully observed. Note that a pri-
ori it is random, and also increasing with T , and always with values in [0,2]. How-
ever, in the Lévy process case, it reduces to inf{p :

∫
F(dx)(|x|p ∧ 1) < ∞}, and is

nonrandom and independent of time. It was originally introduced by Blumenthal
and Getoor (1961), and for a stable process the BG index is also the stability index
of the process.

The interest in identifying the BG index lies in the fact that the index allows for
a classification of the processes from least active to most active: processes with
BG index equal to 0 are either finitely active or infinitely active but with slow,
sub-polynomial, divergence of ν near 0; processes with BG index strictly positive
are all infinitely active; processes with BG index less than 1 have paths of finite
variation; processes with BG index greater than 1 have paths of infinite variation;
and in the limit, processes with continuous paths have an “activity index” (the
analog of the BG index which no longer exists) equal to 2 when the volatility is
not vanishing. In other words, jumps become more and more active as the BG
index increases from 0 to 2, and we can think of this generalized BG index as an
index of jump activity.

In the case of discrete observations at times i�n with �n going to 0, recovering
the random BG index in full generality seems out of reach, but Aït-Sahalia and Ja-
cod (2009a) constructed estimators of the nonrandom number β that are consistent
as �n → 0, under the main assumption that locally near 0, we have the behavior

Ft(ω, [−u,u]c) ∼ at (ω)

uβ
as u ↓ 0(3)

(plus a few technical hypotheses), where at ≥ 0 is a process: in this case, β is
the—deterministic—BG index at time t , on the set {∫ t

0 as ds > 0}. We call this
behavior “proto-stable,” since it is similar to that of a stable process but only near 0.
Away from a neighborhood of 0, the jump measure is completely unrestricted. We
obtained the rate of convergence and a central limit theorem for the estimators,
depending upon the rate in the approximations (3). Related estimators or tests for
β include Belomestny (2010), Cont and Mancini (2011) and Todorov and Tauchen
(2010).

We can think of (3) as providing the leading term, near 0, of the jump measure
of X. Given that this term is identifiable, but that the full measure ν is not, our
aim is to examine where the boundary between what can versus what cannot be
identified lies. Toward this aim, one direction to go is to view (3) as giving the
first term of the expansion of the “tail” Ft(ω, [−u,u]c) near 0, and go further by
assuming a series expansion such as

Ft(ω, [−u,u]c) ∼ ∑
i≥1

ai
t (ω)

uβi
as u ↓ 0(4)
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(the precise assumption is given in Section 2), with successive powers β1 = β >

β2 > β3 > · · · . Those βi ’s will be the “successive BG indices.” This series expan-
sion can, for example, result from the superposition of processes with different BG
indices, in a model consisting of a sum of such processes.

The question then becomes one of identifying the successive terms in that ex-
pansion. The main theoretical result of the paper, which is somehow surprising,
is as follows: the first index β1 is always identifiable, as we already knew, but
the subsequent indices βi which are bigger than β1/2 are identifiable, whereas
those smaller are not. An intuition for this particular value of the “identifiabil-
ity boundary” is as follows: in view of (4) the estimation of the βi ’s can only be
based on preliminary estimations of Ft(ω, [−u,u]c), or of an integrated (in time)
version of this, for a sequence un → 0. It turns out that, even in idealized circum-
stances, an estimation of Ft(ω, [−un,un]c) or of its integrated version has a rate
of convergence u

−β1/2
n (there is a central limit theorem for this), so that any term

contributing to Ft(ω, [−un,un]c) by an amount less than u
−β1/2
n is fundamentally

unreachable: we can only hope to estimate a further coefficient βi if it leads to a
number of increments greater than un (which is of order u

−βi
n ) that is larger than

the sampling error in the number of terms generated by the first coefficient, im-
plying that any βi < β1/2 cannot be identified. This shows that there are limits
to our ability to identify these successive terms, even in the unrealistic situation
where the process is fully observed, and the behavior of ν around 0 is only partly
identifiable.

When the identifiability conditions are satisfied, and when the process is ob-
served at discrete times with mesh �n, we will construct estimators of the param-
eters which are consistent as �n → 0, and determine their rate of convergence,
which we will see are slow. In the case we have only two indices β1 > β2 with
β2 > β1/2, we will further compare the rates of the estimators we exhibit, which
are semiparametric, to the optimal rate achievable in a corresponding parametric
sub-model (the sum of two stable processes, plus a drift and a Brownian motion).

The main results of the paper are summarized in Figure 1 for the two-component
situation. We already noted that β2 can be identified only if it is bigger than β1/2;
we will also see that the rate at which β2 can be estimated increases as β2 gets
closer to β1, and conversely decreases as β2 gets closer to β1/2, in the limit drop-
ping to 0 as β2 approaches β1/2, consistently with the loss of identification that
occurs at that point. Beyond the two-component model, we will provide general
identifiability conditions and rates of convergence for the leading and higher order
BG indices.

The paper is organized as follows. We first define the successive BG indices
in Section 2. In Section 3, we study the identifiability of the parameters appear-
ing in the expansion, from a theoretical viewpoint and in the special case of Lévy
processes. Then we introduce consistent estimators for those parameters which
we have found to be identifiable in the Lévy case, hence proving de facto their
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FIG. 1. Two BG component model: regions where the components are identified versus not identi-
fied, and optimal rate of convergence.

identifiability. This is done according to a two-step procedure, with preliminary
estimators given in Section 4, and final estimators with much faster rates in Sec-
tion 5. Unfortunately, although rates are given, we were not able to show a central
limit theorem for these estimators, although such theorems ought to be available
and would be crucial for obtaining confidence bounds.

In principle, those estimators could be used on real data, but the rates of con-
vergence for the higher order indices are, by necessity, quite slow. We show in
Section 6 that the slow nature of these rates of convergence is an inherent feature
of the problem that cannot be improved upon. This is perhaps not too surprising
since the range of values of the higher order indices that are identified is limited,
and hence one would expect the rate of convergence to deteriorate all the way to
zero as one approaches the region where identification disappears. We provide in
Section 7 a simulation study for a model featuring a stochastic volatility plus two
stable processes with different indices, the aim being to identify these two indices,
especially the higher order one. A realistic application to high-frequency financial
data, is out of the question for the typical sample sizes that are currently avail-
able, but may be useful in the future or in different fields of applications where
semimartingales are used and where data are available in vast quantities, such as
the study of Internet traffic or turbulence data in meteorology. The results do also
present theoretical interest, especially as they set up bounds on what is asymptoti-
cally identifiable in the jump measure of a semimartingale, and consequently what
is not.

2. The successive Blumenthal–Getoor indices. Throughout the paper, X is
an Itô semimartingale with characteristics given by (1), on a filtered probability
space (�, F , (Ft )t≥0,P). The time horizon for the observations is T > 0, so the
behavior of X after time T does not matter for us below.

Our first aim is to give a precise meaning to an hypothesis like (4). Instead
of requiring an expansion like this for all times t , we rather use the “integrated
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version” which uses the following family of (adapted, continuous and increasing)
processes:

u > 0 ⇒ A(u)t =
∫ t

0
Fs([−u,u]c) ds.(5)

The basic assumption is as follows:

ASSUMPTION 1. There are a nonrandom integer j , a strictly decreasing se-
quence (βi)1≤i≤j+1 of numbers in [0,2) and a sequence (Ai)1≤i≤j+1 of processes
such that

t ∈ [0, T ], 0 < u ≤ 1 ⇒
∣∣∣∣∣A(u)t −

j∑
i=1

Ai
t

uβi

∣∣∣∣∣ ≤ A
j+1
t

uβj+1
.(6)

Moreover, we have Ai
T > 0 for i = 1, . . . , j .

If this assumption is satisfied with some j ≥ 2, it is also satisfied with any
smaller integer. The processes Ai and A′ are nondecreasing nonnegative, and they
can always be chosen to be predictable.

Clearly, β = β1 is the BG index, as introduced before, and the following defini-
tion comes naturally in:

DEFINITION 1. Under Assumption 1, the numbers β1, β2, . . . , βj are called
the successive BG indices of the process X over the time interval [0, T ], and the
variables Ai

T are called the associated integrated intensities.

EXAMPLE 1. Let Y 1, . . . , Y j be independent stable processes with indices
β1 > · · · > βj . Then X = Y 1 + · · · + Y j satisfies (6) with Aj+1 = 0 and
the successive indices and integrated intensities are βi and T ai , where ai =
limu→0 uβiF i([−u,u]c), and F i is the Lévy measure of Y i .

If the Y i ’s are tempered stable processes [see Rosiński (2007)] the same is true,
provided βj > β1 − 1.

EXAMPLE 2. A semimartingale consisting of a continuous component and a
jump part driven by a sum of such processes also satisfies (6). Let Xt = X0 +Zt +∑j

i=1

∫ t
0 Hi

s dY i
s , with Z a continuous Itô semimartingale and Y i as in the previous

example and Hi locally bounded predictable processes with
∫ T

0 |Hi
s |βi ds > 0. The

successive BG indices are again the βi ’s, with the associated integrated intensities

Ai
T = ai

∫ T

0
|Hi

s |βi ds.
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REMARK 1. We have taken a finite family of possible indices βi . Nothing
prevents us from taking an infinite sequence: we simply have to assume that As-
sumption 1 holds for all j , with additionally limi→∞ βi = 0. However, in view
of the restriction imposed on the BG indices by our main theorems below about
identifiability, this more general situation has no statistical interest.

REMARK 2. Assumption 1 imposes a certain structure on the behavior of the
jump measure of the process near 0. It is important to note that it does not re-
strict in any way the behavior of the jump measure away from 0. Although most
models used in practice and with infinite activity jumps satisfy this assumption,
the Gamma process does not: although it (barely) exhibits infinite activity, its BG
index is 0, and A(u)t is of order log(1/u).

In Assumption 1, expansion (6) is central, but one may wonder about the ad-
ditional requirement Ai

T > 0. So, we end this section with some comments and
extensions, which may look complicated and are not necessary for the rest of the
paper, but which we think are useful and somewhat enlightening.

EXTENSION 1. In Assumption 1 positive and negative jumps are treated in
the same way. In practice, it might be useful for modeling purposes to establish
the behavior of positive and negative jumps separately. Toward this end, one can
replace (5) by

A(u)
(+)
t =

∫ t

0
Fs((u,∞)) ds, A(u)

(+)
t =

∫ t

0
Fs((−∞,−u)) ds.

Then, if one is interested in positive jumps only, say, one replaces (6) by a similar
expansion for A(u)

(+)
t : all the content of the paper still holds, mutatis mutandis,

under this modified assumption, for positive jumps. The same is true of negative
jumps, and the “positive” and “negative” successive BG indices can of course be
different.

