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1. Introduction

In this paper, we present recently developed 
econometric methods designed to analyze 

the workhorse model of modern asset pricing 
where X, the log of an asset price, is assumed 
to follow an Itô semimartingale. This model 
in financial economics traces its roots back to 
Bachelier (1900), Osborne (1959), Cootner 
(1964), Samuelson (1965), and Mandelbrot 
(1966) among others; the current paradigm 

was introduced and formalized using modern 
stochastic analysis by Merton in a series of 
fundamental contributions in the late 1960s 
and early 1970s (see Merton 1992).

As is well known, for an asset pricing 
model to avoid arbitrage opportunities, asset 
prices must follow semimartingales (see 
Harrison and Pliska 1981 and Delbaen and 
Schachermayer 1994). Semimartingales are 
very general models that nest most continu-
ous-time models used in financial economics. 
A semimartingale can be decomposed into 
the sum of a drift, a continuous local martin-
gale, and a discontinuous, or jump, part. The 
jump part can in turn be decomposed into a 
sum of small jumps and big jumps. The con-
tinuous part can be scaled by a stochastic vol-
atility process, which may be correlated with 
the asset price, may jump in  conjunction or 
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independently of the asset price, and in fact 
may itself be a semimartingale.

On the continuous-time financial econo-
metrics side, methods were initially developed 
to estimate models using low frequency data 
only (see Hansen and Scheinkman 1995 and 
Aït-Sahalia 1996). The introduction and rapid 
dissemination of high frequency data then 
made possible the development of methods 
with the objective of estimating the volatility 
component using estimators such as realized 
volatility (see, e.g., Andersen, Bollerslev, and 
Diebold 2010 for a survey). With the realiza-
tion that, at high frequency, the properties of 
volatility estimators can be radically altered by 
the presence of microstructure noise, came 
the development of methods to robustify high 
frequency volatility estimators.1 These meth-
ods focused exclusively on models with con-
tinuous sample paths.

This paper is devoted to the next stage in 
the high frequency econometric literature, 
which considers the components of a dis-
cretely sampled semimartingales beyond its 
volatility, namely its discontinuous or jump 
components. The practical importance and 
relevance of jumps in financial data is uni-
versally recognized, but only recently have 
econometric methods become available to 
rigorously analyze jump processes. The objec-
tive of the methods we will describe here is to 
decide, on the basis of statistical tests applied 
to high frequency data, which component(s) 
need to be included in the model (jumps, finite 
or infinite activity, continuous  component, 

1 These include the Two Scales Realized Volatility esti-
mator of Zhang, Mykland, and Aït-Sahalia (2005), the 
Maximum-Likelihood approach of Aït-Sahalia, Mykland, 
and Zhang (2005), the Multi-Scale Realized Volatility of 
Zhang (2006), the Realized Kernels of Barndorff-Nielsen 
et al. (2008), the Pre-Averaging approach of Jacod et al. 
(2009), and the Quasi-Maximum Likelihood Estimator 
of Xiu (2010). Related work includes Bandi and Russell 
(2006), Delattre and Jacod (1997), Fan and Wang (2007), 
Gatheral and Oomen (2010), Hansen and Lunde (2006), 
Kalnina and Linton (2008), Li and Mykland (2007), Aït-
Sahalia, Mykland, and Zhang (2011), and Li et al. (2010).

etc.) and determine their relative magnitude. 
We may then magnify specific components of 
the model if they are present, so that we can 
analyze their finer characteristics such as the 
degree of activity of jumps. While the under-
lying mathematical tools to be employed 
require advanced probability techniques and 
are developed elsewhere,2 the end result 

2 The results we describe consist of tests to determine, 
on the basis of the observed log-returns, whether a jump 
part is present (Aït-Sahalia and Jacod 2009b), whether the 
jumps have finite or infinite activity (Aït-Sahalia and Jacod 
2011), in the latter situation a definition and an estimator of 
a degree of jump activity parameter (Aït-Sahalia and Jacod 
2009a), and finally whether a Brownian continuous com-
ponent is needed when infinite activity jumps are included 
(Aït-Sahalia and Jacod 2010). Different methodologies exist 
for some of the questions considered here, when taken 
individually. For example, alternative tests for the presence 
of jumps have been proposed by Aït-Sahalia (2002), Carr 
and Wu (2003b), Barndorff-Nielsen and Shephard (2004), 
Huang and Tauchen (2005), Andersen, Bollerslev, and 
Diebold (2007), Jiang and Oomen (2008), Lee and Mykland 
(2008), and Lee and Hannig (2010), among others. Some 
of these tests are applicable (in fact, designed for) splitting 
the quadratic variation into continuous and discontinu-
ous proportions, another of the issues of interest. A related 
question is whether it is possible to separately identify the 
continuous and jump components depending upon the type 
of jumps that are present (see Aït-Sahalia 2004 and Aït-
Sahalia and Jacod 2008). To study the finer characteristics 
of jumps, Todorov and Tauchen (2010) use the statistic from 
Aït-Sahalia and Jacod (2009b) but vary the power argument 
and contrast the behavior of the resulting plot above two and 
below two in order to identify the presence of a Brownian 
component. In the context of their parametric model for 
asset returns, estimates of the degree of activity of jumps 
were first proposed by Carr et al. (2002). Cont and Mancini 
(2011) use threshold or truncation-based estimators of the 
continuous component of the quadratic variation, originally 
proposed in Mancini (2001), in order to test for the pres-
ence of a continuous component in the price process. The 
resulting test is applicable when the jump component of 
the process has finite variation, and a test for whether the 
jump component indeed has finite variation is also pro-
posed. Belomestny (2010) proposes a different estimator of 
the index of jump activity based on low frequency data. We 
will discuss six different econometric questions, and pres-
ent a single class of methods to address all of them. There 
does not exist at present an alternative methodology that can 
cover them all, or more than two together as a matter of fact. 
And for some of the issues to be addressed here, there exists 
to the best of our knowledge no other alternative at present. 
We will therefore not describe in detail for each question the 
alternative methodologies when they exist, since doing so 
would require the description of different methods in each 
case, which does not appear feasible in the alloted space and 
would defeat the purpose of providing a unified treatment 
of all these questions.



1009Aït-Sahalia and Jacod: Analyzing the Spectrum of Asset Returns

 happens to be very straightforward from the 
point of view of applications. It requires lit-
tle more than the recording of asset returns 
at high frequency, and the computation of 
a single type of key quantity that we call a 
“truncated power variation.”

This paper makes three separate contri-
butions. First, we show that seemingly dis-
parate test statistics developed individually 
can in fact be understood as part of a com-
mon framework, relying on an analogy with 
spectrography,3 which we will carry through 
the entire paper, hence its title. This contri-
bution is primarily expositional but hopefully 
has the benefit of facilitating the application 
of all these methods. Second, we compute 
the asymptotic behavior of these test statis-
tics in situations where market microstruc-
ture noise is present, a contribution that is 
essential for practical applications to high 
frequency financial data. Third, we com-
pare the empirical results obtained on asset 
returns measured in different complemen-
tary ways, comparing the results obtained 
from transaction prices and quotes, but also 
by constructing from quotes the National 
Best Bid and Offer prices at each point in 
time in order to filter the transactions into 
different liquidity categories, and by com-
paring the results obtained on the Dow 
Jones Industrial Average (DJIA) index from 
those obtained on its thirty individual con-
stituents. In a different application, Dungey 
and Yalama (2010) compare the behavior 
of U.S. Treasuries before and during the 
recent financial crisis and find an increase 
in jump intensity during the crisis, but oth-
erwise stable characteristics of the price 
process.

To describe the methodology, it can be 
helpful to proceed by analogy with a spec-
trographic analysis. We observe a time 

3 The word “spectrum” is employed in different contexts 
in different fields, including time series analysis. The anal-
ogy we employ here is from astrophysics.

series of high frequency returns, that is 
a single path, over a finite length of time 
[0, T ]. Using that time series as input, we 
will then design a set of statistical tools 
that can tell us something about specific 
components of the process that produced 
the observations. These tools play the role 
of the measurement devices used in astro-
physics to analyze the light emanating from 
a star, for instance. Our observations are 
the high frequency returns; in astrophysics 
it would be the light, visible or not. Here, 
the data generating mechanism is assumed 
to be a semimartingale; in astrophysics it 
would be whatever nuclear reactions inside 
the star are producing the light that is col-
lected. Astrophysicists can look at a specific 
range of the light spectrum to learn about 
specific chemical elements present in the 
star. Here, we design statistics that focus on 
specific parts of the distribution of high fre-
quency returns in order to learn about the 
different components of the semimartin-
gale that produced those returns.

From the time series of returns, we can 
get the distribution of returns at time inter-
val  Δ n . Based on the information contained 
in that distribution, we would like to figure 
out which components should be included 
in the model (continuous? jumps? which 
types of jumps?) and in what proportions. 
That is, we would like to deconstruct the 
observed series of returns back into its orig-
inal components, continuous and jumps, 
as described in figure 1. Figure 1 cannot 
be produced by visual inspection alone of 
either the time series of returns or its dis-
tribution. We need to run the raw data 
through some devices that will emphasize 
certain components to the exclusion of oth-
ers, magnify certain aspects of the model, 
etc.

Similarly to what is done in spectrographic 
analysis, we will emphasize visual tools here. 
In spectrography, one needs to be able to 
recognize the visual signature of certain 
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chemical elements. Here, we need to know 
what to expect to see if a certain compo-
nent of the model is present or not in the 
observed data. This means that we will need 
to have a law of large numbers, obtained 
by imagining that we had collected a large 
number of sample paths instead of a single 
one. This allows us to determine the visual 
signature of specific components of the 
model. We will not attempt here to measure 
the dispersion around the expected pat-
tern, and instead refer to the papers in the 
reference list for the corresponding cen-
tral limit  theorems, the formal derivations 
of the results including regularity condi-
tions, as well as simulation evidence on the 
 adequacy of the  asymptotics. Those papers 

are technically demanding because of the 
very nature of semimartingales, but also 
because depending upon which compo-
nent is included or not in the model—pre-
cisely the questions we wish to answer—the 
asymptotics are driven by components with 
very different characteristics. By contrast, 
the intuition is fairly clear and this is what 
this paper focuses on, with the objective of 
facilitating applications of the results rather 
than their derivation, with the exception of 
the new results concerning the limits of all 
the test statistics when market microstruc-
ture noise is present.

The methodology helps determine which 
components should be included in a given 
semimartingale model of asset returns. 
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Figure 1. Deconvoluting the Log-Returns Distribution into Continuous and Jump Components
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While the focus of this paper is primar-
ily on the econometric methodology, this 
knowledge has various economic implica-
tions for asset pricing. If jumps need to be 
included in the model, then the familiar 
consequences of market completeness for 
contingent claims valuation typically no 
longer hold. And changes of measure will 
vary depending upon the type of jumps that 
are included. Optimal portfolios will vary 
depending upon the nature of the under-
lying asset dynamics. Risk management is 
also heavily dependent upon the underly-
ing dynamics: a model with only a continu-
ous component will yield very different risk 
measures than one with jump components 
also present, and different types of jumps 
aggregate separately over longer horizons. 
And in derivative pricing, the type of com-
ponents included change the nature of 
observed prices: see for example the analy-
sis of Carr and Wu (2003b), which shows 
how to distinguish between option prices 
when the price jumps and when it does not, 
based on their asymptotic behavior for short 
times to expiration. We will discuss these 
economic implications in more detail below.

Many high frequency trading strategies 
rely on specific components of the model 
being present or absent. For example, strat-
egies designed to exploit short-term auto-
correlation in returns or price deviations 
from moving bands perform rather differ-
ently with and without jumps, especially 
small but very active ones which have the 
potential to affect a substantial fraction of 
the large number of the high frequency 
trades placed each trading day. It would 
be easy to dismiss such subtle properties 
of the price process that we help identify 
as esoteric. But many of these strategies 
make in expected value a tiny profit on each 
trade, based on a probability of success of 
say 51 percent, and rely on a large number 
of trades to be ultimately profitable. In this 
context, it does not take a large deviation 

from the model employed to turn a 51 per-
cent probability of success into a 49 percent 
probability.

A word on data considerations before we 
proceed: when implementing the method 
on returns data, we will rely on ultra-high 
frequencies, meaning that the sampling 
intervals we use are typically of the order 
of a few seconds to a few minutes. This has 
two  consequences. First, obviously, it  limits 
the analysis to data series for which such 
sampling frequencies are available. This is 
becoming less and less of a restriction as such 
data are rapidly becoming more readily avail-
able, but it does limit our ability to use long 
historical series, or returns data from less 
liquid assets. Second, this means that even 
for liquid assets market microstructure noise 
is going to be at least potentially a concern. 
Continuing with the spectrography analogy, 
market microstructure noise plays the same 
role as the blurring of astronomical images 
due to the Earth’s atmosphere or light pol-
lution. And we do not have the equivalent of 
a space-based telescope enabling the direct 
observation of the true or fundamental asset 
price. We will in the course of our analysis 
examine the consequences of this noise on 
the various statistics. From the mathemati-
cal standpoint, the new theoretical results 
in this paper are the development of the 
various asymptotic behaviors of all the test 
statistics under consideration when market 
microstructure noise is present. We then 
proceed to analyze the data in light not only 
of the idealized no-noise limits but also of 
these new limits, and contrast the first order 
asymptotic behavior identified at different 
sampling frequencies where the impact of 
the noise can be expected to be more or less 
significant.

The paper is organized as follows. Section 
2 presents the common measurement device 
we designed to answer the various speci-
fication questions. In latter sections, we 
analyze these questions one by one: which 
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 components are present (section 3), in what 
relative proportions (section 4), and some of 
the finer characteristics of the jump compo-
nent (section 5). Section 7 analyzes theoreti-
cally the impact of the noise on the various 
statistics under consideration. Section 8 
describes the data and the transformation 
and filtering algorithms we employ to trans-
actions, quotes, and transactions filtered by 
quotes for the DJIA and its individual com-
ponents. Section 9 reports the results of 
applying the analysis to the data, analyzes 
the patterns that emerge in terms of liquid-
ity and discuss the economic implications of 
the results for option pricing, risk manage-
ment and the distinction between systematic 
and idiosyncratic risk in the individual DJIA 
components versus the DJIA index. Section 
10 concludes.

2. The Measurement Device

The log-price  X t  follows an Itô semimartin-
gale, a hypothesis maintained throughout, 
and formally stated as 

(1)  X t  =  X 0  +  ∫  0  
t
   b s  ds +  ∫  0  

t
  σ s  d   W s  + JUMPS

 3 3
 drift continuous part

(2) JUMPS =  ∫  0  
t
  ∫  {|x|≤ε }  

 
   x(μ − ν)(ds, dx)

 8
 small jumps

 +  ∫  0  
t
  ∫  {|x|>ε }  

 
   xμ(ds, dx )

 8
 big jumps

where as usual W denotes a standard 
Brownian motion, and μ is the jump measure 
of X, and its predictable compensator is the 
Lévy measure ν (both μ and ν are random 
positive measures on  ℝ +  × ℝ, and  further 

ν factorizes as ν(dt, dx) = dt  F t (dx)). In the 
perhaps more familiar differential form, 

(3) d X t  =  b t  dt +  σ t  d   W t  + d  J t   ,

where  J t  is the jump term.
The distinction between small and big 

jumps is based on a cutoff level ε > 0 in (2) 
that is arbitrary. What is important is that 
ε > 0 is fixed. A semimartingale will always 
generate a finite number of big jumps on 
[0, T ]. But it may give rise to either a finite 
or infinite number of small jumps. For any 
measurable subset A of ℝ at a positive dis-
tance of the origin, the process ν ( [0, t ] × A )  
is increasing and “compensates” the number 
of jumps of X whose size is in A, in the sense 
that the difference of these two processes 
becomes a (local) martingale. Therefore, 
ν ( [ 0 ,  t  ]  ×  (−∞ ,  −ε )  ∪  ( ε ,  +∞) )  < 
∞, whereas ν ( [0, t ] ×  [ −ε, ε ]  )  may be 
finite or infinite, although we must have  
∫{|x|≤ε }  

 
    x 2   ν([0, t], dx) < ∞.
In economic terms, each component of 

the model can be fairly naturally mapped 
into an economic source of risk in the under-
lying asset: the continuous part of the model 
is there to capture the normal risk of the 
asset, which is hedgeable using standard dif-
ferential methods; the big jumps component 
can capture default risk, or more generally 
big news-related events; and the small jumps 
component can represent price moves which 
are large on a time scale of a few seconds, but 
generally not significant on a daily and below 
sampling frequency. Such small jumps may 
result for example from the limited ability of 
the marketplace to absorb large transactions 
without a price impact. That component can 
represent risk that is relevant in particular for 
trading strategies that are executed at high 
frequency. While this taxonomy between 
large and small jumps can be useful, the 
cut-off level ε in (2) is here mainly for math-
ematical reasons and is completely arbitrary 
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(often taken to be ε = 1, irrespectively of the 
practical relevance of this particular value); 
and, when jumps are summable, as defined 
below, one can dispense with the cutoff and 
qualify all jumps as being “big” (i.e., take 
ε = 0).

Note that we have compensated the small 
jumps part, but not the big jumps one. 
Compensating the big jumps part is not 
always possible because the moments may 
not exist, whereas summing small jumps 
without compensation may lead to a diver-
gent sum. However, when jumps have finite 
activity, or more generally when they are 
summable, that is when  ∑ s≤t  

 
   |  Δ X s  | < ∞ for 

all t, where 

(4) Δ X s  =  X s  −  X s− ,

is the size of the jump at time s, it turns 
out that  ∫  {|x|≤ε }  

 
   | x | ν([0, t], dx) < ∞. Then 

 compensating the small jumps is not neces-
sary, and we may rewrite (1) as follows: 

(5)  X t  =  X 0  +  ∫  0  
t
  b  s  ′   ds +  ∫  0  

t
  σ s  d W s   +  ∑ 

s≤t
   

 

   Δ   X s 
 3 3
 drift continuous part

with a different drift term: namely  b  s  ′   =  b s  −  
∫  {|x|≤ε }  

 
   x  F s (dx) .

We will assume that the model produces 
observations that are collected at a discrete 
sampling interval  Δ n : this means in particu-
lar that only “regular” sampling schemes 
are considered below, although the meth-
odology can be extended to some irregular 
sampling scheme, at the expense of—signifi-
cantly more—mathematical sophistication. 
The case of endogenous random sampling 
where the sampling times are random and 
not independent of the price process, would 
potentially be more informative but the the-
ory is not yet available to fully account for 
this endogeneity. Coming back to the regular 
case, there are [T/ Δ n  ] (where [x ] denotes the 

integer part of the positive real x) observed 
increments of X on [0, T ], which are 

(6)  Δ  i  n X =  X i Δ n   −  X (i−1) Δ n  ,

to be contrasted with the actual (unobserv-
able) jumps Δ X s  of X, as described in figure 2.

Our basic methodology consists in con-
structing realized power variations of these 
increments, suitably truncated and/or sam-
pled at different frequencies. These real-
ized power variations are defined as follows, 
where p ≥ 0 is any nonnegative real and  
u n  > 0 is a sequence of truncation levels:

(7) B(p,  u n ,  Δ n ) =  ∑ 
i=1

  
[T/ Δ n  ]

    |  Δ  i  n X  |  p   1 {| Δ  i  n X |≤ u n } .

Throughout, T is fixed, and asymptotics are 
all with respect to  Δ n  → 0. Typically the 
truncation levels  u n  go to 0, and this is usu-
ally achieved by taking  u n  = α Δ  n  ϖ  for some 
constants ϖ ∈ (0, 1/2 ) and α > 0. Setting 
ϖ < 1/2 allows us to keep all the increments 
that mainly contain a Brownian contribu-
tion. There will be further restrictions on the 
rate at which  u n  → 0, expressed in the form 
of restrictions on the choice of ϖ. In some 
instances, we do not want to truncate at all 
and we then write B(p, ∞,  Δ n ). Sometimes 
we will truncate in the other direction, that 
is retain only the increments larger than u: 

(8) U(p,  u n ,  Δ n  ) =  ∑ 
i=1

  
[T/ Δ n  ]

    |  Δ  i  n X  |  p   1 {| Δ  i  n X |> u n } .

With  u n  = α Δ  n  ϖ   as above, that can allow us 
to eliminate all the increments from the con-
tinuous part of the model. Then obviously

(9) U(p,  u n ,  Δ n  ) = B(p, ∞,  Δ n  )

  − B(p,  u n ,  Δ n ).
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Finally, we sometimes simply count the 
number of increments of X, that is, take the 
power p = 0 

(10) U(0,  u n ,  Δ n  ) =  ∑ 
i=1

  
[T/ Δ n  ]

   1 {| Δ  i  n X |> u n }  .

We exploit the different asymptotic behav-
ior of the variations B(p,  u n ,  Δ n  ) and/or 
U(p,  u n ,  Δ n  ) as we vary: the power p, the 
truncation level  u n  and the sampling fre-
quency  Δ n . This gives us three degrees of 
freedom, or tuning parameters, with enough 
flexibility to isolate what we are looking for. 
Having these three parameters to play with, 
p,  u n  and  Δ n , is akin to having three controls 
to adjust in the measurement device.

2.1 The First Control: Varying the Power

The role of the power variable is to isolate 
either the continuous or jump components, 
or to keep them both present. As illustrated 
in figure 3, powers p < 2 will emphasize 
the continuous component of the underly-
ing sampled process while powers p > 2 will 
conversely accentuate its jump component. 
The power p = 2 (which receives much 
attention in the form of measuring realized 
volatility) puts them on an equal footing, 
which turns out to be useful here only when 
we seek to measure the relative magnitude 
of the components.

2.2 The Second Control: Varying the 
Truncation Rate

Truncating the large increments at a suit-
ably selected cutoff level can eliminate the 

 
  
 

Xt

t

jump

Xt+

Xt–

∆Xt

= data

Figure 2. Discretely Sampled Data at Interval  Δ n  versus Continuous-Time Sample Path, and Difference 
between Increments and Jumps
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big jumps when needed. The key is that 
there is a finite number of large jumps. 
Asymptotically, as the sampling frequency 
increases, the cutoff level gets smaller. But 
the large jumps have a fixed size, so at some 
point along the asymptotics the cutoff level 
becomes smaller than the large jumps, 
which are thus no longer part of the realized 
power variation B(p,  u n ,  Δ n  ), as illustrated in 
figure 4.

Alternatively, we can truncate to elimi-
nate the Brownian component if we use the 
upwards power variation U(p,  u n ,  Δ n  ), since 
the continuous component is only capable of 
generating increments that are smaller than  
u n  = α Δ  n  ϖ  when ϖ < 1/2.

2.3 The Third Control: Varying the 
Sampling Frequency

Sampling at different frequencies can let 
us distinguish between the three situations 

where the variations converge to a finite 
limit, converge to zero or diverge to infinity. 
We will achieve this by computing the ratio 
of two B’s evaluated at the biggest available 
frequency  Δ n  and at the same time at some 
lower frequency k Δ n  where k ≥ 2 is an inte-
ger. Sampling at frequency k Δ n  is obtained 
from the same data series, simply retaining 
one out of every k data points in figure 2. As 
described in figure 5, the limiting behavior 
of the ratio (1, less than 1 or greater than 1) 
will identify the underlying limiting behavior 
of B.

As we will see, the various limiting behav-
iors of the variations are indicative of which 
component of the model dominates at a par-
ticular power and in a certain range of returns 
(by truncation), just like certain chemical 
elements have a very specific spectrographic 
signature. So they will effectively allow us 
to distinguish between all manners of null 
and alternative hypotheses if we can identify 

Power
p

0 2

 Counting
increments

Quadratic
variation

Continuous

component
dominates

  Jump

component
dominates

Number of
increments
matters more

Both continuous
and jump

components
matter

Size of
increments

matters more

Figure 3. Adjusting the Power p and Dominating Components in the Power Variation
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which situation corresponds to which of the 
spectrographic signatures of B.

3. Which Component(s) Are Present

Leaving aside the drift, which is effec-
tively invisible at high frequency, the model 
(1)–(2) has three components: a continuous 
part, a small jumps part and a big jumps 
part. The analogy with spectrography would 
be that we are looking for the signature 
of three possible chemical elements (say, 
hydrogen, helium, and everything else) in 
the light being recorded. Here, based on 
the observed log-returns, what can we tell 
about which component(s) of the model are 
present?

To this end, let us define the following sets 
defined pathwise on [0, T ]: 

(11)  Ω  T  c   = {X is continuous in [0, T ]}

  Ω  T    j
   = {X has jumps in [0, T ]}

  Ω  T     f
   = {X has finitely many jumps 

   in [0, T ]}

  Ω  T  i   = {X has infinitely many jumps 
   in [0, T ]}

  Ω  T  핎  = {X has a Wiener component in 
   [0, T ]}

  Ω  T  noW  = {X has no Wiener component 
   in [0, T ]}
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Formally,  Ω  T  W  =  {  ∫  0  
T
  σ  s  

2  ds > 0 }  and  Ω  T  noW  = 

 {  ∫  0  
T
  σ  s  

2  ds = 0 } , and the definition of the four 
other sets is clear.

These sets are all subsets of the set  Ω T  
that are generated by the model (1) without 
any further restriction. So we observe a time 
series originating in a given unobserved path, 
and wish to determine in which set(s) the 
path is likely to be. At any given—fixed—fre-
quency this is a theoretically unanswerable 
question since for example any such time 
series can be obtained by discretization of 
a continuous path, and also of a discontinu-
ous one. However we wish to construct test 

statistics that behave well asymptotically, as 
 Δ n  → 0, and if possible under the only 
structural assumptions (1)–(2). That is, they 
should be model-free in the sense that their 
implementation and their asymptotic prop-
erties do not require that we estimate or 
even specify the model, which can poten-
tially be quite complicated (stochastic vola-
tility, jumps, jumps in volatility, jumps in 
jump intensity, etc. and should only satisfy 
very general assumptions that may depend 
on the problem at hand).

It turns out that this aim is achievable, 
using the power variations introduced above, 
for some of the problems. For others we 
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need some additional structural assump-
tions, to be explained later when needed. 
Let us also mention that for all results one 
also needs some weak boundedness-like or 
smoothness-like assumptions on the coef-
ficients, such as the process  b t  should be 
(locally) bounded: as a rule, these assump-
tions are not explicitly stated here, and we 
refer to the original papers for the math-
ematically precise statements.

3.1 Jumps: Present or Not

The first question we address is whether 
the path of X contains jumps or not. As dis-
cussed in the introduction, there is by now 
a vast literature concerned with detecting 
jumps, but we will focus on the approach 
that lends itself to answering the full 
range of specification questions listed for 
semimartingales.

Using the methodology of power varia-
tions, we start with two processes that mea-
sure some kind of variability of X and depend 
on the whole (unobserved) path of X:

(12) V(p ) =  ∫  
0
  
T
 | σ s   |  

p  ds, J(p ) =  ∑ 
s≤T

  
 

   | Δ X s  | 
p ,

where p > 0. The variable V(p ) is finite for 
all p > 0, and positive on the set  Ω  T  W . The 
variable J(p) is finite if p ≥ 2 but often not 
when p < 2. The quadratic variation of X is 
[X, X  ] T  = V(2 ) + J(2 ).

Of course, hoping to estimate J(p) using 
B(p,  u n ,  Δ n  ) is too naive in general, but it 
does work in specific cases. Namely, we have 
the following convergence in probability as  
Δ n  → 0 of B(p, ∞,  Δ n ):

(13)   { p > 2, all X ⇒ B(p, ∞,  Δ n )→
ℙ J(p)

 all p, on  Ω  T  c
   ⇒    Δ  n  

1−p/2 
 ____  m p    B(p, ∞,  Δ n  )→

ℙ V(p ),

where  m p  denotes the pth absolute moment 
of the standard normal variable.

So we see that, when p > 2, B(p, ∞,  Δ n  ) 
tends to J(p): the jump component dominates. 
If there are jumps, the limit J(p  ) t  > 0 is finite. 
On the other hand, when X is continuous, 
then the limit is J(p ) = 0 and B(p, ∞,  Δ n   ) t   
converges to 0 at rate  Δ  n  p/2−1 .