EXTENSION 2. Now we come to the requirement Ai
T > 0, which in Assump-

tion 1 is supposed to hold for all (or, almost all) ω. This is of course unlikely to
hold for the terminal time T , unless it holds for all t > 0, and even unless the pro-
cesses Ai are strictly increasing. In Example 2, this amounts to suppose that none
of processes Hi vanishes. However, it might be relevant in practice to allow for
each Hi to vanish on some (possibly random) time intervals: we then can have
different components of the model turned on and off at different times.

Thus, let us examine what happens if we relax the requirements Ai
T > 0. For

any particular outcome ω, the (first) BG index of the process X is βi , where i is
the smallest integer such that Ai

T > 0, and if all of them vanish one only knows
that the BG index is not bigger than βj+1. The same applies to further indices. In
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other words, one can define a partition of � indexed by all subsets D of {1, . . . , j}
as follows:

�T (D) =
(⋂

i∈D

{Ai
T > 0}

)
∩

( ⋂
i∈{1,...,j}\D

{Ai
T = 0}

)
.(7)

Then, for any ω, the successive BG indices of X over [0, T ] and the associated
intensities are the numbers β ′

1(ω), . . . , β ′
J (ω) and �i(ω), defined as

J (ω) = m, β ′
i (ω) = βli ,

(8)
�i(ω) = A

li
t (ω) if ω ∈ �t({l1, . . . , lm}).

On the set �T (∅), which is not necessarily empty, we have J = 0 and no β ′
i ’s.

All results of this paper are true if we relax Ai
T > 0 in Assumption 1, pro-

vided we replace j by J and the βi ’s by the β ′
i’s, in restriction to the set

�T (D): this is indeed very easy, because on this set the process X coincides
at all times t ∈ [0, T ] with a process X′ with satisfies Assumption 1 as stated
above, with (j, β1, . . . , βj , βj+1) substituted with (m,βl1, . . . , βjm,βj+1), when
D = {l1, . . . , lm}.

3. Identifiability in the Lévy case. Loosely speaking, in an asymptotic statis-
tical framework, identifiability of a parameter means the existence of a sequence of
estimators which is (weakly) consistent. Identifiability can be “proved” by exhibit-
ing such a sequence. It can be “disproved” by theoretical arguments, such as the
fact that if the parameter is identifiable in our high-frequency observations setting,
then, were the path t �→ Xt fully observed on [0, T ], it would enjoy “nonasymp-
totic” identifiability in the sense that its value is almost surely known. For example,
in the simple model Xt = bt + Wt the parameter b does not enjoy this nonasymp-
totic property because the laws of the process X (restricted to [0, T ]) are all equiv-
alent when b varies, and thus b is even less identifiable in the asymptotic setting.

Disproving identifiability is usually a hard task, especially in a nonparametric
setting. However, if a parameter is not identifiable for a certain class of models, it
is of course not identifiable for any wider class.

These arguments lead us to consider the very special situation of a Lévy pro-
cesses X, with Lévy–Khintchine characteristics (b, c,F ) [see (2)] when the path
t �→ Xt is fully observed on [0, T ]. In this section we are interested in nonasymp-
totic identifiability of those characteristics, or functions of them. Note that, were T

infinite, the triple (b, c,F ) would be identifiable because, for example, one would
know the values of all the i.i.d. increments Xn+1 −Xn, giving us almost surely the
law of X1, which in turn determines the triple (b, c,F ).

This is no longer the case when, as in this paper, the time interval [0, T ] is
finite. In this case, we give a formal definition of identifiability. We use Qb,c,F to
denote the law of the process X, restricted to the interval [0, T ] (T is kept fixed
all throughout). So Qb,c,F is a probability measure on the Skorokhod space D =
D(|0, T ],R). We also let T be some given subset of all possible triples (b, c,F ).
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DEFINITION 2. A function H is identifiable on the class T if, for any two
(b, c,F ) and (b′, c′,F ′) in T such that H(b′, c′,F ′) �= H(b, c,F ), we have
Qb,c,F ⊥ Qb′,c′,F ′ (i.e., the two measures Qb,c,F and Qb′,c′,F ′ are mutually singu-
lar).

The rationale behind this definition is as follows: if H is identifiable and
(b, c,F ) ∈ T , and X is drawn according to the law Qb,c,F , then we can discard
with probability 1 any fixed (b′, c′,F ′) ∈ T such that H(b′, c′,F ′) �= H(b, c,F ).
Unfortunately, this does not mean that we can (almost surely) reject all (b′, c′,F ′)
with H(b′, c′,F ′) �= H(b, c,F ) simultaneously: this stronger property is (almost)
never satisfied.

There exists a criterion for mutual singularity of Qb,c,F and Qb′,c′,F ′ ; see Re-
mark IV.4.40 of Jacod and Shiryaev (2003). We have a Lebesgue decomposition
F ′ = f • F + F ′⊥ of F ′ with respect to F , with f a nonnegative Borel function
and F ′⊥ a measure supported by an F -null set. Then Qb′,c′,F ′ ⊥ Qb,c,F if and only
if at least one of the following five properties is violated:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F ′⊥(R) < ∞,

α(F,F ′) =
∫ (|f (x) − 1|2 ∧ |f (x) − 1|)F(dx) < ∞,

α′(F,F ′) =
∫
{|x|≤1}

|x||f (x) − 1|F(dx) < ∞,

c = 0 ⇒ b′ = b −
∫
{|x|≤1}

x
(
f (x) − 1

)
F(dx),

c′ = c.

(9)

It clearly follows that the function H(b, c,F ) = c is identifiable on any class
T (a well-known fact). The function H(b, c,F ) = b is not identifiable in general;
however, on the class of all (b, c,F ) having c = 0 and

∫
{|x|≤1} |x|F(dx) < ∞ the

function H(b, c,F ) = b̂ = b − ∫
{|x|≤1} xF(dx) (which is the “real” drift, in the

sense that Xt = b̂t + ∑
s≤t �Xs ) is identifiable.

In the sequel we are not interested in b or c, but in F only. That is, we are
looking at functions H = H(F). This leads us to consider classes of the form

T = R × R+ × T3 where T3 is a set of Lévy measures.(10)

In words, we want no restriction on the parameters b and c. Of course T3 should not
be a singleton, and H(F) should not be constant on T3, otherwise the identifiability
problem is empty.

The following example is clear:

EXAMPLE 3. If T3 is a set of measures which coincide with some given F on
a neighborhood of 0, then by (9) no nontrivial H(F) is identifiable on T .
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This implies that, in the best-case scenario, a function H(F) can be identifiable
only if it depends on the “behavior of the measure F around 0.” Giving a necessary
and sufficient condition for identifiability of such a function, other than saying
that one of the properties in (9) fails when H(F) �= H(F ′), seems out of reach.
However, this is possible for some specific, but relatively large, classes of sets T3,
with a priori relatively surprising results. Below we introduce such a class, in order
to illustrate the nature of the available results.

DEFINITION 3 (The class T (1)
3 of Lévy measures). We say that a Lévy mea-

sure F belongs to this class if we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F(dx) = F̃ (dx) +
∞∑
i=1

aiβi

|x|1+βi
1[−η,η](x) dx, where η > 0 and

(i) 0 ≤ βi+1 ≤ βi < 2, βi > 0 ⇒ βi > βi+1,

lim
i→∞βi = 0,

(ii) ai > 0 ⇔ βi > 0,

(iii) 0 <

∞∑
i=1

ai < ∞,

(iv) F̃ is a finite measure supported by [−η, , η]c.

(11)

Parts (i) and (ii) together ensure the uniqueness of the numbers (ai, βi) in the
representation of F , whereas if this representation holds for some η > 0, it also
holds for all η′ ∈ (0, η), with the same (ai, βi). Part (iii) ensures that the infinite
sum in the representation converges, without being zero (so equivalently, a1 > 0,
or β1 > 0).

The class T (1)
3 contains all sums of symmetric stable Lévy measures. On the

other hand, it is contained in the class of all Lévy measures F of a Lévy process
satisfying Assumption 1: the latter is the class T (2)

3 of all F such that

u ≤ 1 ⇒
∣∣∣∣∣F([−u,u]c) −

j∑
i=1

ai

uβi

∣∣∣∣∣ ≤ a′

uβj+1
(12)

for 2 > β1 > · · · > βj+1 ≥ 0 and ai > 0 for i = 1, . . . , j and a′ ≥ 0, and those
conditions are implied by (11), for any j ≤ sup(i :βi > 0), with the same βi and ai .

Considering ai and βi as functions on T (1)
3 , the identifiability result goes as

follows:

THEOREM 1. In the previous setting, the following holds:

(i) The functions β1 and a1 are identifiable on the set T (1)
3 .



1440 Y. AÏT-SAHALIA AND J. JACOD

(ii) For any given i ≥ 2, the functions βi and ai are identifiable on the subset
T (1)

3 (i) = {F ∈ T (1)
3 :βi(F ) ≥ β1(F )/2} of T (1)

3 , and they are not on the comple-

ment T (1)
3 \ T (1)

3 (i).

REMARK 3. As mentioned in the “first extension” described in the previous
section, a similar statement is true if we replace the first line of (11) by

F(dx) = F̃ (dx) +
∞∑

j=1

(
a

(+)
i β

(+)
i

|x|1+βi
1(0,η](x) + a

(−)
i β

(−)
i

|x|1+βi
1(−η,0)(x)

)
dx

with both families (β
(±)
i , a

(±)
i ) satisfying (i)–(iii). Then the theorem above holds

for both these families, with exactly the same proof.

REMARK 4. As said before, any Lévy process X whose Lévy measure F is
in T (1)

3 satisfies Assumption 1, but the converse is far from being true, so, even
for Lévy processes, the identifiability question is not completely solved under As-
sumption 1. More precisely, as the estimation results will show below, (12) implies
the “positive” identifiability results [(i) and the first part of (ii) of Theorem 1] for
Lévy processes, but not the “negative” results [second part of (ii)].