These considerations lead us to pick a value 
of p > 2 and compare B(p, ∞,  Δ n   ) t  on two 
different sampling frequencies. Specifically, 
for an integer k, consider the test statistic  S J : 

(14)  S J (p, k,  Δ n  ) =   
B(p, ∞, k Δ n  )  _  
B(p, ∞,  Δ n  )

  .

The ratio in  S J  exhibits a markedly differ-
ent behavior depending upon whether X has 
jumps or not:

(15)  S J (p, k,  Δ n  )→{  1   
 k p/2−1 

   on  Ω  T   j      
on  Ω  T  c   ∩  Ω  T  W 

   .

That is, in the context of figure 5, under 
 Ω  T   j

   the variation converges to a finite limit 
and so the ratio tends to 1 (the middle 
 situation depicted in the figure) while under 
 Ω  T  c

   ∩  Ω  T  W  the variation converges to 0 and 
the ratio tends to a limit greater than 1, with 
value specifically depending upon the rate at 
which the variation tends to 0 (the lower sit-
uation depicted in the figure). The notion of 
a set  Ω  T  c   ∩  Ω  T  W  may seem curious at first, but 
it is possible for a process to have continuous 
paths without a Brownian component if the 
process consists only of a pure drift. Because 
this would be an unrealistic model for finan-
cial data, we are excluding the set  Ω  T  c   ∩  Ω  T  noW  
from consideration.

If one desires a formal statistical test 
of  Ω  T  c   ∩  Ω  T  W  versus  Ω   T  j

  , with a prescribed 
asymptotic level α ∈ (0, 1), one can use a 
CLT under  Ω  T  c   ∩  Ω  T  W  and one under  Ω  T   j  , 
such CLT being available again in a model-
free situation, apart from some additional 
smoothness assumptions: so one can in fact 
test either  H 0  :  Ω  T  c   ∩  Ω  T  W  versus  H 1  :  Ω  T   j   or 
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the reverse  H 0  :  Ω  T   j   versus  H 1  :  Ω  T  c   ∩  Ω  T  W . 
Note that the first limit in (15) is valid on  Ω  T       j   
whether the jump component includes finite 
or infinite components, or both. It is not 
designed to disentangle the two types of 
jumps. How to do this is the question we 
now turn to.

3.2 Jumps: Finite or Infinite Activity

Many models in mathematical finance do 
not include jumps. But among those that do, 
the framework most often adopted consists of 
a jump-diffusion: these models include a drift 
term, a Brownian-driven continuous part, and 
a finite activity jump part (compound Poisson 
process): early examples include Merton 
(1976), Ball and Torous (1983), Bates (1991), 
and Duffie, Pan, and Singleton (2000).

Other models are based on infinite activity 
jumps: see for example Madan and Seneta 
(1990), Madan and Milne (1991), Eberlein 
and Keller (1995), Barndorff-Nielsen (1997, 
1998), Carr et al. (2002), Carr and Wu 
(2003a), Carr and Wu (2004), and Schoutens 
(2003), although with the exception of Carr 
et al. (2002) models of this type are justified 
primarily by their ability to produce interest-
ing pricing formulae rather than necessarily 
an attempt at empirical realism.

So, which is it, based on the data? Our 
objective is now to discriminate between 
finite and infinite activity jumps using again 
the same set of tools.

3.2.1 Null Hypothesis: Finite Activity

We first set the null hypothesis to be fi-
nite activity, that is  H 0  :  Ω   T  f   ∩  Ω  T  W , whereas 
the alternative is  H 1  :  Ω  T  i  . As in the previous 
 subsection, we rule out the set  Ω   T  f   ∩  Ω  T  noW  
that, for all models in use in finance, is empty. 
We choose an integer k ≥ 2 and a real p > 2. 
The only difference with testing for jumps 
using  S J  is that we now truncate

(16)  S FA (p,  u n , k,  Δ n  ) =   
B(p,  u n , k Δ n  )  _  
B(p,  u n ,  Δ n  )

  .

Without truncation, as in  S J , we could 
 discriminate between jumps and no jumps, 
but not among different types of jumps. Like 
before, we set p > 2 to magnify the jump 
component at the expense of the continuous 
component. But since we want to separate 
big and small jumps, we now truncate as a 
means of eliminating the large jumps. Since 
the large jumps are of finite size (indepen-
dent of  Δ n ), at some point in the asymptot-
ics the truncation level  u n  = α Δ  n  ϖ  will have 
eliminated all the large jumps: see figure 
4 earlier. Then if there are only big jumps 
and the Brownian component, the two trun-
cated power variations B(p,  u n ,k Δ n  ) and 
B(p,  u n ,  Δ n  ) will behave as if there were no 
jumps, leaving only the Brownian compo-
nent. The limit of the ratio will be  k p/2−1  as in 
the test for jumps when there are no jumps.

But if there are infinitely many jumps, 
which are necessarily small, then the trunca-
tion cannot eliminate them. This is because 
however small  u n  is, there are still infinitely 
many jumps in each  Δ n  − increment. The 
Brownian component is dominated in every 
increment by the small jumps because p > 2. 
Both B(p,  u n , k Δ n  ) and B(p,  u n ,  Δ n  ) behave 
like the sum of the pth power of the jumps 
that are smaller than  u n , and although they 
both go to 0, their ratio tends to 1. In the 
context of figure 5, we are in the limiting case 
where both Bs go to zero but at the same 
rate: hence the ratio is 1.

That is, we have:

(17)  S FA (p,  u n , k,  Δ n  ) →
ℙ  {   k p/2−1    

1
      on  Ω   T  f

   ∩  Ω  T  W      
on  Ω  T  i

  
  .

3.2.2 Null Hypothesis: Infinite Activity

We next set the null hypothesis to be 
 infinite activity, that is  H 0  :  Ω  T  i  , whereas the 
alternative is  H 1  :  Ω   T  f   ∩  Ω  T  W . We need a dif-
ferent statistic,  S IA , because although  S FA  
goes to 1, the distribution of  S FA , which was 
designed to be model-free under  Ω   T  f   ∩  Ω  T  W , 
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is no longer model-free under  Ω  T  i  . This is due 
to the fact that the asymptotic behavior of 
the (suitably normalized) difference  S FA  − 1 
is driven by the Brownian motion W when it 
is present and, as it turns out, by the “degree 
of activity” of the jumps when W is absent. 
But the null hypothesis  Ω  T  i   does not specify 
whether W is present or not, nor the degree 
of activity of jumps when W is absent, result-
ing in the fact that  S FA  cannot be used for 
constructing tests with a given asymptotic 
level when the null is  Ω  T  i    .

So we need to start by specifying what 
we precisely mean by “degree of activ-
ity.” To this end, recalling the definition of 
J(p ) given in (12), we consider now the set  
I T  = { p ≥ 0 : J(p ) < ∞}. This (random) 
set  I T  is of the form [ β T , ∞) or ( β T , ∞) for 
some  β T (ω ) ∈ [0, 2 ], and 2 ∈  I T  always. It 
turns out that  β T (ω ), the lower bound of the 
set  I T , is a sensible measure of jump activ-
ity for the path t ↦  X t (ω ) at time T. In the 
special case where X is a Lévy process, then  
β T (ω ) = β does not depend on (ω, T ), and 
it is also the infimum of all r ≥ 0 such that 
 ∫  {|x|≤1 }  

 
   | x  | r  F(dx ) < ∞, where F is the Lévy 

measure. The number β was introduced 
in that context by Blumenthal and Getoor 
(1961) and by extension we call  β T  the (gen-
eralized) Blumenthal–Getoor index, or 
degree of jump activity, of the process.

We call  β T  a degree of jump activity 
because it measures the rate at which the 
jump measure of the process diverges near 
0, so it characterizes the concentration of 
small jumps. Many examples of models pro-
posed in finance for asset returns fall in this 
category, with either fixed values of β, or β 
being a free parameter. (We will discuss esti-
mating β below.) Examples are included in 
figure 7. They include compound Poisson-
based models starting with Merton (1976), 
the variance gamma model of Madan and 
Seneta (1990) and Madan, Carr, and Chang 
(1998) (β = 0), the Normal Inverse Gaussian 
model of Barndorff-Nielsen (1998) (β = 1), 

the hyperbolic model of Eberlein and Keller 
(1995), the generalized hyperbolic model of 
Barndorff-Nielsen (1977) and the CGMY 
model of Carr et al. (2002) (in which β is a 
free parameter).

A priori, the degree of jump activity as we 
have defined it can be random and depend 
on time, but we assume for tractability that 
this index is in fact constant in time and non-
random, as is the case in all known examples. 
More precisely, we assume that the Lévy 
measure ν in (2) is of the form 

(18) ν  (dt, dx ) =   1
 _ 

| x  | 1+β 
   ( a  t  +   1 (0,  z  t  

+ ] (x ) 

 +  a  t  −   1 [− z  t  
− , 0) (x)) +  ν′ (dt, dx),

where  a  t  ±  are nonnegative and  z  t  ±  are posi-
tive stochastic processes, and ν  ′ is another 
Lévy measure whose index is smaller than β. 
Note that the assumption (18) is only about 
the local behavior of the jump measure ν 
near 0, that is, only about the behavior of 
the small jumps. The big jumps, controlled 
by ν  ′, are unrestricted. The processes  a  t  ±  are 
intensity parameters: as they go up, there are 
more and more small jumps. The processes  
z  t  ±  control the range of returns over which 
the behavior of the overall jump measure is 
stable-like with index β.

Note that, necessarily, β ∈ (0, 2 ) here, 
otherwise (18) would not be a Lévy mea-
sure. Then, if further  ∫  0  

T ( a  s  +  +  a  s  −  ) ds > 0, 
the number β is the index of X on the full 
interval [0, T ]. Note that when X is a (pos-
sibly asymmetric) stable process, that is a 
process whose jump measure is proportional 
to 1/ | x  | 1+β , then it satisfies this assumption, 
β being the index of the stable process. In 
fact, this assumption amounts to saying that 
the small jumps of X behave like the small 
jumps of a stable or tempered stable pro-
cess, or more accurately as those of a process 
which is a stochastic integral with respect 
to a stable or tempered stable process (see 
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Rosi  ́    n ski 2007), whereas the big jumps are 
governed by ν  ′. We call processes that sat-
isfy (18) “proto-stable” processes since they 
exhibit stable-like behavior near 0 (in the 
sense of (18)). Most models in finance that 
exhibit jumps of infinite activity are proto-
stable. While we will propose estimators of 
β below, the true β is of course unknown, 
and our model-free requirement means here 
that we wish to construct a test that does not 
depend upon β, the processes  a  t  ±  or  z  t  ± , nor 
the residual jump measure ν  ′.

Coming back to our problem, we consider 
the set

(19)  Ω  T  iβ  =  {  ∫  
0
  
T
 ( a  s  +  +  a  s  −  ) ds > 0 } 

on which the jump activity index of X equals 
β to complete the definitions given in (11). 
Note that  Ω  T  iβ  ⊆  Ω  T  i

    , the inclusion possibly 
being strict since it is possible for a process 
to exhibit infinite activity without being of 
the proto-stable type. However testing the 
null being  Ω  T  i

   is impossible without further 
restrictions, and so we set the null hypoth-
esis to be  Ω  T  iβ . On this set, the process 
has a proto-stable behavior near 0 so β is 
well-defined through (18); the component 
of order β in the Lévy measure is indeed 
the leading one when at least one of the 
processes  a +  and  a −  is not degenerate, as 
required by  Ω  T  iβ . 

We choose three reals γ > 1 and  p′  > p > 2 
and define a family of test statistics as follows:
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(20)  S IA (p,  u n , γ,  Δ n  ) 

    =   
B( p′ , γ   u n ,  Δ n  )B(p,  u n ,  Δ n  )   __   
B( p′ ,  u n ,  Δ n ) B(p, γ   u n ,  Δ n  )

  ,

which has the following limits:

(21)  S IA (p,  u n , γ,  Δ n  ) →
ℙ   {    γ   p′−p    

1
 

 
    

 
 on  Ω  T  iβ

     
on  Ω    T  f

   ∩  Ω  T  W  
   .

Intuitively, under the alternative of finite 
jump activity, the behavior of each one of 
the four truncated power variations in (20) 
is driven by the continuous part of the semi-
martingale. The truncation level is such 

that essentially all the Brownian increments 
are kept; we discuss how to achieve this in 
practice below. Then the truncated power 
variations all tend to zero at rates  Δ  n  p/2−1  and  
Δ  n   p′ /2−1  respectively and by construction the 
(random) constants of proportionality cancel 
out in the ratios, producing a limit 1 given 
under  H 1  in (21).

If, on the other hand, jumps have infinite 
activity, then the small jumps are the ones 
that matter and the truncation level becomes 
material, producing four terms that all tend 
to zero but at the different orders in prob-
ability  u  n  p−β ,  u  n   p′ −β , (γ  u n   ) 

p−β  and (γ  u n   ) 
 p′ −β  

respectively, resulting in the limit  γ   p′ −p  given 
under  H 0  in (21). By design, that limit in  S IA  
is independent of β. 
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3.3 Brownian Motion: Present or Not

We now would like to construct proce-
dures that allow us to decide whether the 
Brownian motion is really there, or if it can 
be forgone with in favor of a pure jump pro-
cess with infinite activity. When infinitely 
many jumps are included, there are a num-
ber of models in the literature that dispense 
with the Brownian motion altogether. The 
log-price process is then a purely discon-
tinuous Lévy process with infinite activity 
jumps, or more generally is driven by such 
a process. Is this a realistic model in light of 
the data?

3.3.1 Null Hypothesis: Brownian Motion 
 Present

In order to construct a test, we seek a sta-
tistic with markedly different behavior under 
the null and alternative. Using the same class 
of tools, the idea is now to consider pow-
ers p less than 2, since in the presence of 
Brownian motion the power variation would 
be dominated by it while in its absence it 
would behave quite differently. Specifically, 
the large number of small increments gen-
erated by a continuous component would 
cause a power variation of order less than 2 
to diverge to infinity: recall figure 5.