For example, consider the class T (3)
3 of all measure of the form

F(dx) = a1β1

x1+β1
1(0,1](x) dx + G(dx) with G = a2

∑
n≥1

ε1/n1/β2 (dx)

and 0 < β2 < β1 < 2 and a1, a2 > 0. Any such F satisfies (33), but not (11). On
T (3)

3 , all four parameters β1, β2, a1, a2 are identifiable without the restriction β2 ≥
β1/2. This is of course due to the fact that the measure G is singular, and any
two measures G and G′ of the same type with (β2, a2) �= (β ′

2, a
′
2) have a Lebesgue

decomposition G′ = g•G+G′⊥ with G′⊥(R) = ∞ when β2 �= β ′
2 and α(G,G′) =

∞ when β2 = β ′
2 and a2 �= a′

2.
We emphasize again that this example is quite singular, and verify here the fairly

general principle that the less regular a statistical problem is, the easier it is to solve
in the sense that more parameters can be estimated, and often with faster rates.

REMARK 5. The class T (2)
3 may be bigger than T (1)

3 , but it is very far from
containing all possible Lévy measures. Indeed, any decreasing right-continuous
function f on (0,∞) with f (x) → 0 as x → ∞ and f (x) ≤ K/xα for x ∈
(0,1], for some constants K > 0 and α ∈ (0,2), is the symmetrical tail f (x) =
F([−x, x]c) of a Lévy measure, although of course it does not need to be equiv-
alent to a/xβ as x → 0 for some β ∈ (0,2) and a > 0: so (6) may fail even with
j = 1.
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4. Discretely observed semimartingales: Preliminary estimators. Now we
turn to the more general case of semimartingales. The process X is observed at
the times i�n for i = 0,1, . . . , [T/�n] (where [x] denotes the integer part of the
real x). We thus observe the increments

�n
i X = Xi�n − X(i−1)�n.(13)

The BG indices describes some properties of jumps, which are not observed.
However, when an increment �n

i X is relatively large, say bigger than un with
un � √

�n, it is likely to be due to jumps because the drift plus the continuous
martingale part have increments of order of magnitude

√
�n. Moreover it turns

out that it is usually due to a single “large” jump of size bigger than un, although
of course the observed value �n

i X is not exactly the jump size. So one may expect
the number of jumps with size bigger than un = u, over the time interval [0, t], to
be the following number, or be relatively close to it:

U(u,�n)t =
[t/�n]∑
i=1

1{�n
i X>u}.(14)

In order for the previous statement to actually be true, we need some additional
assumptions, though. Those are given in the following:

ASSUMPTION 2. The process X is an Itô semimartingale, and:

(a) The processes bt , ct are locally bounded.
(b) We have Assumption 1 with Ai

t = ∫ t
0 ai

s ds for i = 1, . . . , j + 1, where the
processes ai are locally bounded.

(c) We have βj > β1/2.

Assumption 2(c) above may look strange, or too strong. However, in view of the
identifiability results of the previous section, we cannot estimate consistently βi if
it is strictly smaller than β1/2, and as a matter of fact, the estimators described
below are consistent only if βi > β1/2. Hence, since Assumption 1 for j implies
the same for all j ′ < j , (c) above is really not a restriction, but amounts to replacing
j in this assumption by j ∧ sup{i :βi > β1/2}.

Apart from (c), this assumption is satisfied in Examples 1 and 2, and also by
any Lévy process satisfying Assumption 1.

The estimation procedure is a two-step procedure, and in this section we de-
scribe the first—preliminary—estimators. These estimators will be consistent, but
with very slow rates of convergence. This is why, in the next subsection, we will
derive final estimators which exhibit much faster (although still slow) rates.

Those preliminary estimators require the knowledge of a number ε > 0 which
satisfies

i = 1, . . . , j − 1 ⇒ βi − βi+1 ≥ ε.(15)
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Such an ε always exists, but here we suppose that it is known, somewhat in con-
tradiction with the fact that the βi are unknown. It it is obviously quite difficult to
estimate properly two contiguous indices βi and βi+1 when they are very close to
to one another. So from a statistical viewpoint, the assumption βi − βi+1 > ε for
some fixed ε > 0 is natural. Moreover, since we do not know a priori which ω is
observed, this amounts to supposing that all possible values of the BG indices in
the model satisfy this restriction. For models used in practice, this is not really a
restriction since these models rely on at most a small number of indices that are
separated from one another.

The key ingredient for constructing the estimators is the counting process de-
fined in (14), evaluated at the terminal time T and for suitable values of u. In
particular, we choose a sequence un satisfying

un → 0, �ρ
n ≤ Kun

(16)

with ρ <
1

2 + β1
∧ 2

β1(3 + β1)
∧ 4

β1(5 + 3β1)
.

Of course ρ > 0 above (otherwise un → 0 would fail). The infimum of the upper
bound for ρ over all β1 < 2 is 2/11. Therefore, since we do not a priori know
the values of β1, whereas as we will see the rates improve when the sequence un

becomes smaller (termwise), it is thus advisable to take ρ = 2/11 above.
The first-step estimation is done by induction on i. We choose γ > 1, and the

estimators for β1 and A1
T are

β̃n
1 =

⎧⎨⎩
log(U(un,�n)T /U(γ un,�n)T )

logγ
, if U(γun,�n)T > 0,

−1, otherwise,
(17)

�̃n
i = (un)

β̃n
1 U(un,�n)T .

For constructing the subsequent estimators, and with ε in (15), we set

un,i = u(ε/2)i−1

n(18)

(so un,1 = un). We denote by I (k, l) the set of all subsets of {1, . . . , k} having
l elements. Assuming that we know β̂n

i and �̂n
i for i = 1, . . . , k − 1, for some

k ∈ {2, . . . , j}, we set

x ≥ 1 ⇒ Un(k, x) =
k−1∑
l=0

(−1)lU(xγ lun,k,�n)T
∑

J∈I (k−1,l)

γ
∑

i∈J β̃n
i ,

β̃n
k =

⎧⎨⎩
log(Un(k,1)/Un(k, γ ))

log(γ )
, if Un(k,1) > 0,Un(k, γ ) > 0,

−1, otherwise,
(19)

�̃n
k = u

β̃n
k

n,k

(
U(un,k,�n)T −

k−1∑
l=1

�̃n
l u

−β̃n
l

n,k

)
.
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Finally, in order to state the result, we need a further notation, for i = 1, . . . , j −
1 (so when j = 1 the following is empty):

Hi = Ai+1
T

Ai
T logγ

∏i
l=1(γ

βl−βi+1 − 1)∏i−1
l=1(γ

βl−βi − 1)
.(20)

THEOREM 2. Under Assumption 2 and (15), for all i = 1, . . . , j − 1 such that
βi+1 > β1/2, we have

β̃n
i − βi

u
βi−βi+1
n,i

P−→ −Hi,
�̃n

i − Ai
T

u
βi−βi+1
n,i log(1/un,i)

P−→ �iHi.(21)

Moreover if η = βj −βj+1 ∨ β1
2 > 0, the following variables are bounded in prob-

ability:

β̃n
j − βi

u
η
n,j

,
�̃n

j − A
j
T

u
η
n,j log(1/un,j )

.(22)

The estimator β̃n
1 is exactly the estimator proposed in Aït-Sahalia and Jacod

(2009a) for the leading BG index β1. So, not only does it satisfy (21) when j ≥ 2
or the tightness of (22) when j = 1, but it also enjoys a central limit theorem
centered at β1 and with rate u

β1/2
n as soon as β2 < β1/2 (this property implies

j = 1 here). Moreover, in this case one could prove that �̃n
1 also satisfies a CLT

with the rate u
β1/2
n log(1/un), although we will not prove it, since the emphasis

here is on the case of several BG indices.
Some remarks are in order here:

REMARK 6. It is possible for the estimator �̃n
i to be negative, in which case

we may replace it by 0, or by any other positive number. It may also happen that
the sequence β̃n

i is not decreasing, and we can then reorder the whole family as
to obtain a decreasing family (we relabel the estimators of Ai

T accordingly, of
course). All these modifications are asymptotically immaterial.

REMARK 7. As mentioned in the Extension 2 at the end of Section 2, we can
relax Ai

T > 0 in Assumption 1. Then the above theorem is still valid, in restriction
to the set �T ({l1, . . . , lm}) of (7), as soon as βlm > βl1/2.

REMARK 8. Suppose that j ≥ 2. The limits in (21) are pure bias, hence pre-
cluding the existence of a proper central limit theorem. Note that Hi > 0 if i < j ,
so the bias for β̂n

i and for �̂n
i are always negative and positive, respectively.

Note also that the rate of convergence for estimating βi when i ≤ j − 1, say, is

u
βi−βi+1
n,i , that is u

(βi−βi+1)(ε/2)i−1

n . This is exceedingly small, indeed. For example,
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suppose that we have three indices β1 > β2 > β3 >
β1
2 . Then (15) implies neces-

sarily ε <
β1
2 , so the best possible rate for i = 2 would be less than, but close to,

u
(β2−β3)β1/4
n , upon taking ε close to β1

2 , which is of course impossible because we
do not know β1 to start with.

In the previous example, if we suspect that β1 is bigger than 1, say, it becomes
(perhaps) not totally unreasonable to choose ε = 0.1; the rates for i = 2 and i = 3
thus become u

(β2−β3)/10
n and u

(β3−β1/2)/100
n . This is of course on top of the fact

that, because of (16), un is of order of magnitude �
2/11
n , by a conservative choice

of ρ.

Practical considerations. Letting aside the slow convergence rates, the previous
result suffers from two main drawbacks:

(1) It requires to know the number of indices to be estimated (this is implicit in
Assumption 2).

(2) It requires to know a number ε > 0 satisfying (15).
About the first problem above, in real world one does not know the number of

indices. On the other hand, if Assumption 1 holds, it seems reasonable to suppose
that it holds for all j , whereas the estimation is made for those βi which are bigger
than β1/2 only. In connection with this, we assume βi − βi+1 ≥ ε for all i ≤ j :=
sup(k :βk > β1/2), plus the property βj > β1/2 + ε. Then the aim becomes to
estimate βi and Ai

T for all i ≤ j , with j unknown.
Since the estimation procedure is done by induction on the successive indices,

one can start the induction as described above, and stop it at the first i such that
β̃i ≤ ε + β̃1/2. Asymptotically, this procedure will deliver the “correct” answer
(the proof of this fact, not given below, is a simple extension of the proof of the
second claim of the theorem). In practice, however, the solution to this stopping
problem is not quite clear, since in particular the estimated sequence β̃i is not
necessarily decreasing, although it is so asymptotically.

Problem 2 above is clearly more annoying. We have to admit that, in the setting
presented here, we have no theoretical solution for solving it. A possible way out
would be to make the estimation with several values of ε, going downward, until
the estimated differences β̃i − β̃i−1 all become significantly bigger than the cho-
sen ε, but no mathematical result so far is available in this direction. In addition,
since rates are very slow, the probability that such a difference is bigger than ε

when the true values satisfy the same inequality may be not close to 1 (for finite,
but even large, samples).

Nonetheless, bad as it looks, this condition is probably relatively innocuous in
practice: indeed, when two successive indices are very close to each other, they
are obviously very difficult to tell apart. So the problem is practically meaningful
only if the indices are a small number (as 2, 3 or perhaps 4) and reasonably well
separated. Hence taking ε = 0.1 for instance, as in Remark 5, seems to be safe
enough.
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5. Discretely observed semimartingales: An improved method. The obser-
vation scheme is the same as in the previous section: X is observed at the times
i�n smaller or equal to some fixed terminal time T .

As already mentioned, the previous estimators converge at a very slow rate,
especially for higher order indices; see Remark 8. So, in order to implement the
estimation with any kind of reasonable accuracy, it is absolutely necessary to come
up with better estimators.

This is the aim of this section. Assuming Assumption 2, we also suppose that
we can construct preliminary estimators, such as in the previous section. Exactly
as there, we must know the number j of BG indices that are to be estimated.

The method consists in minimizing, at each stage n, a suitably chosen contrast
function n. First we take an integer L ≥ 2j and numbers 1 = v1 < v2 < · · · < vL.
We also choose positive weights wk (typically wk = 1, but any choice is indeed
possible), and we pick truncation levels un satisfying (16). We also let D be the
set of all (xi, γi)1≤i≤j with 0 ≤ xj ≤ xj−1 ≤ · · · ≤ x1 ≤ 2 and γi ≥ 0. Then the
contrast function is defined on D by

n(x1, γ1, . . . , xj , γj ) =
L∑

l=1

wl

(
U(vlun,�n)T −

j∑
i=1

γi

(vlun)xi

)2

,(23)

where the sequence un satisfies (16). Then the estimation goes as follows:

STEP 1. We construct preliminary estimators β̃n
i (decreasing in i) and �̃n

i

(nonnegative) for βi and Ai
T for i = 1, . . . , j , such that (β̃i − βi)/u

η
n and (�̃i −

Ai
T )/u

η
n go to 0 in probability for some η > 0. For example, we may choose those

described in the previous section (see Remark 6): the consistency requirement is
fulfilled for any η < (ε/2)j .

STEP 2. We denote by Dn the (compact and nonempty) random subset of D

defined by Dn = {(xi, γi) ∈ D : |xi − β̃n
i | ≤ αu

η
n, |γi − �̃n

i | ≤ αu
η
n,∀i = 1, . . . , j},

for some arbitrary (fixed) α > 0. Then the final estimators βn
i and �n

i will be

(βn
i ,�

n
i )1≤i≤j = arg min

Dn

n(x1, γ1, . . . , xj , γj ).(24)

THEOREM 3. Under Assumption 2, and for all choice of v2, . . . , vL outside a
λL−1-null set (depending on the βi ’s; λl is the l-dimensional Lebesgue measure),
the sequences

βn
i − βi

u
βi−β1/2−μ
n

,
�n

i − �i

u
βi−β1/2−μ
n

(25)

are bounded in probability for all i = 1, . . . , j and all μ > 0.
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The rates obtained here are much faster than in Theorem 2: we replace
u

βi−βi+1∨(β1/2)

n,i by u
βi−β1/2
n , for two reasons: the exponent βi − βi+1 is bigger

than βi − βi+1 ∨ (β1/2), unless i = j ; more importantly, we replace the auxiliary
truncation levels un,i of (18) by the original sequence un, which is much smaller
when i ≥ 2, and only subject to (16). We will examine in the next section how far
from optimality those rates are.

REMARK 9. As stated, and as seen from the proof, we only need L = 2j ,
and choosing L > 2j does not improve the asymptotic properties. However, from
a practical viewpoint, it is probably wise to take L bigger than 2j in order to
smooth out the contrast function somehow, especially for (relatively) small sam-
ples. A choice of the weights wl > 0 other than wl = 1, such as wl decreasing in l,
may serve to put less emphasis on the large truncation values unvl for which less
data are effectively used.

REMARK 10. The result does not hold (or at least we could not prove it) for
all choices of the vl’s, but only when (v2, . . . , vL) (recall v1 = 1) does not belong
to some Lebesgue-null set G(β1, . . . , βj ). This seems a priori a serious restriction,
because (β1, . . . , βj ) is unknown. In practice, we choose a priori (v2, . . . , vL), so
we may have bad luck, just as we may have bad luck for the outcome ω which is
drawn. . . .

We may also do the estimation for a number of different choices for the weights
and/or values of L ≥ 2j and compare or average the results. This should con-
tribute to weaken the numerical instability inherent to minimization problems such
as (24). This numerical instability is similar to the one occurring in nonlinear re-
gression problems.

We have to state, however, that these problems, just as those stated in the “prac-
tical considerations” of the previous section, are not fully addressed in this paper,
and they are probably quite difficult to overcome. Our emphasis here is more on
theoretical results, and on the possibility of performing the estimation with rea-
sonable rates (see, however, Section 7 below, to see how the problem of finding
a “good” ε and doing preliminary estimation in our simulation study is skipped,
without affecting the quality of the procedure in any noticeable way).

6. Optimality in a special case.

6.1. Why the convergence rates are necessarily slow. Intuitively, the fact that
we are right at the boundary between identifiability and lack thereof suggests that
we should expect the rate, as we approach the loss of identifiability boundary, to
deteriorate all the way to zero. In order to quantify precisely how slow the rates of
convergence for the estimators of the second (and higher) index must be, even in
ideal circumstances, we study a simple parametric model of the following form.
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Let W be a Brownian motion and Y 1, Y 2 be two independent standard symmetric
stable processes, and set

Xt = bt + σWt + Y 1
t + Y 2

t .(26)

Each Y i depends on two parameters, the index βi and a scale parameter ai , the
latter being characterized by the fact that the Lévy measure of Y i is

Fj (dx) = ajβj

|x|1+βj
dx.(27)

We have six parameters,

b ∈ R, c = σ 2 > 0, a1, a2 > 0, 0 < β2 < β1 < 2,(28)

among which b is not identifiable, and c,β1, a1 are identifiable, and (β2, a2) are
identifiable if and only if β2 ≥ β1/2. In what follows, we restrict our attention to
the four parameters β1, β2, a1, a2.

In order to find at which rate it is possible to estimate these four parameters,
when X is observed at the discrete times (i�n : i = 0,1, . . . , [T/�n]) and �n → 0,
we study the behavior of the Fisher information matrix. Due to the fact that X is
a Lévy process, the information matrix at stage n is [T/�n] times the informa-
tion matrix obtained when we observe only the variable X�n ; since the variable
X� admits a density x �→ p(�(x|c,β1, a1, β2, a2) which is C∞ in x, and also in
(c, β1, a1, β2, a2) on the domain defined by (28), it is no wonder that Fisher’s in-
formation I� for a single observation X� (recall X0 = 0) exists, and we can study
its behavior as � → 0.

Only the diagonal entries are important for the various rates of convergence, so
we only need to focus on the following diagonal entries of this matrix:

I
β1β1
� , I

a1a1
� , I

β2β2
� , I

a2a2
� .

The main result of this section follows, giving the asymptotic order of the rele-
vant terms in Fisher’s information:

THEOREM 4. We have the following equivalences, as � → 0:

I
β1β1
� ∼ a1

2(2 − β1)β1/2cβ1/2 �1−β1/2(log(1/�))2−β1/2,

I
a1a1
� ∼ 2β1cβ1a

β1
1

(2 − β1)β1/2σβ1a2
1

�1−β1/2

(log(1/�))β1/2

and also, provided β2 > β1/2,

I
β2β2
� ∼ a2

2β2
2

2a1β1(2β2 − β1)(2 − β1)β2−β1/2cβ2−β1/2

× �1−β2+β1/2(log(1/�))2−β2+β1/2,

I
a2a2
� ∼ 2β2

2

a1β1(2β2 − β1)(2 − β1)β2−β1/2cβ2−β1/2

�1−β2+β1/2

(log(1/�))β2−β1/2 .
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REMARK 11. We are not concerned here with the identification and estima-
tion of the volatility parameter c; the term I cc

� in a simpler model has been studied
in Aït-Sahalia and Jacod (2008), as well as I

a1a1
� when a2 = 0 (i.e., when there is

only one stable process on top of the Brownian motion). The asymptotic equiv-
alent for the term I

a1a1
� of course reduces to (4.11) of that paper, with α = β1,

β = 2, θ = a1, up to a change of parametrization for a1, since here we use the
parametrization (27) which corresponds to the notation of Assumption 1, which is
fulfilled here.

Coming back to the original problem, we deduce that it should be possible in
principle to find estimators β̂n

i and ân
i having the following properties:

(log(1/�n))
1−β1/4

�
β1/4
n

(β̂n
1 − β1)

L−→ N (0,1/T I β1β1),

1

�
β1/4
n (log(1/�n))β1/4

(ân
1 − a1)

L−→ N (0,1/T I a1a1),

(29)
(log(1/�n))

1−β2/2+β1/4

�
β2/2−β1/4
n

(β̂n
2 − β2)

L−→ N (0,1/T I β2β2),

1

�
β2/2−β1/4
n (log(1/�n))β2/2−β1/4

(ân
2 − a2)

L−→ N (0,1/T I a2a2),

where I β1β1 , I a1a1 , I β2β2 and I a2a2 are the constants in front of the term involving
� in the equivalences above, for I

β1β1
� , I

a1a1
� , I

β2β2
� and I

a2a2
� , respectively. Con-

versely, by the Cramér–Rao lower bound, Theorem 4 also implies that it will be
impossible to find consistent estimators with faster rates of convergence, or smaller
asymptotic variance, that those exhibited in (29).

Note that these rates are consistent with the results of Theorem 1. The first
two convergences above shows that it is always possible to estimate consistently
β1 and a1, the third one implies consistency for β2 only if β2 ≥ β1/2, and the
last one implies consistency for a2 only if β2 > β1/2. The last statement seems
contradictory with Theorem 1 when β2 = β1/2, but of course it is possible to have
a (somewhat irregular) statistical model for which consistency holds even though
the Fisher information does not go to infinity.