Without the Brownian motion, however, 
and when p is bigger than the Blumenthal–
Getoor index  β T  = β, assuming the struc-
tural assumption (18), the power variation 
converges to 0 at exactly the same rate for 
the two sampling frequencies  Δ n  and k  Δ n , 
whereas with a Brownian motion the choice 
of sampling frequency will influence the 
magnitude of the divergence. Taking a ratio 
will eliminate all unnecessary aspects of the 
problem and focus on that key aspect.

So we choose an integer k ≥ 2 and a real 
p < 2 and propose the test statistic

(22)   S W (p,  u n , k,  Δ n  ) =   
B(p,  u n ,  Δ n  )  _  
B(p,  u n , k Δ n  )

    ,

which has the limits

(23)  S W (p,  u n , k,  Δ n  )

    →ℙ   {    k  1−p/2    
1
 

 
   

 
 on  Ω  T  W    
on   Ω  T  noW  ∩  Ω  T  iβ ,  p > β 

   .

Note that the first convergence above, on 
 Ω  T  W , does not require any specific assump-
tions on the jumps, only the second conver-
gence requires (18).

3.3.2 Null Hypothesis: No Brownian 
 Motion

When there are no jumps, or finitely many 
jumps, and no Brownian motion, X reduces to 
a pure drift plus occasional jumps, and such 
a model is fairly unrealistic in the context of 
most financial data series. But one can cer-
tainly consider models that consist only of a 
jump component, plus perhaps a drift, if that 
jump component is allowed to be infinitely 
active. If one wishes to set the null model to 
be a pure jump model (plus perhaps a drift), 
then the issue becomes to design a test sta-
tistic using power variations whose behav-
ior is independent of the specific nature of 
the infinitely active pure jump process. In 
other words, we again assume (18), but we 
do not know β and wish to design a test that 
remains model-free in the sense that it does 
not depend on β,  a  t  ±  or  z  t  ±  in (18).

We choose a real γ > 1 to define two dif-
ferent truncation ratios and define a family 
of test statistics as follows:

(24)   S noW (p,  u n , γ,  Δ n  ) 

    =   
B(2, γ  u n ,  Δ n  )U(0,  u n ,  Δ n  )   __   
B(2,  u n ,  Δ n  ) U(0, γ  u n ,  Δ n  )

  .

To understand the construction of this test 
statistic, recall that in a power variation of 
order 2 the contributions from the Brownian 
and jump components are of the same order. 
If the Brownian motion is present ( H 1  :  Ω  T  W ) 
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then once that power variation is properly 
truncated, the Brownian motion will domi-
nate it if it is present. And the truncation 
can be chosen to be sufficiently loose that it 
retains essentially all the increments of the 
Brownian motion at cutoff level  u n  and a for-
tiori γ  u n , thereby making the ratio of the two 
truncated quadratic variations converge to 1 
under the alternative hypothesis.

If on the other hand the Brownian motion 
is not present ( H 0  :  Ω  T  noW  ∩  Ω  T  iβ  ), then the 
nature of the tail of jump distributions is such 
that the difference in cutoff levels between  
u n  and γ  u n  remains material no matter how 
far we go in the tail and the limit of the ratio 
B(2, γ  u n ,  Δ n )/B(2,  u n ,  Δ n  ) in (24) will reflect 
it: it will now be  γ  2−β . But since absence of a 
Brownian motion is now the null hypothesis, 
the issue for constructing a test is that this 
limit depends on the unknown β. 

Canceling out that dependence is the role 
devoted to the ratio U(0,  u n ,  Δ n )/U(0, γ  u n ,  Δ n  ) 
of the number of large increments. The Us 
are always dominated by the jump compo-
nents of the model whether the Brownian 
motion is present or not. Their inclusion in 
the statistic is merely to ensure that the sta-
tistic is model-free, by effectively canceling 
out the dependence on the jump character-
istics that emerges from the ratio of the trun-
cated quadratic variations.

Indeed, the limit of the ratio of the 
Us is  γ  β  under both the null and alternative 
hypotheses. As a result, the probability limit 
of  S noW  will be  γ   2  under the null, indepen-
dent of β:

(25)  S noW (p,  u n , γ,  Δ n  )  

 →ℙ  {     γ  2    
 γ  β  

   
 
on  Ω  T  noW  ∩  Ω  T  iβ     

on  Ω  T  W 
 

 
 .

Generally speaking, the statistic  S W  is 
more robust than  S noW ; similarly  S FA  is more 
robust than  S IA . This is due to their simpler 

design, and the lesser reliance on subtle can-
cellations to achieve their respective objec-
tives. As a result, we recommend using  S FA  
and  S W  in practical applications.

4. The Relative Magnitude 
of the Components

A typical “main sequence” star might be 
made of 90 percent hydrogen, 10 percent 
helium, and 0.1 percent everything else. In 
astrophysics, a natural metric to compare 
different atoms and address the question of 
percentages of various components is atomic 
mass. Here, what is the relative magnitude of 
the two jump and continuous components? 
We can answer this question using the same 
power variation devices. The natural metric 
is now to consider the quadratic variation, 
p = 2, since this is the power where all the 
components are asymptotically of the same 
order of magnitude, hence present together. 
By contrast, our use earlier of the powers 
p > 2 or p < 2 was designed to eliminate 
one or the other of the components. If we 
want to ask the question of percentages of 
total quadratic variation (QV) attributable to 
each component, selecting the power p = 2 
makes this possible.

As illustrated in figure 6, by using trunca-
tions at the right rate we can split the QV 
into its continuous and jump components, 
and not truncate to estimate the full QV:

(26)   
B(2,  u n ,  Δ n  )

 _ 
B(2, ∞,  Δ n  )

   = % QV due to the
 continuous component

.

 {1 −   
B(2,  u n ,  Δ n  )

 _ 
B(2, ∞,  Δ n  )

   = % QV due to the
 jump component

The use of truncation to estimate the con-
tinuous part of the quadratic variation when 
there are jumps was proposed by Mancini 
(2001), who relied on the law of the iterated 
logarithm for that purpose. Alternatively, 



1025Aït-Sahalia and Jacod: Analyzing the Spectrum of Asset Returns

one can split the QV based on bipower varia-
tions instead of truncating: see Barndorff-
Nielsen and Shephard (2004), Huang and 
Tauchen (2005), and Andersen, Bollerslev, 
and Diebold (2007).

Note that (26) suggests that an alter-
native test for the presence of jumps 
can be constructed based on the ratio 
B(2,  u n ,  Δ n )/B(2, ∞,  Δ n ). However, this 
would work only if the null hypothesis is that 
no jumps are present, and the null hypothe-
sis is that the ratio is 1. With jumps under the 
null, one would have to specify exogenously 
as part of the null hypothesis how large the 
fraction of QV due to jumps is.

We can split the rest of the QV, which by 
construction is attributable to jumps, into 
a small jumps and a big jumps component. 
This depends on the cutoff level ε selected 
to distinguish big and small jumps:

(27)

    U(2, ε,  Δ n  )
 _ 

B(2, ∞,  Δ n  )
   = % QV due to big jumps 

.

        B(2, ∞,  Δ n ) − B(2,  u n , Δ n ) − U(2, ε,  Δ n  )
   __  

B(2, ∞,  Δ n  )
   = % QV 

 due to small
 jumps

We can then obtain a plot that looks like 
figure 8 and provides a split of the QV into 
the various components.

5. Estimating the Degree of Jump Activity

The method described in section 3.2 is able 
to tell finite activity jumps from infinite activ-
ity ones. Among jump processes, however, 
finite activity are the exception rather than 
the norm: recall figure 7 where finite activity 
is only present at the left boundary of the axis. 
“Infinite activity” can mean quite different 
things, namely the rest of the axis, depending 
upon “how infinite” that infinite jump activ-
ity is. In fact, the degree of activity is accu-
rately measured by the  Blumenthal–Getoor 

⎧
⎪
⎨
⎪
⎩

index  β T  introduced earlier: at the left end of 
the spectrum, infinite activity jump processes 
such as the Gamma process, whose jump 
measure diverge at a sub-polynomial rate, can 
look like Poisson jumps; at the right end, they 
can look almost like Brownian motion, which 
is to say extremely active. So it seems natural 
to try to estimate the index  β T . As discussed 
above, specific models in finance correspond 
either to fixed values of β (such as β = 0 for 
the Gamma and Variance Gamma models, 
β =   1 _ 2   for the Lévy model and the Inverse 
Gaussian model, β = 1 for the Cauchy model 
and the Normal Inverse Gaussian Process) or 
β is a free parameter (as in the stable model, 
the Generalized Hyperbolic model and the 
CGMY model).

The next issue is then to estimate  β T , 
or rather β under the somewhat restricted 
assumption (18). The problem is made more 
challenging by the potential presence in X of 
a continuous, or Brownian, martingale part. β 
characterizes the behavior of ν near 0. Hence 
it is natural to expect that the small incre-
ments of the process are going to be the ones 
that are most informative about β. But that is 
where the contribution from the continuous 
martingale part of the process is inexorably 
mixed with the contribution from the small 
jumps. In other words, we need to see through 
the continuous part of the semimartingale in 
order to say something about the number and 
concentration of small jumps.

So we are now looking in a different range 
of the spectrum of returns, namely by con-
sidering only returns that are larger than 
the cutoff  u n  = α Δ  n  ϖ   for some ϖ ∈ (0,   1 _ 2   ), as 
opposed to those that are smaller than the 
cutoff. This allows us to eliminate the incre-
ments due to the continuous component. We 
can then use all values of p, not just those 
p > 2, despite the fact that we wish to con-
centrate on jumps: see figure 6. In fact, we 
will simply use the power p = 0. 

We propose two estimators of β based on 
counting the number of increments greater 
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than the cutoff  u n . The first one is based on 
varying the actual cutoff level: fix 0 < α <  α′  
and consider two cutoffs  u n  = α Δ  n  ϖ   and  u  n  ′    
=  α′  Δ  n  ϖ   with γ =  α′ /α:

(28)     β  n (ϖ, α,  α′  )

 =   
log(U(0,  u n ,  Δ n )/U(0, γ  u n ,  Δ n ))   ___  

log(γ )
  .

The second one is based on varying the sam-
pling frequency: sample at two time scales,  
Δ n  and 2 Δ n :

(29)     β   n  ′  (ϖ, α, k) 

 =   
log(U(0,  u n ,  Δ n )/U(0,  u n , k Δ n ))   ___  

ϖ log k
  .

These estimators are consistent for β, and we 
have derived CLTs for them.

These basic estimators are based on the 
first-order asymptotics

(30) U(0,  u n ,  Δ n  ) ∼  b 0   Δ  n  −ϖβ    1 _ 
 α  β 

    ,

where  b 0  is independent of  u n  and  Δ n . In 
small samples, a bias corrected procedure is 
based on the second-order asymptotics

(31) U(0,  u n ,  Δ n  ) ∼  b 0  Δ  n  −ϖβ   1 _ 
 α β 

   

 +  b 1  Δ  n  1−2ϖβ   1 _ 
 α 2β 
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Figure 8. Splitting up the QV into Continuous and Jump Components, and into Small and Big Jumps 
as a Function of the Jump Size Cutoff ε



1027Aït-Sahalia and Jacod: Analyzing the Spectrum of Asset Returns

works as follows: we can estimate β, along 
with the unknown coefficients  b 0  and  b 1  in 
(31) by a straightforward nonlinear regres-
sion of U(0,  u n ,  Δ n  ) on α by varying α in the 
cutoff  u n  = α Δ  n  ϖ  .4

One can then test various hypotheses 
involving β. The approach described in this 
section to estimate β is due to Aït-Sahalia 
and Jacod (2009a). Related approaches 
include Woerner (2011), who proposes an 
estimator of the jump activity index in the 
case of fractionally integrated processes, 
Cont and Mancini (2011), who are testing 
whether β > 1 or β < 1, which correspond to 
finite or infinite variation for X, and Todorov 
and Tauchen (2010), who provide a graphi-
cal method to determine whether β = 2 or 
β < 2 using the test statistic of Aït-Sahalia 
and Jacod (2009b), and Belomestny (2010) 
who proposes a method based on low fre-
quency historical and options data. In the 
context of their specific parametric model, 
Carr et al. (2002) proposed an estimator for 
β, along with that of the other parameters of 
their model.

6. Summary of the Spectrogram 
Methodology: Tuning Power, Truncation, 

and Sampling Frequency

We have seen that setting the three con-
trols of power, truncation level, and sam-
pling frequency in various combinations 
allowed us to determine which component 
of the model was likely to be present, in 
what proportion, and estimate the degree 
of activity of the jumps. Table 1 summarizes 
the choice of the three tuning parameters 
(p, u, Δ ) for the corresponding tasks under 
consideration.

4 The procedure involves a regression across cutoff lev-
els that relies on dependent observations, which would 
matter for any inference on these estimators, as opposed to 
their simple pointwise use here as bias-correction devices.

In a nutshell, we address specification 
questions that require an emphasis on the 
jump component of the model with  powers 
p > 2, those that require an emphasis on the 
continuous component with powers p < 2, 
and those that require them on an equal foot-
ing with the singular power p = 2. Truncating 
makes it possible to eliminate either the big 
jumps or the Brownian component, as nec-
essary. And finally sampling at different fre-
quencies allows us to identify the asymptotic 
behavior of the relevant power variations, 
thereby discriminating between components 
of the model that are present or absent in the 
sampled data.

7. Theoretical Limits When Market 
Microstructure Noise Dominates

We consider in the empirical analysis that 
follows sampling frequencies up to 5 sec-
onds. In different applications, this selection 
is going to be asset-dependent, as a func-
tion of the assets’ liquidity and other trad-
ing characteristics. But in any event, real 
data observations of the process X at such 
ultra high frequencies are blurred by market 
microstructure noise, which has the poten-
tial to change the asymptotic behavior of 
many statistics at very high frequency, and 
can force us to downsample as is often done 
in the classical volatility estimation setting.