6.2. Comparison of rates. Now, we can compare these optimal rates with the
rates obtained in Theorem 3. Doing as such, we compare a semiparametric model
with a parametric sub-model. However, a minimax rate for a given parameter in a
semiparametric model cannot be faster than the rate obtained for any parametric
sub-model, hence the previous results are bounds for the rates in the general model
considered in this paper.
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Neglecting the logarithmic terms, and considering only the estimation of βi for
i = 1,2, the rates above are �

γi
n , whereas in Theorem 3, and upon choosing un

optimally [i.e., ρ as large as possible in (16)], they are �
γ ′
i

n , where

γi = 2βi − β1

4
, γ ′

i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γi

2

2 + β1
− ε, if β1 ≤ (√

97 − 1
)
/6 ≈ 1.475,

γi

8

5β1 + 3β2
1

− ε, if β1 ≥ (√
97 − 1

)
/6,

and ε > 0 arbitrarily small (and if βi > β1/2 when i = 2).
As it should be, we have γi ≤ γ ′

i , and if equality were holding we would con-
clude that our estimators achieve the minimax rate (up to �−ε

n , of course, but ε is
arbitrarily small). What one can say is that the actual minimax rate lies somewhere
in between these two values, and the ratio γi/γ

′
i is a kind of (imperfect) measure

of the quality of the estimators proposed in Section 5: the closest to 1, the closest
to optimality. Then we can conclude the following:

(a) This ratio is the same for j = 1,2, which is an a priori surprising result:
the quality of our estimator for β2, relative to the optimal estimators in the stable
sub-model, is the same as for β1.

(b) This ratio is close to 1 (near optimality) when β1 is small, and decreases
down to 4/11 as β1 increases up to 2. The worst value is small, but not catastroph-
ically such, especially in light of the fact that we are considering semiparametric
estimators whereas the rates are optimal in the parametric context (i.e., assuming
additional structure).

7. Simulation results. We now provide some simulation evidence regarding
the estimators in the case where j = 2; we are attempting to estimate the first two
jump activity indices of the process β1 and β2. The data generating process is a
stochastic volatility model for Xt with jumps driven by two stable processes Y 1

and Y 2, with W,Y 1, Y 2 independent below:

dXt = σt dWt + θ1 dY 1
t + θ2 dY 2

t(30)

with σt = v
1/2
t , dvt = κ(η − vt ) dt + γ v

1/2
t dBt + dJt , E[dWt dBt ] = ρ dt , η1/2 =

0.25, γ = 0.5, κ = 5, ρ = −0.5, the volatility jump term J is a compound Poisson
jump process with jumps that are uniformly distributed on [−0.3,0.3] and intensity
λ = 10 and X0 = 1. Recall that the second component can be identified only if
β2 > β1/2. We consider the situation where (β1, β2) = (1.00,0.75).

Given η, each scale parameter θi (or equivalently Ai
T ) of the stable process in

simulations is calibrated to deliver different various values of the tail probability
Pi = P(|�Y i

t | ≥ 4η1/2�
1/2
n ). In the various simulations’ design, we hold η fixed

and consider the cases where P1 = 0.05 and P2 = 0.005. We sample the process
X over T = 21 days (6.5 hours per day) every �n = 0.01 second. This results
of course in a number of observations (nearly 5 × 107) that is unrealistically high
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for most high-frequency financial data series, at least presently, but extremely large
numbers of observations are needed if we are going to be able to see the component
β2 of the model “behind” the two components with indices of activity 2 (the con-
tinuous component) and β1 (the most active jump component). Of course, much
smaller datasets would be sufficient in the absence of a continuous component.

Note that in general, and besides the preliminary estimators β̃n
i and �̃n

i , we
need to choose the number α > 0 coming in the definition of the set Dn. Since
in practice n (or �n) is given, we need to choose in fact the number αu

η
n. So

in concrete situations one probably can forget about the preliminary estimators
and take a domain Dn which is the set of all (xi, γi) in D with γi ≤ A for some
“reasonably chosen” A, or even A = ∞.

This is what we do below, by taking the estimators to be

(β ′n
1 , β ′n

2 ,�′n
1 ,�′n

2 )
(31)

= arg min
(x1,γ1,x2,γ2)

L∑
l=1

(
U(vlun,�n)T − γ1

(vlun)x1
− γ2

(vlun)x2

)2

,

where the cutoff levels vlun are chosen in terms of the number αl of the long-term
standard deviation

√
η�n over a time lag �n of the continuous martingale part of

the process: we take αl to be {7,10,15,20} and multiples {2,4,6} thereof (giv-
ing all together L = 10 distinct values). Here we know η: we could also estimate
for each path the average volatility, using truncated estimators for the integrated
volatility [see, e.g., Mancini (2004) and Aït-Sahalia and Jacod (2009b)].

The optimization problem (31) is a quadratic problem similar to classical non-
linear least squares minimization. In situations where the parameter space is high
dimensional, the objective function can exhibit local extrema, which can make the
search for the optimal solution time-consuming as many starting values must be
employed to validate the solution. In the case of the application here, we are only
including 4 parameters, and for this small dimension, this is not causing many dif-
ficulties. In any case, it is unlikely, given the slow rates of convergence, that one
would want to go beyond the second index β2 in practice.

The results in Figure 2 are obtained with M = 1000 simulations: the estimators
appear to be reasonably good, but then again this is for an unrealistically large
number of observations, at least from the point of view of financial applications;
it is perhaps feasible in other applications, such as Internet data traffic or wind
measurement.

8. Conclusions. This paper determined theoretically what the successive BG
indices are and how they are identified, including the perhaps surprising theoretical
bound on the identification of the successive indices as a function of the previous
ones. This result clarifies the border between the aspects of the jump measure
which are identifiable from those which are not on the basis of discrete observa-
tions on a finite time horizon. Beyond the leading index, the identification requires
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FIG. 2. Monte Carlo simulation results: estimators β̂n
1 (upper left graph), β̂n

2 (upper right graph),

Â
1,n
T (lower left graph), Â

2,n
T (lower right graph).

in practice vast quantities of data which are out of reach of financial applications at
present but may be relevant in other fields (such as the study of turbulence data, or
Internet traffic). We showed through explicit calculations of Fisher’s information
that this limitation is a genuine, inescapable feature of the problem. There are a
number of important questions that this paper does not touch upon: central limit
theorems for the estimators, estimators that achieve the optimal rates of conver-
gence, estimators that are robust to microstructure noise, estimators that are appli-
cable with random sampling intervals, among others. The issue of the optimality
of the rates in general remains an open question.

APPENDIX: PROOFS

We use the following notation throughout the Appendix. First, K denotes a con-
stant which may change from line to line, and may depend on the characteristics or
the law of the processes at hand. It never depends on n, and it is denoted as Kp if
it depends on an additional parameter p. Second, for any sequence Zn of variables
and any sequence vn of positive numbers,

Zn =
{

OP (vn), if Zn/vn is bounded in probability,

oP (vn), if Zn/vn
P−→ 0.

(32)
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APPENDIX A: PROOF OF THEOREM 1

(1) We fix F ∈ T (1)
3 , with F given by (11). We also consider another F ′ ∈ T (1)

3 ,
with F ′ given by (11) with β ′

i , a′
i and F̃ ′. As said before, it is not a restriction to

assume the representation (11) with the same η > 0 for both F and F ′. Set

j = inf
(
1 ≤ 1 : (βi, ai) �= (β ′

i , a
′
i)

)
.(33)

The result amounts to proving the following two properties, with j as above and
b, b′ ∈ R and c, c′ ≥ 0:

βj ≥ β1

2
⇒ Qb,c,F ⊥ Qb′,c′,F ′,(34)

βj <
β1

2
⇒

{
∃b′′ ∈ R,∃F ′′ ∈ T (1)

3
with F ′′ = F ′ on [−η,η) and Qb,c,F �⊥ Qb′′,c,F ′ .

(35)

These conditions being symmetrical in F and F ′, in both (34) and (35) we may
assume

either βj > β ′
j or βj = β ′

j and aj > a′
j .(36)

(2) In this step we assume (36). We set

F̂ (dx) = ∑
i≥1

aiβi

|x|1+βi
1[−η,η](x) dx, F̂ ′(dx) = ∑

i≥1

a′
iβ

′
i

|x|1+β ′
i

1[−η,η](x) dx.

Then F̂ ′ = f • F̂ , where f = g′
g

(with 0
0 = 1) and g = H + G and g′ = H + G′

and

H(x) =
j−1∑
i=1

aiβi

|x|βi
1[−η,η](x), G(x) = ∑

i≥j

aiβi

|x|βi
1[−η,η](x),

G′(x) = ∑
i≥j

a′
iβ

′
i

|x|β ′
i

1[−η,η](x).

On [−η,η] we have f − 1 = G′−G
H+G

and

G(x) − G′(x)

= ajβj

|x|1+βj

(
1 − a′

jβ
′
j

ajβj

|x|βj−β ′
j + ∑

i≥j+1

aiβi

ajβj

xβj−βi − ∑
i≥j+1

a′
iβ

′
i

ajβj

|x|βj−β ′
i

)
.

By virtue of (ii), (iii) and (iv) of (11), and of (36), we then deduce that

x ∈ (−ε, ε) ⇒
⎧⎪⎨⎪⎩

A−|x|β1−βj ≤ |f (x) − 1| ≤ A+|x|β1−βj ,

A−
|x|1+β1

≤ g(x) ≤ A+
|x|1+β1

,
(37)
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for three constants A+ > A− > 0 and ε ∈ (0, η), depending on the two sequences
(βi, ai) and (β ′

i , a
′
i).

(3) Now we prove (34). Since α(F,F ′) ≥ α(F̂ , F̂ ′), it is enough to show that
α(F̂ , F̂ ′) = ∞. By (37), |f (x) − 1| ≤ 1 when x ∈ (−ε′, ε′) for some ε′ ∈ (0, ε].
Thus

α(F̂ , F̂ ′) ≥
∫ ε′

−ε
|f (x) − 1|2g(x) dx ≥ A3−

∫ ε′

−ε′
|x|β1−2βj−1 dx.