When observations are affected by an addi-
tive noise, then instead of  X i Δ n   we observe  
Y i Δ n   =  X i Δ n   +  ε i   , and the  ε i  are i.i.d. with 
E( ε  i  

2  ) and E( ε  i  
4  ) finite, and not depending 

of the observation frequency. When round-
ing is introduced, we observe  Y i Δ n   = [ X i Δ n    ] a  
which is X rounded to the nearest multiple 
of a, say 1 cent for a decimalized asset, or for 
many bond markets, α = 1/32nd of a dollar: 
again the rounding level α does not depend 
on n. As a matter of fact, the real microstruc-
ture noise is probably a mixture of the two 
types above, first an additive noise (or per-
haps a “colored” additive noise) which may 
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TABLE 1 
The Choice of Turning Parameters p (Power), u (Truncation Parameter),  

and Δ (Sampling Interval)

Jumps: Present or Not  H 0  :  Ω  T  c
   H 0  :  Ω  T  j

  

 H 1  :  Ω    T  j
   H 1  :  Ω  T  c

  

 S J  :  (   p > 2
 

  
 ∞    

 Δ n , k Δ n 

  )  S J  :  (   p > 2
 

  
 ∞    

 Δ n , k Δ n 

  ) 
Jumps: Finite or Infinite Activity  H 0  :  Ω T   f

   H 0  :  Ω  T  i
  

 H 1  :  Ω  T  i
   H 1  :  Ω T   f

  

 S FA  :  (   p > 2
 

  
  u n     

 Δ n , k Δ n 

  )  S IA  :  (  p > 2, p′ > 2
 

   
  u n , γ  u n      

 Δ n 

   ) 
Brownian Motion: Present or Not  H 0  :  Ω  T  W  H 0  :  Ω  T  noW 

 H 1  :  Ω  T  noW
   H 1  :  Ω  T  W 

 S W  :  (   p < 2
 

  
  u n     

 Δ n , k Δ n 

  )  S noW  :  (  p = 0, p′ = 2
 

   
  u n , γ  u n      

 Δ n 

   ) 
Relative Magnitude of the Components

%QV:    (  
p = 2

 
 

  u n    

 Δ n 

   ) 

Estimating the Degree of Jump Activity β
   β  :  (   p = 0

 
  

 U :  u n , γ  u n     

 Δ n 

   )    β ′ :  (   p = 0
 

  
 U :  u n     

 Δ n , k Δ n 

  ) 
Notes: Combinations of (  p, u, Δ) employed to implement the complete spectrogram methodology: test for the 
presence of jumps, test whether jumps have finite or infinite activity, test whether a continuous component is pres-
ent, estimate the relative magnitude of the components, and estimate the degree of jump activity.
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account for some bouncebacks, and then the 
noisy price is rounded at the level α.5

The power variations that form the build-
ing blocks of our methodology are affected 
by either type of noise, in a rather drastic way, 
since the presence of noise modifies the limit 
in probability of most of our statistics, not to 
speak about their second order behavior like 
CLTs. In order to be able to interpret the 
empirical results, we need to explicitly incor-
porate the noise into the probability limits of 
the various statistics. As discussed, we will 
consider in turn the two polar cases of a pure 
additive noise, and of a pure rounding noise. 
Our focus on these two cases is not meant 
to suggest that the microstructure noise is 
necessarily of either form in the data,6 but 
rather reflects the fact that they are natural 
places to start and in any event are the only 

5 While far from being complete descriptions of the 
reality, these two specifications for the noise can be 
thought of as proxies for some of the main features iden-
tified as relevant in the market microstructure literature: 
see, e.g., Hasbrouck (1993), who discusses the theoretical 
market microstructure underpinnings of an additive noise 
model and argues that the standard deviation of the noise, 
E( ε  i  2 )1/2, is a summary measure of market quality. In the 
Roll (1984) model, the noise is due entirely to the bid–
ask spread. Harris (1990b) considers additional sources of 
noise and their impact on the Roll model and its estima-
tors. More complex structural models, such as Madhavan, 
Richardson, and Roomans (1997), also give rise to reduced 
forms where the observed transaction price takes the 
form of an unobserved price plus noise. Adverse selection 
effects are considered in Glosten (1987) and Glosten and 
Harris (1988), where the spread has different components. 
Especially when asymmetric information is involved, the 
noise term may no longer satisfy the basic assumptions 
here (such as i.i.d. or uncorrelatedness with the price pro-
cess). The second case we consider, where the noise is due 
to rounding, has been analyzed in the market microstruc-
ture literature (see, e.g., Gottlieb and Kalay 1985). The 
specification of the model in Harris (1990a) combines both 
rounding and bid–ask effects as the dual sources of noise.

6 In practice, volatility, spreads, liquidity, volume, and 
price levels vary over time (impacting the relative size of 
the rounding to the price grid points for the log-price) so 
clearly any realistic noise component is likely to be quite 
complicated. However, one should be wary of making 
definitive statements regarding the precise nature of the 
noise component since it is latent and never observed in 
isolation but always in conjunction with the true price and 
with rounding.

cases that we are able to analyze in the pres-
ent state of the literature.

7.1 Additive Noise

Pure additive noise has been consid-
ered by many authors for the purpose of 
estimating the volatility,7 but its effect on 
power variations, truncated or not, has not 
been thoroughly analyzed so far, to the best 
of our knowledge. So, in contrast with the 
style of the rest of the paper, we now pres-
ent theorems. To avoid intricate statements, 
we make two basic, and mild, assumptions 
on the noise, which is a sequence ( ε i   ) i≥0  of 
i.i.d. variables, independent of the underly-
ing process. Namely, we assume that

(32)  m  p  ′   = 피( |  ε i   | 
p  )is finite for all p > 0

 and the noise is centered: 피( ε i  ) = 0,

and

(33)  the variables  ε i  admit a continuous
 density.

We also write  B′ (p,  u n ,  Δ n  ) and  
U′ (p,  u n ,  Δ n  ) for the variables introduced in 
(7), (8), and (10), where the increments  Δ  i  n  X 
of (6) are substituted with 

(34)  (  X i Δ n   +  ε i  )  −  (  X (i−1 ) Δ n   +  ε i−1  ) .

In other words, in the case of additive noise, 
the observations on the process,  X i Δ n  , are 
replaced by  X i Δ n   +  ε i . The limits that are rel-
evant for the spectrogram analysis are given 
by the fact that under (32) and (33), we have 
(recall that  B′ (p, ∞,  Δ n  ) =  U′ (p, 0,  Δ n )):

•   If  p ≥ 0, then for any sequence  u n  of 
nonnegative numbers going to 0 we 
have 

7 See footnote 1.
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(35)  Δ n   U′ (p,  u n ,  Δ n )   →
ℙ    m  p  ′   T.

•   If p > 0 and if further 

(36)   
 Δ n 

 _ 
 u  n  r

  
   → 0, where r = {   2p + 2

 _ p  
   

4
    

if p ≤ 1
    

if p ≥ 1
 

then we have

(37)   
 Δ n  _ 

 u  n  p+1 
    B′ (p,  u n ,  Δ n  ) →

ℙ    
2 f (0 )

 _ 
p + 1

   T.

This result, shown in Aït-Sahalia and Jacod 
(2011) when p > 1, is a generalization to the 
case of general p of known results for the 
quadratic variation (p = 2) which form the 
basis for the robustified estimators listed in 
footnote 1.

7.2 Rounding Noise

The situation of rounding noise is much 
more delicate to analyze. There, instead of 
observing  X   i  Δ n  , we observe [  X i Δ n    ] α , that is  
X i Δ n   rounded to the nearest multiple of α. 
For instance, if the market under consider-
ation is decimalized, then α = 1 cent. For 
many bond markets, α = 1/32nd of a dollar.

If X is continuous, then most of the incre-
ments  Δ  i  n  X vanish, and all are integral mul-
tiples of the rounding value α. So the key 
role is played by the upcrossings and down-
crossings of the levels (q +   1 _ 2   )α by X, for all 
integers q. So, not surprisingly, the limit of 
the variations involve the local times of X at 
those levels, that is the amount of time that 
the process spends in a neighborhood of 
the crossing levels. The same is true when 
X jumps, except that in this case the theory 
of local times is not even well established 
unless the Blumenthal–Getoor index of the 
jump is smaller than 1.

More specifically, only the case when X is 
continuous is completely determined, and 
the main result is due to Delattre (1997). Let  
L  t  a  denote the local time of X at level a ∈ ℝ, 

and as before we denote by B″(p,  u n ,  Δ n  ) and 
U″(p,  u n ,  Δ n  ) for the variables introduced in 
(7), (8), and (10), where the increments  Δ  i  n  X 
of (6) are substituted with

(38) [  X i Δ n    ] α  − [  X (i−1 ) Δ n    ] α .

Then, if X is a continuous semimartingale 
with the drift process locally bounded, as 
well as the volatility process  σ t  and its inverse 
1/ σ t   , we have that

(39)   √ 
___

  Δ n    B″(p, ∞,  Δ n  )

 →ℙ   α  p    √ 
__

    2 _ π       ∑ 
q∈ℤ

  
 

    ∫  
0
  
T
    1 _  σ s 

   d L  s  (q +   1 _ 2   )α .

The results continue to hold if the semi-
martingale is discontinuous, but with finite 
activity. Otherwise, no precise mathematical 
result is known so far in this domain.

The behavior of the truncated power 
variations is quite different in the presence 
of rounding. Indeed, if  u n  → 0, for n large 
enough we have  u n  < α since the round-
ing level is fixed. In this case all increments 
of the noisy process are either 0 or bigger 
than  u n . In other words, we have for n large 
enough:

(40) B″(p,  u n ,  Δ n ) = 0,

 U″(p,  u n ,  Δ n  ) = B″(p, ∞,  Δ n ).

7.3 Limit of Our Statistics

We can now apply these results to analyze 
the limits of our statistics when either form of 
noise dominates, since the test statistics are 
all based on combining different values of B 
and we have just stated the limiting behavior 
of each B when the noise dominates. If we 
gather these results together with those for 
the observations without noise, we see that  
S J  has four possible limits: 
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(41)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1/k : additive noise dominates

.

1/ k 1/2 : rounding error dominates 
 (and jumps have finite activity)

1 : jumps present and no  
significant noise

 k 
 p/2−1

 : no jumps present and no  
significant noise

The impact of the noise on  S FA  is given by 
(where “no limit” means that for n large the 
statistics is the ratio 0/0):

(42)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1/k : additive noise dominates

.

no 
limit : rounding error dominates

1 : infinite activity jumps and 
no significant noise

 k 
 p/2−1

 : finite activity jumps and 
no significant noise

 S W , taking market microstructure noise 
into account, has four possible limits:

(43)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

1/k : additive noise dominates

.

no 
limit : rounding error dominates

1 : No Brownian motion and 
no significant noise

 k 
 1−p/2

 : Brownian motion present 
and no significant noise

Finally, taking microstructure noise into 
account yields the following limits for our 
measure of the fraction of QV due to the 
continuous component:

(44)

⎧
⎪
⎨
⎪
⎩

0 : additive noise dominates

.0 : rounding error dominates

actual fraction 
of QV : no significant noise

We will now analyze the data in light of 
these predictions of the theory.

8. The Data

8.1 The Starting Data

We use a dataset consisting of all transac-
tions and quotes on all thirty individual com-
ponents of the Dow Jones Industrial Average 
in 2006. The data source is the TAQ data-
base. Using the correction variables in the 
dataset, we retain only transactions that are 
labeled “good trades” by the exchanges: reg-
ular trades that were not corrected, changed, 
or signified as canceled or in error; and 
original trades which were later corrected, 
in which case the trade record contains the 
corrected data for the trade. Beyond that, 
no further adjustment to the raw data are 
made to produce what we call the “unfiltered 
transactions.” We also consider and use the 
corresponding quotes, as we explain below.

We sample the price series at up to the 
5 second frequency, and then lower fre-
quency multiples. The most liquid stocks in 
the DJIA trade on average more than once 
every second, so we are not retaining every 
transaction by doing so, which avoids incor-
porating every bid–ask bounce. For the less 
liquid stocks, some smoothing is involved. 
When no transaction is available at the exact 
time stamp, we use the closest one available. 
When more than one transaction is available 
at the same time stamp, we average them. 
We do not include the overnight returns.

8.2 Bouncebacks and National Best Bid 
and Offer Filter

Different measurements of the stock 
returns lead to different properties of the 
constructed price process. One particu-
lar issue that deserves careful attention in 
the data is that of “bouncebacks.” We call 
“bouncebacks” price observations that are 
either higher or lower than the sequences 
of prices that both immediately precede and 
follow it. Such prices generate a log-return 
from one transaction to the next that is large 
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in magnitude, and is followed immediately 
by a log-return of the same magnitude but of 
the opposite sign, so that the price returns to 
its starting level before that particular trans-
action. To the extent that we have no reason 
to believe that those transactions did not 
actually take place, as we already eliminate 
transactions known to TAQ to be incorrect, 
we start with the premise that bouncebacks 
should not be arbitrarily removed from 
the sample. However one may think that 
bouncebacks, although significant in a sense, 
should not be incorporated in the model for 
the “true” latent price process, whatever this 
“true” might mean.

The prevalence of bouncebacks can lead 
to a large number of relatively small jumps 
in the raw data, and bias the empirical results 
toward finding more small jumps than actu-
ally happen if the data were correctly mea-
sured, or biasing the estimated degree of 
jump activity. By contrast, a true jump can 
be followed by another jump (due to the 
prevalence of jump clustering in the data), 
but these successive jumps will not neces-
sarily be of the same magnitude and of the 
opposite sign.

One straightforward approach to elimi-
nate bouncebacks would be to eliminate all 
log-returns that are followed immediately 
by another log-return of the opposite sign, 
when they are both greater than a predeter-
mined magnitude, such as some number of 
ticks. There is however typically in the data a 
continuum of bouncebacks in terms of such 
magnitude, so this approach ends up creat-
ing a discontinuity at the arbitrary predeter-
mined magnitude selected: many of them of 
size less than that level and then none. On 
the other hand, setting that level within one 
tick would be extreme and would change the 
nature of the observed prices.