The last integral is infinite when βj ≥ β1/2, and (35) follows by (9).
(4) Finally we prove (35). Recall that F = F̂ + F̃ and F ′ = F̂ ′ + F̃ ′. The mea-

sure F ′′ = F̂ ′ + F̃ is obviously in T (1)
3 and satisfies F ′′ = f • F . Since f (x) = 1

outside [−η,η], the quantity α′(F,F ′′) introduced in (9) is

α′(F,F ′′) =
∫ η

−η
x
(
f (x) − 1

)
g(x) dx

≤ A2+
∫ ε

−ε
|x|−βj dx +

(∫ η

ε
+

∫ −ε

−η

)
|x||f (x) − 1|g(x) dx,

which is finite by (37) (because βj < β1/2 < 1) and because f and g are bounded

on [ε, η] ∪ [−η,−ε]. Therefore the number b′′ = b − ∫ η∧1
0 x(f (x) − 1)g(x) dx

is well defined. Now we consider the two triples (b, c,F ) and (b′′, c,F ′′). From
what precedes they satisfy the first and the last three properties in (9). We also have
by (37)

α(F,F ′′) =
∫ η

−η

(|f (x) − 1|2 ∧ |f (x) − 1|)g(x) dx

≤ A2+
∫ ε

−ε

(|x|−βj−1 ∧ (A+|x|β1−2βj−1)
)
dx

+
(∫ η

ε
+

∫ −ε

−η

)(|f (x) − 1|2 ∧ |f (x) − 1|)g(x) dx.

Since βj < β1/2 and that f and g are bounded on [ε, η] ∪ [−η,−ε], we deduce
α(F,F ′′) < ∞. So all conditions in (9) are satisfied, and we have proved (35).

APPENDIX B: COMPARING BIG JUMPS AND BIG INCREMENTS

Before starting, let us mention that for the proofs of Theorems 2 and 3 one may
use a localization argument which allows us to replace Assumption 2 by the so-
called “strengthened Assumption 2,” which is the same except that all processes
bt , ct , ai

t are bounded, as well as the process A
j+1
t and Xt itself.

In this section we compare the number of “large” increments of X with the
number of correspondingly large jumps, that is, the numbers

V (u)t = ∑
s≤t

1{|�Xs |>u}.(38)
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We will indeed show that the difference U(un,�n)T − V (un)T is negligible for
our purposes, when the sequence un satisfies (16). The reason for doing this is that
the analysis of the processes V (un) is an easy task. Indeed, as soon as un → 0,

V (un)T − A(un)T = OP (u−β1/2
n ).(39)

To see this, we observe that each process Mn = u
β1/2
n (V (un) − A(un)) is a quasi-

left continuous, purely discontinuous, martingale with jumps smaller than u
β1/2
n ,

which goes to 0. Its predictable quadratic variation is 〈Mn,Mn〉 = u
β1
n A(un),

which by (6) converges for each t to A1
t . Since further A1 is a continuous process,

it follows from Theorem VI.4.13 of Jacod and Shiryaev (2003), for example, that
the sequence Mn is C-tight (and even converges in law), so a fortiori, (39) holds.

The main result of this section is the next proposition:

PROPOSITION 1. Under the strengthened Assumption 2 and if the sequence
un satisfies (16), we have

U(un,�n)T − V (un)T = 1

u
β1
n

OP (u
β1−βj+1
n + uβ1/2

n ).(40)

The proof is based on a series of lemmas. The constant K may depend on an
implicit way on the bounds in this strengthened assumption, but not on the two
numbers u, r ∈ (0,1) which are fixed in most of this section.

With any càdlàg process Y and u ∈ (0,1], we associate the process and the
variables

Y(u)t = ∑
s≤t

�Ys1{|�Ys |>u}, ζ(Y,u)ni = 1{|�n
i Y |>u}.(41)

For simpler notation, we denote by E
n
i−1 and P

n
i−1, respectively, the conditional

expectation and conditional probability, with respect to F(i−1)�n .

LEMMA 1. For all u, r ∈ (0,1] with ur < 1/3, all w ∈ (0,1/3) and all k ≥ 1,
we have

P
n
i−1

(
�n

i V (u) ≥ k
) ≤ (K�nu

−β1)k,(42)

P
n
i−1

(
u(1 − w) < �n

i X(u1+r ) ≤ u(1 + w)
)

(43)
≤ K

(
�nu

−β1w + �nu
−βj+1 + �2

nu
−β1(2+r) + �3

nu
−β1(3+3r)).

Moreover there is a γ > 0 such that, if

�n ≤ γ uβ1(1+r),(44)

we have for all u ∈ (0,1]
E

n
i−1

(|ζ(X(u1+r ), u)ni − �n
i V (u)|) ≤ K

(
�2

nu
−β1(2+r) + �3

nu
−β1(3+3r)).(45)
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PROOF. If D ⊂ R the compensator of the process N(D)t = ∑
s≤t 1D(�Xs)

is
∫ t

0 Fs(D)ds. Our strengthened assumption implies the existence of a constant θ

such that Fs(D) ≤ φ(D), where

φ(D) =
⎧⎨⎩

θu−β1, if D ⊂ [−u,u]c,
θ(u−β1w + u−βj+1), if D = [−u(1 + w),−u

) ∪ (
u,u(1 + w)

]
,

0 < w ≤ 1.

Then for any finite stopping time S we have

E
(
N(D)S+t − N(D)S | FS

) ≤ tφ(D).

Let S(D)0 = (i − 1)�n and S(D)1, S(D)2, . . . be the successive jump times of
N(D) after time (i − 1)�n. What precedes implies that for k ≥ 1 and on the set
{S(D)k−1 < i�n},
P

(
S(D)j ≤ i�n | FS(D)k−1

) ≤ E
(
N(D)i�n −N(D)S(D)k−1 | FS(D)k−1

) ≤ �nφ(D).

An induction on k yields the following, which gives us the first part of (42):

P
n
i−1

(
�n

i N(D) ≥ k
) = P

n
i−1

(
S(D)k ≤ i�n

) ≤ (�nγ (D))k.(46)

In the same way, if D ∩ D′ = ∅, the set {�n
i N(D) ≥ k,�n

i N(D′) ≥ 1} is the
union for l = 1, . . . , k + 1 of the sets �l = {S(D)l−1 < S(D′)1 < S(D)l ≤ i�n},
whereas

P
n
i−1

(
S(D)l−1 < S(D′)1 < S(D)l ≤ i�n

)
= E

n
i−1

(
1S(D)l−1<S(D′)1<i�n

P
(
N(D)i�n − N(D)S(D′)1 ≥ k − l + 1 | FS(D)1

))
≤ (�nφ(D))k−l+1

P
n
i−1

(
S(D)l−1 < S(D′)1 < i�n

)
= (�nφ(D))k−l+1

× E
n
i−1

(
1S(D)l−1<i�nP

(
N(D′)i�n − N(D′)S(D′′)l−1 ≥ 1 | FS(D)1

))
≤ (�nφ(D))k−l+1�nφ(D′)Pn

i−1
(
S(D)l−1 < i�n

)
,

where (46) has been applied twice. Another application of the same then yields

D ∩ D′ = ∅ ⇒ P
n
i−1

(
�n

i N(D) ≥ k,�n
i N(D′) ≥ 1

)
(47)

≤ (k + 1)�k+1
n φ(D)kφ(D′).

Next, let w ∈ (0,1/3]. By convention (a, b] = ∅ when a ≥ b below. If
u(1 − w) < �n

i X(u1+r ) ≤ u(1 + w) we have four (nonexclusive) possibilities:
either �n

i N((u1+r ,∞)) ≥ 3, or �n
i N((u1+r , u/3]) = �n

i N((u/3,∞)) = 1, or
�n

i N((u/3,∞)) = 2, or �n
i N((u(1 − w),u(1 + w)]) = 1. We an analogous im-

plication if −u(1 + w) < �n
i X(u1+r ) ≤ −u(1 − w). Then (43) easily follows

from (46) applied with D = [−u1+r , u1+r ]c, with D = [−u/3, u/3]c and with
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D = [−u(1 +w),−u(1 −w))∪ (u(1 −w),u(1 +w)], and from (47) applied with
D = (−u/3,−u1+r ) ∪ (u1+r , u/3] and D′ = [−u/3, u/3]c.

Finally we prove (45). Let H = |ζ(X(u1+r ), u)ni − �n
i V (u)| and D = [−u/2,

−u1+r ) ∪ (u1+r , u/2] and D′ = [−u/2, u/2]c and D′′ = D ∪ D′. From what pre-
cedes, we have

P
n
i−1

(
�n

i N(D′′) ≥ k
) ≤ (

θ�nu
−β1(1+r))k,

P
n
i−1

(
�n

i N(D′) = 2
) ≤ θ2�2

nu
−2β1,(48)

P
n
i−1

(
�n

i N(D) = �n
i N(D′) = 1

) ≤ θ2�2
nu

−β1(2+r).

We have H = 0 on the sets {�n
i N(D′′) ≤ 1} and {�n

i N(D′′) = �n
i N(D) = 2}, and

H ≤ k − 1 on the set {�n
i N(D′′) = k}, for all k ≥ 2. Thus if v = θ�nu

−β1(1+r),

E
n
i−1(H) ≤

∞∑
k=3

kP
n
i−1

(
�n

i N(D′′) ≥ k
) + P

n
i−1

(
�n

i N(D′) = 2
)

+ P
n
i−1

(
�n

i N(D) = �n
i N(D′) = 1

)
≤

∞∑
k=3

kvk + θ2�2
nu

−2β1 + θ2�2
nu

−β1(2+r)

by (48). When v ≤ 1/2, that is, when �n ≤ γ uβ1(1+r) for γ = 1/2θ , we have∑∞
k=3 kvk ≤ Kv3, and the above is smaller than the right-hand side of (45). �

LEMMA 2. Let q ≥ 2 and u, r ∈ (0,1). As soon as (44) holds for some con-
stant γ > 0, we have

E
(∣∣�n

i

(
X − X(u1+r )

)∣∣q) ≤ Kγ,q�n

(
�q/2−1

n + u(q−β1)(1+r)).(49)

PROOF. Letting Xc and μ be the continuous martingale part and the jump
measure of X, we have X − X(u1+r ) = B + B ′ + Xc + M , where

B ′
t = −

∫ t

0
ds

∫
{u1+r<|x|≤1}

xFs(dx), Mt =
∫ t

0

∫
{0<|x|≤u1+r }

x(μ−ν)(ds, dx).

By the strengthened Assumption 2, for any y > 0 the integral
∫
{|x|>y} |x|F(dx)

is smaller than K when β1 < 1, than K log 1
y

when β1 = 1, and than Ky1−β1

when β1 > 1. Therefore, since (44) implies 2β1(1 + r) > (β1 − 1)+ we have
|�n

i B
′| ≤ Kγ

√
�n. The strengthened Assumption 2 also implies |�n

i B| ≤ K�n

and, by well-known estimates about continuous and purely discontinuous martin-
gales [see, e.g., Aït-Sahalia and Jacod (2011)], we also deduce that

E(|�n
i M

′|q) ≤ Kq�nu
(q−β1)(1+r), E(|�n

i X
c|q) ≤ Kq�

q/2
n .

All these estimates readily give (49). �
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PROOF OF PROPOSITION 1. (a) It follows from (16) that u
2β1
n /�n → ∞, so

for any γ > 0 (44) is satisfied for all r ∈ (0,1) and all n large enough. Hence, both
estimates (45) and (49) hold, with constants K and Kγ,q independent of r , for all
n large enough.

The following inequality, where u,w ∈ (0,1) and x, y ∈ R, is elementary:∣∣1{x+y>u} − 1{x>u}
∣∣ ≤ 1{|y|≥uw} + 1{u(1−w)<|x|≤u(1+w)}.

We apply this with x = �n
i X(u1+r ) and x + y = �n

i X and u = un, and with w ≤
1/3 to be chosen later. In order to evaluate the probabilities for having |y| ≥ unw,
respectively, un(1 − w) < |x| ≤ un(1 + w), we use (49) and Markov’s inequality,
respectively, (43). This gives that E(|ζ(X(u1+r

n ), un)
n
i − ζ(X,un)

n
i |) is smaller, for

all q ≥ 2, than

Kq�n

u
β1
n

(
�

q/2−1
n

wqu
q−β1
n

+ u
(q−β1)r
n

wq
+ w + �n

u
β1(1+r)
n

+ �2
n

u
β1(2+3r)
n

+ u
β1−βj+1
n

)
.

Optimizing over w leads to take w = wn such that w
q+1
n = u

(q−β1)r
n + �

q/2−1
n /

u
q−β1
n , which is indeed smaller than 1/3 for all n large. Thus, putting the above

together with (45), and recalling that �n ≤ Ku
1/ρ
n , we end up with

E
(|ζ(X,un)

n
i − �n

i V (un)|) ≤ Kq�n

u
β1
n

5∑
k=1

uxk
n ,(50)

where xk = xk(q, r) are given by

x1 = qr − β1r

q + 1
, x2 = q(1 − 2ρ) − 2 + 2β1ρ

2ρ(q + 1)
,

x3 = 1

ρ
− β1(1 + r), x4 = 2

ρ
− β1(2 + 3r), x5 = β1 − βj+1.

(b) Now, for proving (40), it clearly follows from (50) that it suffices to show
that one can choose q and r in such a way that xk ≥ β1/2 for k = 1,2,3,4. When
q → ∞ we see that x(1) → x ′(1) = r and x(2) → x′(2) = 1−2ρ

2ρ
, so it remains

to show that one can choose r ∈ (0,1) such that x′(k) ≥ β1/2 for k = 1,2 and
xk ≥ β1/2 for k = 3,4. Letting r be bigger than but as close as possible to β1/2,
we deduce from (16) that such a choice or r is possible, and the proof is complete.

�

APPENDIX C: PROOF OF THEOREM 2

(1) In addition to the strengthened Assumption 2, we assume (15) for some
ε > 0. Theorem 2 says something about the estimators of βi and Ai

T only when
βi >

β1
2 . Moreover, if (6) holds for the sequence β1, . . . , βj+1, it also holds for
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the sequence β ′
1, . . . , β

′
j ′+1, where j ′ = j if βj+1 ≥ β1

2 and j ′ = sup(i :βi >
β1
2 )

otherwise, and where β ′
i = βi when i ≤ j ′ and β ′

j ′+1 = βj ′+1 ∨ β1
2 . Henceforth,

upon discarding the indices such that βi ≤ β1
2 , we can assume without loss of

generality that

β1 > · · · > βj > βj+1 = β1

2
.(51)

Under this additional assumption, we have β1 − βj < 1, and (18) yields

1 ≤ i ≤ k < j ⇒ u
βi−βi+1
n,i log

1

un,i

= o(u
βi−βk+1
n,k ).(52)

Moreover, combining (6), (39) and (40), we deduce that

U(vn,�n)T =
j∑

i=1

Ai
T

v
βi
n

+ OP (v−β/2
n )(53)

for any sequence vn such that vn ≤ un, and in particular for the sequences vn =
un,i . All of the proof will rely on this, and below Hi is always given by (20).

(2) We first consider the case i = 1 when j > 1. A simple calculation, based on
(53) applied with vn = un and vn = γ un, yields that in restriction to the set �T ,

log
(
U(vn,�n)T /U(γ vn,�n)T

) = (β1 − H1u
β1−β2
n ) logγ + oP (uβ1−β2

n ).

This gives the first part of (21). It also implies that

u
β̃n

1
n = uβ1

n e−(β̃n
1 −β1) log(1/un)

= uβ1
n

(
1 + H1u

β1−β2
n log(1/un) + oP

(
uβ1−β2

n log(1/un)
))

.

This and (53) yield the second part of (21).
(3) Now we suppose that (21) holds for all i ≤ k−1, for some k ∈ {2, . . . , j −1}.

We observe that we have the following identities, for all y = (y1, . . . , yk+1) and
r = 1, . . . , k + 1:

k−1∑
l=0

(−1)lγ −lyr
∑

J∈I (k−1,l)

γ
∑

j∈J yj

=
k−1∏
l=1

(1 − γ yi−yr ) =
⎧⎨⎩

0, if r ≤ k − 1,
G(k, y, γ ), if r = k,
G′(k, y, γ ), if r = k + 1,

where G(k, y, γ ) = ∏k−1
i=1 (1 − γ yi−yk ) and G′(k, y, γ ) = ∏k−1

i=1 (1 − γ yi−yk+1).
Therefore, (53) applied to vn = xγ lun,k and the definition of Un(k, x) yield for



SUCCESSIVE BLUMENTHAL–GETOOR INDICES 1459

all x ≥ 1 fixed, and with β = (β1, . . . , βk+1),

Un(k, x) =
k−1∑
r=1

Ar
T

xβr u
βr

n,k

k−1∑
l=0

(−1)l(γ −lβr − γ −lβ̃n
r )

∑
J∈I (k−1,l)

γ
∑

j∈J β̂n
j

+
k+1∑
r=k

Ar
T

xβr u
βr

n,k

k−1∑
l=0

(−1)lγ −lβr
∑

J∈I (k−1,l)

(γ
∑

j∈J β̃n
j − γ

∑
j∈J βj )

+ Ak
T

xβku
βk

n,k

G(k,β, γ ) + Ak+1
T

xβk+1u
βk+1
n,k

G′(k,β, γ ) + oP (u
−βk+1
n,k ).

The functions z �→ γ −lz are C∞. The induction hypothesis gives β̃n
i − βi =

OP (u
βi−βi+1
n,i ) for i = 1, . . . , k−1. Then (52) and βi −βi+1 > ε allow us to deduce

0 ≤ l ≤ k − 1, J ∈ I (k − 1, l) ⇒ γ
∑

j∈J β̃n
j − γ

∑
j∈J βj = oP (u

βk−1−βk+1
n,k ),

1 ≤ r ≤ k − 1 ⇒ γ −lβr − γ −lβ̃n
r = oP (u

βr−βr+1
n,i ) = oP (u

βi−βk+1
n,k ).

Therefore we finally obtain

Un(k, x) = Ak
T G(k,β, γ )

xβku
βk

n,k

+ Ak+1
T G′(k,β, γ )

xβk+1u
βk+1
n,k

+ oP (u
−βk+1
n,k )

(54)

= Ak
T G(k,β, γ )

xβku
βk

n,k

(
1 + Hk logγ

γ βk−βk+1 − 1
(xun,k)

βk−βk+1 + oP (u
βk−βk+1
n,k )

)
,

where the last equality comes from the definition of Hk in (20). Then exactly as in
Step 2, a simple calculation shows the first half of (21) for i = k.

For the second part of (21), and as in Step 2, we first deduce from the above that

u
β̃n

k

n,k = u
βk

n,k

(
1 + Hku

βk−βk−1
n,k log(1/un,k) + oP

(
u

βk−βk−1
n,k log(1/un,k)

))
.

Therefore it is enough to show that

u
βk

n,k

(
U(un,k)T −

k−1∑
i=1

�̃n
i u

−β̃n
i

n,k

)
= Ak

T + oP

(
u

βk−βk−1
n,k log(1/un,k)

)
.

In view of (53) with vn = un,k this amounts to proving for i = 1, . . . , k − 1,

�̃n
i u

βk−β̃n
i

n,k − Ai
T u

βk−βi

n,k = oP

(
u

βk−βk−1
n,k log(1/un,k)

)
.(55)

The induction hypothesis yields that

u
βk−β̃n

i

n,k = u
βk−βi

n,k

(
1 + OP

(
u

βi−βi+1
n,i log(1/un,k)

))
,

�̃n
i = Ai

T + OP

(
u

βi−βi+1
n,i log(1/un,i)

)
.
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Then (21) readily follows from (18).
(4) It remains to prove that the variables in (22) are tight. The difference with

the previous case is that (54) no longer holds when i = j = 1 or k = j > 1, but it
can be replaced by

Un(j, x) = A
j
T G(j,β, γ )

xβj u
βj

n,j

(
1 + OP (u

βj−β/2
n,j )

)
.

The rest of the proof goes unchanged [note that η in (22) is βj − β/2 here].

APPENDIX D: PROOF OF THEOREM 3

We use simplifying notation: a point in D is θ = (xi, γi)1≤i≤j , and we define

the functions Fn,l(θ) = ∑j
i=1 γi/(vlun)

xi . The “true value” of the parameter is
θ0 = (βi,�i)1≤i≤j , the preliminary estimators are θ̃n = (β̃n

i , �̃n
i )1≤i≤j , and the

final estimators are θn = (βn
i ,�

n
i )1≤i≤j . We set hn = log(1/un), and as in the

previous proof we can assume (51).
(1) We introduce some specific notation. For m ≥ 2 we set Gm = (1,∞)m−1,

a point in Gm being denoted as v = (v2, . . . , vm). For 1 ≤ k ≤ j and v ∈ G2k , and
with the convention v1 = 1, we let �(v) be the 2k × 2k matrix with entries

�(v)l,i =
{

v
−βi

l , if 1 ≤ i ≤ k,

v
−βi−k

l logvl, if k + 1 ≤ i ≤ 2k.
(56)

The aim of this step is to show that the set Zk of all v ∈ G2k for which the ma-
trix �(v) is invertible satisfies λ2k((Zk)

c) = 0, where λr is the Lebesgue measure
on Gr .