To deal with bouncebacks endogenously, 
we will instead make use of the matched 
quotes data. Transactions that take place 
outside the currently prevailing quotes are 

known as “out-trades.” In our context, a sin-
gle out-trade will generate a bounceback. As 
discussed by Stoll and Schenzler (2006), they 
tend to occur on Nasdaq because of delays 
in reporting trades; because of the ability 
of dealers to delay the execution of trades, 
thereby creating a look-back option which 
when exercised results in out-trades; and 
because large trades can take place at prices 
outside the quotes. Out-trades are less fre-
quently observed on the NYSE because the 
market is more centralized. Of the thirty 
DJIA components in 2006, Microsoft and 
Intel trade on Nasdaq while the other com-
ponents all trade on the NYSE.

We will use the quotes data in order to 
reduce the incidence rate of bouncebacks 
in the transactions data, in a manner that is 
compatible with market rules. SEC regula-
tions require brokers to guarantee custom-
ers the best available ask price when buying 
securities, and the best available bid price 
when selling securities. These are called the 
National Best Bid and Offer (NBBO) prices.

We compute the NBBO at each point in 
time as follows. We collect all quotes at each 
instant retaining only those with positive sizes 
and prices, and eliminating crossed quotes, 
those where the bid price is greater than the 
ask price. We then compute trimmed size-
weighted means (eliminating the extreme 10 
percent of quotes at each end, in price levels 
and sizes) of the bid and ask prices in effect 
at that time. Eliminating quotes with small 
depths or extreme prices is important: bad 
or erroneous quotes tend to have smaller 
size, hence the need to trim the weighted 
average to smooth them away. Quotes with 
small depths or extreme bid and ask prices 
(“off-market”) are often used by market 
makers to effectively pull out of the mar-
ket, usually temporarily, while still posting 
quotes. Incidentally, bouncebacks can hap-
pen in quotes data as well. But they tend to 
appear when there is only a very small num-
ber of quotes at that point in time, with one 
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or more that is off-market for the reasons 
just described. Quote bouncebacks seem to 
be unrelated to transaction bouncebacks.

Given our computed NBBO at each point 
in time, we then take a moving window of 
90 seconds. For instance, a block trade might 
have been arranged by a manual broker and 
its reporting delayed. Or opening trades 
done manually can be delayed, for instance, 
even at small sizes. The 90-second window 
we employ is set to reflect the SEC rules that 
specify that exchanges must report trades 
within 90 seconds. Trades that are delayed 
beyond 90 seconds are marked as “late,” and 
already excluded from the starting data by 
our TAQ filters. We use this 90-second mov-
ing window to construct a running minimum 
of the national best bid prices and a running 
maximum of the national best offer prices 
over the time window. This NBBO bid–offer 
moving envelope is then used as our filter for 
transactions: we retain only transactions that 
take place inside the envelope.

There are many reasons for trades to be 
delayed, especially when some form of man-
ual execution is involved. For example, in the 
case of negotiated trades, brokers might work 
the order over time, leading to a sequence of 
smaller trades reports. Or the broker might 
(acting as principal) sell the whole amount 
to the customer, in which case we would 
see a single trade report. Another practice 
involves “stopping” the order: the broker 
does not execute the order immediately, but 
does guarantee the buyer a price. The broker 
can then work the order, deferring any trade 
reports until the execution is complete, at 
which time an average price is reported. The 
average price can appear out of line with the 
prices around it and lead to a bounceback.

The NBBO filter we employ tends to be 
conservative—erring on the side of retain-
ing transactions—since there is no guarantee 
that an out-trade is actually necessarily due 
to a time delay, or that even if delayed it took 
place at a time when the bid–ask spread was 

less than the maximal width of the spread 
over the 90-second time window. On the 
other hand, block (negotiated) trades usually 
carry a price concession and so could be exe-
cuted outside this envelope and thereby be 
wrongly excluded. To the extent that, for it to 
lead to a bounceback, this is by a definition 
a single isolated transaction, it did not have 
a permanent price impact, but rather was 
associated with a transient liquidity effect.

We do not make use of the NBBO quotes 
depth: from the list of prevailing quotes by 
exchange, we already determine the best 
(maximum) bid price, and the best (mini-
mum) ask price. Using the prevailing quote 
list, we could sum the bid sizes for quotes at 
the best bid price, and sum the ask sizes for 
the quotes at the best ask price. This would 
produce the NBBO sizes available to trade at 
each point of time and one could consider fil-
tering out transactions with size that exceeds 
it. However, this would also eliminate legiti-
mate transactions, such as block trades, or 
for that matter any trade that has a price 
impact. In any event, we find empirically that 
filtering the transactions by the NBBO filter 
as described above reduces drastically the 
number of bouncebacks in the data.

We started with the unfiltered transactions 
data, and this procedure results in a time 
series of NBBO-filtered transactions. We 
also produce a series of the midpoint of the 
just computed NBBO bid and ask prices and 
use this as our measurement of the quote 
price at that point in time. We therefore end 
up comparing three different measurements 
of the “price” series, for each stock:

•  The unfiltered transactions;
•  The NBBO-filtered transactions;
•  The NBBO quotes midpoint.

We will apply the spectrogram methodol-
ogy to each price series for each one of the 
30 individual DJIA components and com-
pare the results.
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8.3 Individual Stocks versus Indices

The DJIA is defined as a simple average of 
the stock prices of 30 of the largest and most 
widely held public companies in the United 
States, as determined by the Dow Jones Co. 
The index is adjusted by a divisor, which 
changes whenever one of the component 
stocks has a stock split or stock dividend, or 
one of the component is replaced by another 
stock, so as to generate a continuous value 
for the index at the time of the split, dividend 
or change of component. We collect high 
frequency data (sampled every 5 seconds, 
down from an average sampling interval of 3 
seconds) on the cash value of the DJIA index 
from Tick Data, Inc. The data provider uses 
proprietary data filters.

2006 was a rather unremarkable, or quiet, 
year from the perspective of systematic 
jumps (i.e., jumps that would be visible at 
the level of the index), as perusal of financial 
news for that period would confirm. In what 
follows, we will compare the results obtained 
from the index to those on its individual 
components.

9. Empirical Results and 
Economic Implications

9.1 Jumps: Present or Not

The empirical values of  S J  are shown in the 
form of a histogram in figure 9 for each of 
the three possible measurements of the data. 
The data for the histogram are produced by 
computing  S J  for the four quarters of the 
year, the thirty stocks, and for a range of val-
ues of p from 3 to 6 (in increments of 0.25),   
Δ n  from 5 seconds to 2 minutes (with val-
ues 5, 15, 30, 60, 90, and 120 seconds), and 
k = 2, 3. The top left histogram corresponds 
to the unfiltered transactions, the top right 
one to the NBBO-filtered transactions and 
the lower left one to the NBBO midpoint 
quotes. In this and the plots that follow, the 

values of the parameters k and p are varied 
across the experiments; the “noise domi-
nates” region consists of the range of pos-
sible values of the limits of the statistic being 
implemented, when k and p vary, for the two 
cases where the noise dominates.

As indicated in (41), values below 1 are 
indicative of noise of one form or another 
dominating. We find that this is the case 
only for the unfiltered transactions data, 
and only at the highest sampling frequen-
cies, the histogram then displaying a left tail. 
For the other data measurements, the histo-
grams display very little mass in the regions 
where the noise dominates. The conclusion 
from  S J  is that the noise is not the major con-
cern, except for the unfiltered transactions 
at the ultra high frequencies, but once past 
this domain, the evidence points toward the 
presence of jumps with the histograms cen-
tered around 1.8

This conclusion is not surprising per se, 
even for the index and a fortiori for the indi-
vidual assets. The fact that the tails of high-
frequencies log-return distributions exhibit a 
power decay, which points toward a model 
including jumps, has been recognized a 
long time ago, see for example Eberlein and 
Keller (1995). A power law fits the data quite 
well and a continuous component alone (with 
typically exponentially decaying tails) would 
be rather unlikely to generate such returns.

The middle right panel in figure 9 displays 
the median value of  S J  (across values of p and 
k, and the four quarters) as a function of the 
sampling interval  Δ n . Unfiltered transactions 
are marked “U,” filtered transactions are 
marked “F” and the NBBO midpoint quotes 

8 One potential caveat needs to be raised. The evidence 
for values around 1 is compelling at the highest frequen-
cies, but this is where it is possible for the noise to exert 
downward pressure on the point estimates, since the noise 
results in lower limits. It is possible that in small samples 
we obtain estimates around one as a result of a procedure 
that is biased downwards from higher values by residual 
amounts of noise.
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Figure 9. Test Statistic SJ to Test for the Presence of Jumps DJIA30 Components
Notes: Empirical distribution of  S J  for all 30 DJIA components, 2006, measured using transactions (unfiltered 
and NBBO-filtered) and NBBO quotes midpoint, median value of  S J  as a function of the sampling interval 
 Δ n , and nonlinear regression of  S J  against stock-level liquidity measures.
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are marked “M.” In all cases, the median 
value of  S J  starts around 1 at the highest 
frequencies and then rises. Comparing dif-
ferent data measurements, we find that  S J  is 
generally highest for “F” (meaning less evi-
dence of jumps there), then for “U” and then 
for “M.” Similar results obtain if the mean is 
employed instead of the median. But as the 
sampling frequency increases, the evidence 
in favor of the presence of jumps becomes 
more mixed, when the 30 components of 
the DJIA are taken in the aggregate. When 
implemented on the DJIA index itself, we 
find values of  S J  that range between 1.5 and 
2.5, providing between less evidence in favor 
of jumps and evidence against them for the 
index at the lower frequencies and for the 
time period considered.

However, two points should be emphasized 
here. First, the histogram is more spread out 
when frequency decreases because less data 
are used and the statistical error increases, 
so that the procedure becomes less conclu-
sive. Second, when the sampling frequency 
is low, the statistic  S J  should not necessarily 
be expected to be close to its limiting value, 
1 or 2, which is the theoretical limit when the 
frequency 1/ Δ n  goes to infinity.

Finally, we check if any cross-sectional 
differences in  S J  can be explained by cross-
sectional differences in liquidity among the 
thirty stocks. To this aim, the lower two pan-
els on figure 9 show the results of a nonlinear 
regression of the statistic  S J  on two stock-
level measures of liquidity, the average time 
between successive trades, and the average 
size of the transactions. Both regressions 
show a slight decrease in  S J  values as the 
asset becomes less liquid, meaning higher 
time between trades and lower transaction 
size, but neither result is strong enough to 
be noticeable.

9.2 Jumps: Finite or Infinite Activity

 S J  tells us that jumps are likely to be pres-
ent, but it cannot distinguish between finite 

and infinite activity jumps. For this, we turn 
to the statistic  S FA  which is like  S J  with the 
addition of truncation.

Whenever we need to truncate, we express 
the truncation cutoff level  u n  in terms of a 
number α of standard deviations of the con-
tinuous part of the semimartingale. That ini-
tial standard deviation estimate is obtained 
by using B(2, 4σ Δ  n  1/2 ,  Δ n  ) where σ is a fixed 
realistic value for the asset under consider-
ation; we use σ = 0.25. The specific value 
of this number serves only to identify a rea-
sonable range of values; it does not matter 
asymptotically. It does of course matter in 
small samples, and so we suggest picking a 
realistic value for the asset and time period. 
We then use for the truncation level  u n  dif-
ferent multiples of it. Our view of the joint 
choice of (ϖ, α ) is that they are not inde-
pendent parameters in finite sample: they 
are different parameters for asymptotic pur-
poses but in finite samples the only relevant 
quantity is the actual resulting cutoff size  
u n . This is why we are reporting the values 
of the cutoffs  u n  in the form of the α that 
would correspond to ϖ = 1/2. This has the 
advantage of providing an easily interpreta-
ble size of the cutoff compared to the size of 
the increments that would be expected from 
the Brownian component of the process: 
we can then think in terms of truncating at 
a level that corresponds to α = 4, 6, etc., 
standard deviations of the continuous part 
of the model. Since the ultimate purpose of 
the truncation is either to eliminate or con-
serve that part, it provides an immediate and 
intuitively clear reference point. Given  u n  
and this α, it is possible to back this into the 
value of the α corresponding to any ϖ, for 
that given sample size, including the value(s) 
of ϖ that satisfy the required inequalities 
imposed by the asymptotic results. This 
approach would lose its effectiveness if we 
were primarily interested in testing the valid-
ity of the asymptotic approximation as the 
sample size varies, but for applications, by 
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definition on a finite sample, it seems to us 
that the interpretative advantage outweighs 
this disadvantage.

Each one of the statistic below is com-
puted separately for each quarter of 2006 
and for each asset. The data for the histo-
gram in figure 10 are produced by comput-
ing for the four quarters of the year and each 
stock the value of  S FA  for a range of values 
of p from 3 to 6, α from 5 to 10 standard 
deviations,  Δ n  from 5 seconds to 2 minutes, 
and k = 2, 3. We find that the empirical val-
ues of  S FA  are distributed around 1, which is 
indicative of infinite activity jumps. That is, 
even as we truncate, the statistic continues 
to behave as if jumps are present. If only a 
finite number of jumps had been present, 
then the statistic should have behaved as if 
the process were continuous. But the histo-
grams do display a fat right tail, indicative of 
finite activity jumps for at least some of the 
DJIA components. The histograms are quite 
similar for all three data measurements, sug-
gesting that they tend to differ only because 
of the larger increments: those are indeed 
the ones that are filtered in “F” compared 
to “U,” but since they are truncated away by  
S FA  anyway, then for the purpose of comput-
ing  S FA  the two data measurements produce 
close results.

The middle right panel in figure 10 dis-
plays the mean value of  S FA  (across the four 
quarters, two stocks, and values of p, α and 
k) as a function of  Δ n . A pattern similar to 
the corresponding plot in figure 9 emerges. 
Even for very small values of  Δ n , the noise 
does not dominate (limits below 1), instead 
the limit is around 1 as  Δ n  increases away 
from the frequencies where the noise would 
have been expected to dominate. Unless 
we start downsampling more (reaching 5 to 
10 minutes), the limit does not get close to  
k  p/2−1 . The lower panels examine any pat-
terns linking  S FA  to stock-level measures of 
liquidity; no strong cross-sectional pattern 
emerges.

Overall, the evidence suggests the pres-
ence of infinite activity jumps in the DJIA 
30 components. To the extent that jumps 
are present in the DJIA index itself, the evi-
dence is in favor of finite activity jumps: we 
find values of  S FA  ranging from 1.7 to 2.2 for 
the index.