When 1 ≤ m ≤ 2k and v ∈ G2k , we denote by Mm(v) the family of all m × m

sub-matrices of the m × 2k matrix (�(v)l,r : 1 ≤ l ≤ m,1 ≤ r ≤ 2k). A key fact is
that Mm(v) = Mm(vm) only depends on the restriction vm = (v2, . . . , vm) of v

to its first m − 1 coordinates. Moreover, �(v)1i equals 1 if i ≤ k and 0 otherwise:
so the entries of the first column of any M ∈ Mm(v) are 0 or 1, and M′

m(v)

denotes the subset of all M ∈ Mm(v) for which M1,i = 1 for at least one value
of i. Finally, Hm stands for the set of all vm ∈ Gm such that all M ∈ M′

m(vm) are
invertible. Since M′

2k(v) is the singleton {�(v)}, we have Zk = H2k .
If m ≥ 2 and vm = (v2, . . . , vm) ∈ Gm and M ∈ M′

m(vm), by expanding along
the last column, we see that

det(M) =
k∑

i=1

vβi
m (ai + ak+i logvm),(57)

where each ar is of the form: either (i) ar is plus or minus det(Mr) for some
Mr ∈ Mm−1(vm) (for m values of r) or (ii) ar = 0 (for the other 2k − m values
of r). Note that we can also have ar = 0 in case (i), and since M ∈ M′

m(vm) there
is at least one ar of type (i) with Mr ∈ M′

m−1(vm).
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When at least one ar in (57) is not 0, the right-hand side of this expres-
sion, as a function of vm, has finitely many roots only, because all βi’s are dis-
tinct. Observing that M′

1(v) is the 1 × 1 matrix equal to 1, it follows that, with
(vm−1, vm) = (v2, . . . , vm−1, vm) when vm−1 = (v2, . . . , vm−1), and recalling that
with our standing notation λ2 is the Lebesgue measure on (1,∞),

m = 2 ⇒ λ2((H2)
c) = 0,

(58)
m ≥ 3, vm−1 ∈ Hm−1 ⇒ λ2

(
vm : (vam−1, vm) /∈ Hm

) = 0.

Since

λm((Hm)c) =
∫
Gm−1

λ2
(
vm : (vm−1, vm) /∈ Hm

)
λm−1(dvm−1),

which equals
∫
Hm−1

λ1(vm : (vm−1, vm) /∈ Hm)λm−1(dvm−1) if λm−1((Hm−1)
c) =

0, when m ≥ 3, we deduce from (58), by induction on m, that indeed λm((Hm)c) =
0 for all m = 2, . . . ,2k. Recalling Zk = H2k , the result follows.

Since the claim of the theorem holds for all (v2, . . . , vL) outside a λL-null set
only, and L ≥ 2k, we thus can and will assume below that the numbers vl are such
that v2k = (v2, . . . , v2k) ∈ Zk , hence �(v2k) is invertible, for all k = 1, . . . , j .

(2) Our assumptions on the preliminary estimators yield that the set �n on
which ‖θ̃ n

i − θ0‖ ≤ 1/u
η
n satisfies P(�n) → 1. So below we argue on the set �n,

or equivalently (and more conveniently) we suppose �n = �. Then θn converges
pointwise to θ0, which belongs to all the sets Dn. Set

yn
i = Ai

T (βn
i − βi), zn

i = �n
i − Ai

T + yn
i hn, an

i = |yn
i |hn + |zn

i |.
We have an

i ≤ 2u
−η
n hn because �n = �. Then an expansion of (xi, γi) �→

γi/(vlun)
xi around (βi,A

i
T ) yields for all l,

�i

(vlun)
βi

− Ai
T

(vlun)βi
= 1

(vlun)βi
(zn

i − yn
i logvl + xn

i,l),(59)

where

|xn
i,l| ≤ K|yn

i |hn(|zn
i | + |yn

i |) ≤ K|yn
i |hna

n
i ≤ K(an

i )2.

Combining (6), (39) and (40), we see that

U(vlun,�n)T − Fn,l(θ0) = OP (u−β1/2
n ).

Since n(θ) = ∑L
l=1 wl(U(vlun,�n)T − Fn,l(θ))2, we deduce

n(θ0) = OP (u−β1
n ).

Since θ0 ∈ Dn and θn minimizes n over Dn, we also have n(θn) = OP (u
−β1
n ),

hence Fn,l(θ0)−Fn,j (θn) = OP (u
−β1/2
n ) for all l. Using (59), this can be rewritten

as
j∑

i=1

1

(vpun)βi
(zn

i − yn
i logvl + xn

i,l) = OP (u−β1/2
n ).(60)
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(3) Taking k between 1 and j , we consider the 2k-dimensional vectors ζ(k, n)

and ξ(n) with components (for l = 1, . . . ,2k),

ζ(k, n)l =
k∑

i=1

1

(vpun)βi
(zn

i − yn
i logvl),

ξ(k, n)i =
{

zn
i u

−βi
n , if 1 ≤ i ≤ k,

−yn
i−ku

−βi−k
n , if k + 1 ≤ i ≤ 2k.

With matrix notation, and (56), we have ζ(k, n) = �(v2k)ξ(k, n), hence

ξ(k, n) = �(v2k)
−1ζ(k, n).(61)

Next, we have

1

(vlun)βi

∣∣zn
i + (

v′
g(βi)+ vg(βi) log δl

)
yn
i + xn

i,l

∣∣ ≤ Kan
i

u
βi
n

,
|xn

i,l|
(vlun)βi

≤ K(an
i )2

u
βi
n

,

and hence (60) and an
i ≤ Ku

η
nhn ≤ K/h2

n ≤ K yield

|ζ(k, n)l| ≤ K

(
k−1∑
i=1

(an
i )2u−βi

n + an
k

h2
n

u−βk
n +

j∑
i=k+1

an
i u−βi

n

)
+ OP (u

−βj+1
n ).

By (61) the variables ξ(k, n)l satisfy the same estimate. Since an
k ≤ (|ξ(k, n)k| +

|ξ(k, n)2k|hn)u
βk
n ,

an
k ≤ Chn

(
k−1∑
i=1

(an
i )2uβk−βi

n + an
k

h2
n

+
j∑

i=k+1

an
i uβk−βi

n

)
+ OP (hnu

βk−βj+1
n )

for some constant C. When n is large enough, C/hn ≤ 1
2 , and we deduce

an
k ≤ 2Chn

(
k−1∑
i=1

(an
i )2uβk−βi

n +
j∑

i=k+1

an
i uβk−βi

n

)
+ OP (hnu

βk−βj+1
n ).(62)

(4) In view of the definition of yn
i and zn

i , to get the result, and recalling that we
assume βj+1 = β1/2, it is clearly enough to prove the existence of a number ν > 0
such that, for all i = 1, . . . , j , we have

an
i = OP (hν

nu
βi−βj+1
n ).(63)

To this aim, we introduce the following property, denoted (Pm,q,r ), where r runs
through {1, . . . , j} and m,q ≥ 1, and where we use the notation ζr = βr − βr+1:

i = 1, . . . , r ⇒ an
i = OP

(
hm

n (uβi−βr+qζr
n + u

βi−βr+1
n )

)
.(64)

Since an
i ≤ K , applying (62) with k = 1 yields an

1 = OP (hnu
β1−β2
n ), which is

(P1,1,1).
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Next, we suppose that (Pm,q,r ) holds for some r < j , and for some m,q ≥ 1.
Letting first k = r + 1, we deduce from (62) that, since again an

i ≤ K ,

an
k = OP

(
h1+2m

n

k−1∑
i=1

(
uβk−βi+2(βi−βr+qζr )

n + u
βi−βr+1
n

)

+ hn

j∑
i=k+1

uβk−βi
n + hnu

βk−βj+1
n

)
(65)

= OP

(
h1+2m

n (uβk−βr+2qζr
n + uζr

n + u
βk−βr+2
n )

)
,

where the last line holds because k = r + 1 and hn > 1 for n large enough and the
sequence βi is decreasing. This in turn implies, for k = r + 1 again,

an
k = OP

(
hr+2−k+2m

n (uβk−βr+2qζr
n + u

βk−βr+1
n )

)
.(66)

Then, exactly as above, we apply (62) with k = r , and (64) and also (66) with
k = r +1, to get that (66) holds for k = r as well. Repeating the argument, a down-
ward induction yields that indeed (66) holds for all k between 1 and r + 1. Thus
(64) holds with q and m substituted with 2q and r + 1 + 2m. Hence (Pm,q,r ) im-
plies (Pr+1+2m,2q,r ). Since obviously (Pm,q,r ) ⇒ (Pm,q ′,r ) for any q ′ ∈ [1, q], by
a repeated use of the previous argument we deduce that if (Pm,1,r ) holds for some
m ≥ 1, then for any q ′ ≥ 1 we can find m(q ′) ≥ 1 such that (Pm(q ′),q ′,r ) holds as
well.

Now, assuming (Pm,q,r ) for some m,q, r , we take q ′ = ζr+1
2ζr

∨1 and m′ = m(q ′).
What precedes yields (Pm′,q ′,r ), hence (65) holds for all k ≤ r + 1, with q ′ and m′.
In view of our choice of q ′, this implies that (Pr+1+m′,1,r+1) holds. Since (P1,1,1)
holds, we see by induction that for any r ≤ j there exists mr ≥ 1 such that (Pmr,1,r )
holds.

It remains to apply (64) with r = j and m = mr and q = 1, and we get (63) with
ν = mj . This completes the proof.

APPENDIX E: PROOF OF THEOREM 4

The proof of Theorem 4 is contained in the supplemental article [Aït-Sahalia
and Jacod (2012)].

SUPPLEMENTARY MATERIAL

Supplement to “Identifying the successive Blumenthal–Getoor indices of a
discretely observed process” (DOI: 10.1214/12-AOS976SUPP; .pdf). This sup-
plement contains the proof of Theorem 4.

http://dx.doi.org/10.1214/12-AOS976SUPP
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