9.3 Brownian Motion: Present or Not

In light of the likely presence of infinite 
activity jumps identified by  S FA , it makes 
sense to ask empirically whether a Brownian 
component is needed at all. For this purpose, 
we turn to the statistic  S W .

Figure 11 displays histograms of the dis-
tribution of  S W  obtained by computing its 
value for the four quarters of the year for a 
range of values of p from 1 to 1.75, α from 
5 to 10 standard deviations,  Δ n  from 5 sec-
onds to 2 minutes, and k = 2, 3. The empiri-
cal estimates are always on the side of the 
limit arising in the presence a continuous 
component. Even as the sampling frequency 
increases, the noise is not a dominant factor, 
although as usual, lower values of  S W  below 
1 are now obtained and for very high sam-
pling frequencies, the results are consistent 
with some mixture of the noise driving the 
asymptotics.

This is confirmed by the middle right 
panel in figure 11, which displays the mean 
value of  S W  (across the four quarters, two 
stocks, and values of p, α, and k) as a func-
tion of  Δ n . As we downsample away from 
the  noise-dominated frequencies, the aver-
age value of the statistic settles down toward 
the one indicating presence of a Brownian 
motion.

Because values of p less than two are 
employed by the statistic  S W , we find rela-
tively small differences between the results 
for filtered and unfiltered transactions: since 
they differ mainly by a few of their large 
increments, but values of p < 2 tend to 
underemphasize large increments, we obtain 
similar results for “F” and “U.” The lower 
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Figure 10. Test Statistic SFA to Test Whether Jumps Have Finite or Infinite Activity DJIA 30 Components
Notes: Empirical distribution of  S FA  for all 30 DJIA components, 2006, measured using transactions (unfil-
tered and NBBO-filtered) and NBBO quotes midpoint, median value of  S FA  as a function of the sampling 
interval  Δ n , and nonlinear regression of  S FA  against stock-level liquidity measures.
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Figure 11. Test Statistic SW to Test Whether Brownian Motion is Present DJIA 30 Components
Notes: Empirical distribution of  S W  for all 30 DJIA components, 2006, measured using transactions (unfiltered 
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panels look at the relationship between  S W  
and the underlying asset’s liquidity. Like  S J , 
we find that there is a very slight increase 
in the value of the statistic as the asset 
becomes more liquid. In the case of the 
DJIA index, we find that a Brownian motion 
is likely present, except at the highest fre-
quencies. Indeed, increments of the index 
tend to be very smooth owing to the nature 
of the index as an average. It is possible that 
the averaging involved in the construction 
of the index may lead to detect a spurious 
Brownian component in the index.

9.4 QV Relative Magnitude

The previous empirical results indicate 
that are likely in the presence of a jump as 
well as a continuous component in the DJIA 
30 stocks. We can then ask what fraction of 
the QV is attributable to the continuous and 
jump components.

The histograms in figure 12 are obtained 
from computing the fraction of QV from the 
Brownian component using the four quar-
ters, two stocks, values of α ranging from 2 
to 5 standard deviations, in increments of 
1 , and  Δ n  from 5 seconds to 2 minutes in 
the same increments as earlier. We find val-
ues around 75 percent for “F” and “U,” and 
somewhat lower for “M,” around 60 percent 
with some stock/quarter samples leading to 
values that are in fact indicative of an almost 
pure jump process in the quotes data.

In the middle right panel (similar but as 
a function of  Δ n ), we see that the estimated 
fraction is fairly stable as we vary the sam-
pling frequency. It is also quite stable for the 
two different measurements of the transac-
tions data, “F” and “U,” and the quotes data 
“M,” going up slightly as the sampling fre-
quency decreases. The lower panels show a 
more pronounced increase in the Brownian-
driven of QV as a function of the asset’s 
liquidity: using both measures, we find that 
more liquid assets are associated with a 
higher proportion of Brownian-driven QV.

In the case of the DJIA index, we find 
values that range from 85 percent to 95 
percent, suggesting in line with the previ-
ous evidence that jumps are less of a fac-
tor for the index. Incidentally, one could 
imagine measuring the proportion of jumps 
that are systematic versus those that are 
idiosyncratic on the basis of the comparison 
between percentQV estimated for the index 
and for its components.

9.5 Estimating the Degree of Jump Activity

Finally, we estimate the degree of jump 
activity β. We found above that infinite activ-
ity jumps were likely present in the data. We 
are now asking how active are those jumps 
among all infinitely active jumps.

Of all the empirical methods employed 
in the paper, estimating β is the one that 
requires the largest sample size due to its 
reliance on truncating from the right in the 
power variations U. That is, the estimators 
of β discard by construction a large fraction 
of the original sample and to retain a suf-
ficient number of observations to the right 
of a cutoff  u n  given by 5 or more standard 
deviations of the continuous part, we need to 
have a large sample to begin with. So we will 
estimate β using only the first two sampling 
frequencies, 5 and 10 seconds on a quarterly 
basis. In the case of the previous statistics, 
we noted that these sampling frequencies 
were subject to market microstructure noise. 
Here, however, because we are only retain-
ing the increments larger than the cutoff  u n  
instead of those smaller than the cutoff, this 
could be less of a concern despite the ultra 
high sampling frequencies.

We find estimated β   s in the range from 1.5 
to 1.8, indicating a very high degree of jump 
activity, in effect much closer to Brownian 
motion than to compound Poisson. The 
filtered transactions produce the highest 
estimates of β, leading on average to a pro-
cess that effectively looks like Brownian 
motion. Figure 13 reports the values of the 
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Figure 12. Proportion of Quadratic Variation Attributable to the Continuous  
Component DJIA 30 Components

Notes: Empirical distribution of the proportion of QV attributable to the continuous component for all 30 
DJIA components, 2006, measured using transactions (unfiltered and NBBO-filtered) and NBBO quotes 
midpoint, median value of %QV as a function of the sampling interval  Δ n  and nonlinear regression of % QV 
against stock-level liquidity measures.
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Figure 13. Estimate of the Degree of Jump Activity β DJIA 30 Components 
Notes: Empirical distribution of the index of jump activity β for all 30 DJIA components, 2006, measured 
using transactions (unfiltered and NBBO-filtered) and NBBO quotes midpoint, and median value of the 
estimated β as a function of the sampling interval  Δ n , and nonlinear regression of the estimated β against 
stock-level liquidity measures.
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 estimator    β  computed for the four quarters 
of the year, the two stocks, a range of values 
of α from 5 to 10 standard deviations, and  
Δ n  from 5 to 10 seconds. The middle right 
plot reports the corresponding data against 
the limited range of  Δ n  employed. Within 
the context of their parametric model, Carr 
et al. (2002) also found estimates of β on 
most stock return series that were greater 
than zero. (By contrast, the estimates 
here do not rely on a parametric structure 
for the rest of the model, so they can be 
thought of as semiparametric.) The lower 
panels, relating the estimated values of β to 
stock-level liquidity, do not display strong 
patterns.

Looking at the DJIA index itself, to the 
extent that an infinite activity component is 
present, we find that it is less active, with 
estimated values of β ranging from 0.9 to 
1.4. But in light of the results of the test of 
finite versus infinite jump activity, this com-
ponent is likely small in the index relative to 
the finite activity component.

9.6 Economic Implications of the Empirical 
Results

We have documented some of the salient 
features of asset returns viewed through 
the prism of a semimartingale, with the 
important caveat that we are naturally in no 
position to claim that the empirical results 
obtained above are general, universal, or 
anything remotely approaching these quali-
fiers. They are of course sensitive to the spe-
cific data series, how prices are measured 
(quotes versus transactions for instance), 
the time period and, importantly, choices 
made in the way the data are treated, 
including the filtering procedures described 
above. We believe we have made sensible 
or at least defensible selections when pre-
sented with a choice, but it is important to 
keep these caveats in mind as we embark 
upon a discussion of the implications of the 
results.

9.6.1 Implications for Option Pricing

As is well known, option and derivative 
prices can be computed as the risk-free dis-
counted expected value of their payoffs pro-
vided that the expected value is computed 
under an equivalent martingale measure, ℚ. 
The analysis in this paper is, and can only be, 
entirely conducted under the physical prob-
ability measure, ℙ, since we rely exclusively 
on log-returns of the underlying assets which 
are observed under ℙ. As such, this analysis 
does not lend itself directly to conclusions 
for option or other derivative prices, which 
depend upon the properties of the semi-
martingale under ℚ. However, important 
features of the process identified under ℙ do 
translate into similar features under ℚ and as 
a result what our econometric methods are 
able to identify under ℙ have implications for 
derivative pricing.

Specifically, economic theory dictates that 
ℙ and ℚ must be absolutely continuous with 
respect to each other, ℙ ∼ ℚ, meaning that 
the two probability measures must have 
the same null sets. This requirement limits 
the possible ways in which the features of 
the process under ℚ can differ from those 
already identified empirically under ℙ. As 
is well known, if the process is continuous 
under ℙ, it must be continuous under ℚ, 
and vice versa. Hence, if jumps are possible 
under one measure they must be possible 
under the other as well. Thus the evidence in 
favor of jumps in the dynamics of the under-
lying asset therefore argues in favor of mod-
els with jumps in option pricing. This is of 
course well-accepted in the empirical option 
pricing, see, e.g., Bates (1991) for some early 
evidence.

But more subtle findings of our analysis 
can also be translated into similar features 
under the pricing measure ℚ. Two types of 
quantities are indeed almost surely identical 
pathwise, that is, are the same under both ℙ 
and ℚ: one is the quadratic variation of the 
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process, hence in particular its continuous 
part, that is the process  ∫0  

t   σ  s  
2   ds. The other 

is the set  I T  of nonnegative reals p for which 
the sum  ∑ s≤T   

   |  Δ  X s   | 
p  is almost surely finite. 

In other words, the process  ∫0  
t   σ  s  

2   ds for all 
t ∈ [0, T ] and the set  I T  are the same under 
ℙ and under ℚ.

As a consequence, the proportion of QV 
estimated in the empirical analysis under ℙ 
must be the same under ℚ. Also, the absence 
of Brownian motion (tested under ℙ using  
S W ), which amounts to saying that  σ t  = 0 for 
Lebesgue-almost all t in [0, T ] , holds under 
ℙ if and only if it holds under ℚ. The degree 
of jump activity β (the Blumenthal–Getoor 
index, estimated above), which is the infi-
mum of all p in the set  I T , is also the same 
under the two measures, that is

(45)  β ℙ  =  β ℚ .

And the fact that jumps have finite activity 
(tested under ℙ using  S FA ) which amounts 
to saying that 0 belongs to  I T , is again true 
under ℙ if and only if it is true under ℚ.

On the other hand, some features of the 
model may hold under ℙ and not under ℚ, 
or vice-versa: typically, these concern the 
drift, which changes more or less arbitrarily 
when we change the measure, or the law of 
the big jumps, that is the tails of ν. In other 
words, the components of the model that 
are identified at high frequency under ℙ by 
the spectrogram analysis (volatility, presence 
or not of jumps, finite or infinite activity, 
degree of jump activity, presence or not of 
the Brownian motion, proportion of continu-
ous QV) happen to be the ones that are also 
restricted by the change of measure, while 
those that cannot be identified at high fre-
quency (drift, law of the big jumps) are not.

The consequence of the previous dis-
cussion, and in particular of the restriction 
(45), combined with the empirical evidence 
regarding the estimated value of  β ℙ  is to 
make some option pricing models more 

likely than others to be in agreement with 
the empirical evidence on the dynamics of 
the underlying asset price process. There 
are many option pricing models in the litera-
ture which include jumps, and quite often 
rely on specific Lévy processes, with specific 
values of  β ℚ . Examples include compound 
Poisson-based models starting with Merton 
(1976), the variance gamma model of Madan 
and Seneta (1990) and Madan, Carr, and 
Chang (1998) ( β ℚ  = 0), the Normal Inverse 
Gaussian model of Barndorff-Nielsen  
(1998) ( β ℚ  = 1), the hyperbolic model of 
Eberlein and Keller (1995), the general-
ized hyperbolic model of Barndorff-Nielsen 
(1977) and the CGMY model of Carr et al. 
(2002) (in which  β ℚ  is a free parameter). In 
the case of the data studied in this paper, 
models that allow for unrestricted values of  
β ℚ  are likely to be more plausible candidates 
than those that restrict  β ℚ  to be small, 0 in 
particular. Indeed we tend to find empiri-
cally relatively high degrees of jump activity 
in  β ℙ . This is compatible with the findings 
from the literature on empirical option pric-
ing with Lévy processes, where models with 
significant infinite-activity return innova-
tions, that is a component with a  β ℚ  > 0, tend 
to be more accurate in their pricing of equity 
options than those with finite activity or sub-
polynomial infinite activity,  β ℚ  = 0 (see, e.g., 
Carr et al. 2002 and Huang and Wu 2004).

Models with jumps of finite or infinite 
activity also have differential implications for 
the prices of options at short and long hori-
zons. As option maturities approach zero, 
out-of-the-money option values tend to zero. 
The speed of decay is exponential when the 
process is continuous, but linear in time-to-
maturity T in the presence of jumps (see Carr 
and Wu 2003b). In the presence of jumps, 
the implied volatility for an out-of-the-money 
option diverges as T → 0. This holds in the 
presence of small and big jumps alike.

As option maturity increases, on the other 
hand, the big jumps component becomes 
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a key element. From the Black–Scholes 
scenario, one would expect the implied 
volatility smile to flatten as a result of the 
Central Limit Theorem. The empirical evi-
dence suggests, on the other hand, that the 
smile steepens instead (see, e.g., Foresi and 
Wu 2005). The big jumps component can 
explain this fact. In a model where the vari-
ance of returns is infinite, a situation that 
can only arise because of the big jumps, the 
Central Limit Theorem ceases to apply for 
long-maturity asymptotics. But on the other 
hand, if most big jumps are negative, then 
the option would still retain a finite value, 
as observed empirically. In other words, the 
combination of components identified here 
under ℙ results in a plausible configuration 
for the model in light of the available evi-
dence under ℚ from the empirical option 
pricing literature.

9.6.2 Implications for Risk Management

Risk management is primarily concerned 
with the tails of the returns distributions over 
different horizons, from the very short term 
horizons (a few seconds or minutes for high 
frequency trading applications), to the typi-
cal 10 days characteristic of VaR calculations, 
to the longer horizons relevant in portfolio 
management.

On a micro time scale, the main risk faced 
by a market participant practicing high fre-
quency trading comes from the small jumps 
component, since the continuous com-
ponent is small (of order  Δ n ), and the big 
jumps component is very unlikely to give rise 
to realization over a very short interval. As 
discussed, we find the small jumps risk to 
be prevalent in individual equities we stud-
ied. The finer properties of the small jump 
component become an important consider-
ation: as β increases, small jumps become 
more and more likely, and anecdotal evi-
dence from the rapidly growing practice 
of high frequency trading suggests that the 
small jumps  component is indeed a key 

 consideration in the implementation of some 
of these strategies.

On a macro time scale, the implications 
are much more tenuous. The specification 
of the price process derived from the spec-
trogram methodology is nonparametric in 
nature, and relies on high frequency obser-
vations. As such, it fully identifies the behav-
ior of the jump measure near 0. It is common 
in finance to rely on parametric models. One 
can imagine the nonparametric methodology 
employed here being helpful to select one 
parametric model over another.

Most parametric models rely on extrapo-
lation in that the tails of the jump measure 
(i.e., the big jumps driver) is linked through 
parametric assumptions to the behavior of 
the jump measure near 0; within that frame-
work, identifying the behavior of ν near 0 is 
sufficient to characterize fully the jump mea-
sure. It is of course difficult in any case to pin 
down precisely how heavy the tail distribu-
tions are, since rare events require extremely 
large samples, that is, long time periods, to 
get realized in sufficient quantities to char-
acterize precisely the big jumps component 
(see, e.g., Heyde and Kou 2004). Long sam-
ple sizes in turn require an implicit assump-
tion of model stability over the observation 
horizon. Alternatively, by time aggregation, 
one can derive the implications for long hori-
zons of the continuous-time model identified 
over short horizons, typically by simulations. 
But, overall, drawing long-horizon implica-
tions from this analysis entails successive 
leaps of faith that make it potentially fraught 
with dangers.

9.6.3 Individual Assets versus Stock 
 Indices, Factor Models and 
 Systematic versus Idiosyncratic Risk

As part of the empirical analysis above, 
we compared the result of the spectrogram 
methodology on the DJIA and its compo-
nents. We found that while the individual 
components seemed to contain an infinite 
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activity jump component with a fairly high 
degree of jump activity, the evidence for 
the index was pointing more toward a finite 
activity component only.

This empirical evidence can be interpreted 
in light of a factor model with systematic 
and idiosyncratic components. If we further 
decompose the two jump components in the 
model (2) for individual stocks into a com-
mon component and an idiosyncratic com-
ponent, then when an idiosyncratic jump 
occurs the other stock prices do not jump, 
so the influence of this particular jump on 
the index, which is an average, is essentially 
wiped out: the index will not exhibit a jump 
of significant size. In contrast, a systematic 
jump will typically occur at the same time 
(and often with the same sign) for most or 
all stocks, resulting in a jump of the index. 
Therefore, the absence of empirical evi-
dence in favor of infinite activity jumps in the 
index, combined with their presence in the 
individual components, point toward purely 
idiosyncratic small jump components in the 
individual assets.

This makes sense if we think of most sys-
tematic, i.e., marketwide, price moves as 
driven by important macroeconomic news 
and therefore likely to be large. On the other 
hand, small infinite activity jumps are more 
likely to reflect individual stock-level consid-
erations, such as stock-specific information 
and its immediate trading environment, and 
therefore be idiosyncratic.

Consistent with this, we also found that 
the proportion of quadratic variation attrib-
utable to jumps is lower for the index than 
for its individual components. One could 
conceivably measure the proportion of 
jumps that are systematic versus those that 
are idiosyncratic on the basis of the compari-
son between the proportions of quadratic 
variation estimated for the index and for its 
components. Doing this using the empiri-
cal results above would suggest a propor-
tion of systematic jumps representing about 

10  percent of the total quadratic variation, 
and a proportion of idiosyncratic jumps rep-
resenting about 15 percent of total quadratic 
variation, with the remaining 75 percent 
representing the continuous part of the total 
quadratic variation. This breakdown ulti-
mately determines the empirical importance 
of (different types of) jumps as a source of 
asset returns variance.

9.6.4 Implications for Optimal Portfolio 
 Choice

The presence of jumps in asset returns 
changes significantly the optimal solution 
to an investor’s consumption/investment 
problem. One particular consequence of 
jumps are strong correlations among the 
returns of different assets, especially time-
varying correlations that tend to increase 
in bad times. Jumps that are at least partly 
systematic across asset classes will directly 
produce this pattern, which is observed 
consistently in the data. When a down-
ward jump occurs, negative returns tend 
to be experienced simultaneously across 
most markets, which then results in a high 
positive correlation during those episodes. 
When no jump occurs, the only source of 
correlation is that generated by the contin-
uous component of the model, which will 
typically be lower.

The salient implication of such jumps 
is to reduce the diversification potential 
of, among others, international assets: in 
bad times, when their low correlation with 
domestic assets would have been particu-
larly helpful, that low correlation is no longer 
present. Hedging such jumps in the portfolio 
context is difficult. Aït-Sahalia, Cacho-Diaz, 
and Hurd (2009) analyze this problem and 
show in their simplest model with jumps 
that the optimal portfolio is characterized by 
three-fund separation, instead of the famil-
iar two-fund separation that prevails in both 
the static Markowitz model and the dynamic 
Merton model without jumps.
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With jumps, one needs three funds to repli-
cate the optimal portfolio of an investor, such 
that the investor becomes indifferent between 
the original assets or just the three funds; the 
proportions of each fund invested in the indi-
vidual assets depend only on the asset return 
characteristics while the investor’s optimal 
demands for the three funds depend on his 
or her utility function. The classical two funds 
are the risk-free asset and the market portfo-
lio. The third and new fund is a long–short 
fund that generates no exposure to the sys-
tematic portion of the jump risk.

10. Conclusions

The methods described in this paper pro-
vide a means to decompose an asset price 
process into its base components, analyze 
their relative magnitude and some of their 
finer characteristics. In terms of methodol-
ogy, our assessment at present is the follow-
ing. The pros of the approach are: a unified 
methodology to address all these seemingly 
disparate specification questions in a com-
mon framework; a symmetric treatment of 
null and alternative hypotheses in each case, 
including the full distribution theory; test 
statistics that are all model-free; extremely 
simple to implement in practical applica-
tions; and, finally, a characterization of the 
impact of two important types of market 
microstructure noise, additive and rounding, 
on the various statistics. Refinements of the 
approach are starting to be developed (see 
Fan and Fan 2011 and Jing et al. 2012).

The cons of the approach, at present, are 
the flip side of the commonality of tech-
nique: if we take individually each one of the 
specification questions we have identified, 
then the statistic we have proposed for that 
problem, based on that common approach, is 
not necessarily the optimal approach for that 
individual specification question. Also, the 
practical implementation of this method does 
require high frequency data ( particularly the 

estimation of the degree of jump activity β, 
which requires ultra-high frequency data). 
Finally, while we understand what happens 
to each one of the statistics when microstruc-
ture noise dominates, we do not yet have 
noise-robust statistics that would be fully 
immune to the presence of the noise.

The empirical results on the DJIA 30 com-
ponents appear to indicate that jumps are 
present in the data; point towards the pres-
ence of infinite activity jumps; of degree of 
jump activity that is around 1.5 or higher; 
indicate that, on top of the jump components, 
a continuous component is present; which 
represents approximately three- quarters of 
the total QV.

The analysis of different measurement 
mechanisms suggests that the results are 
fairly consistent when various ways of 
measuring the data (“F,” “U,” or “M”) are 
employed. The DJIA index itself looks quite 
different, when viewed through this prism, 
than its individual components. In particular, 
although market microstructure noise is less 
a factor for all DJIA 30 stocks than it actually 
is for its two Nasdaq components (Microsoft 
and Intel), there is very little evidence of 
noise even at the highest frequencies for the 
index itself. And there is less evidence for 
the presence of jumps in the index than in 
its components, and less evidence for infinite 
activity jumps than in the components, or at 
least less active small jumps.

Of course, we do not claim on the basis 
of this limited evidence that these empirical 
results are in any way “universal”: they are 
likely in general to depend upon the assets 
under consideration, the time period, what 
type of data are used (transactions, quotes, 
etc.), among other considerations. The meth-
odology employed on U.S. Treasuries allows 
Dungey and Yalama (2010) to document 
interesting differences between the proper-
ties of the price process before and during 
the 2007–08 acute phase of the recent finan-
cial crisis.



Journal of Economic Literature, Vol. L (December 2012)1048

References

Aït-Sahalia, Yacine. 1996. “Nonparametric Pricing of 
Interest Rate Derivative Securities.” Econometrica 
64 (3): 527–60.

Aït-Sahalia, Yacine. 2002. “Telling from Discrete Data 
Whether the Underlying Continuous-Time Model Is 
a Diffusion.” Journal of Finance 57 (5): 2075–2112.

Aït-Sahalia, Yacine. 2004. “Disentangling Diffusion 
from Jumps.” Journal of Financial Economics 74 (3): 
487–528. 

Aït-Sahalia, Yacine, Julio Cacho-Diaz, and T. R. Hurd. 
2009. “Portfolio Choices with Jumps: A Closed-
Form Solution.” Annals of Applied Probability 19 
(2): 556–84.

Aït-Sahalia, Yacine, and Jean Jacod. 2008. “Fisher’s 
Information for Discretely Sampled Lévy Processes.” 
Econometrica 76 (4): 727–61.

Aït-Sahalia, Yacine, and Jean Jacod. 2009a. “Estimating 
the Degree of Activity of Jumps in High Frequency 
Data.” Annals of Statistics 37 (5A): 2202–44.

Aït-Sahalia, Yacine, and Jean Jacod. 2009b. “Testing for 
Jumps in a Discretely Observed Process.” Annals of 
Statistics 37 (1): 184–222.

Aït-Sahalia, Yacine, and Jean Jacod. 2010. “Is Brownian 
Motion Necessary to Model High-Frequency Data?” 
Annals of Statistics 38 (5): 3093–3128.

Aït-Sahalia, Yacine, and Jean Jacod. 2011. “Testing 
Whether Jumps Have Finite or Infinite Activity.” 
Annals of Statistics 39 (3): 1689–1719.

Aït-Sahalia, Yacine, Per A. Mykland, and Lan Zhang. 
2005. “How Often to Sample a Continuous-Time 
Process in the Presence of Market Microstructure 
Noise.” Review of Financial Studies 18 (2): 351–416.

Aït-Sahalia, Yacine, Per A. Mykland, and Lan Zhang. 
2011. “Ultra High Frequency Volatility Estimation 
with Dependent Microstructure Noise.” Journal of 
Econometrics 160 (1): 160–75. 

Andersen, Torben G., Tim Bollerslev, and Francis X. 
Diebold. 2007. “Roughing It Up: Including Jump 
Components in the Measurement, Modeling, and 
Forecasting of Return Volatility.” Review of Econom-
ics and Statistics 89 (4): 701–20.

Andersen, Torben G., Tim Bollerslev, and Francis X. 
Diebold. 2010. “Parametric and Nonparametric 
Volatility Measurement.” In Handbook of Finan-
cial Econometrics: Volume 1: Tools and Techniques, 
edited by Yacine Aït-Sahalia and Lars Peter Han-
sen, 67–137. Amsterdam and Boston: Elsevier, 
North-Holland.

Bachelier, L. 1900. “Théorie de la spéculation.” Annales 
Scientifiques de l’École Normale Supérieure 3: 21–86.

Ball, Clifford A., and Walter N. Torous. 1983. “A Sim-
plified Jump Process for Common Stock Returns.” 
Journal of Financial and Quantitative Analysis 18 
(1): 53–65.

Bandi, Federico M., and Jeffrey R. Russell. 2006. “Sep-
arating Microstructure Noise from Volatility.” Jour-
nal of Financial Economics 79 (3): 655–92. 

Barndorff-Nielsen, Ole E. 1977. “Exponentially 
Decreasing Distributions for the Logarithm of 

 Particle Size.” Proceedings of the Royal Society of 
London A 353 (1674): 401–19.

Barndorff-Nielsen, Ole E. 1997. “Normal Inverse 
Gaussian Distributions and Stochastic Volatility 
Modelling.” Scandinavian Journal of Statistics 24 
(1): 1–13.

Barndorff-Nielsen, Ole E. 1998. “Processes of Normal 
Inverse Gaussian Type.” Finance and Stochastics 2 
(1): 41–68.

Barndorff-Nielsen, Ole E., Peter Reinhard Hansen, 
Asger Lunde, and Neil Shephard. 2008. “Designing 
Realized Kernels to Measure the Ex Post Variation of 
Equity Prices in the Presence of Noise.” Economet-
rica 76 (6): 1481–1536.

Barndorff-Nielsen, Ole E., and Neil Shephard. 2004. 
“Power and Bipower Variation with Stochastic Vola-
tility and Jumps.” Journal of Financial Econometrics 
2 (1): 1–37.

Bates, David S. 1991. “The Crash of ’87: Was It 
Expected? The Evidence from Options Markets.” 
Journal of Finance 46 (3): 1009–44.

Belomestny, Denis. 2010. “Spectral Estimation of the 
Fractional Order of a Lévy Process.” Annals of Sta-
tistics 38 (1): 317–51.

Blumenthal, R., and R. Getoor. 1961. “Sample Func-
tions of Stochastic Processes with Stationary Inde-
pendent Increments.” Journal of Mathematics and 
Mechanics 10: 493–516. 

Carr, Peter, Hélyette Geman, Dilip B. Madan, and Marc 
Yor. 2002. “The Fine Structure of Asset Returns: An 
Empirical Investigation.” Journal of Business 75 (2): 
305–32.

Carr, Peter, and Liuren Wu. 2003a. “The Finite 
Moment Log Stable Process and Option Pricing.” 
Journal of Finance 58 (2): 753–77.

Carr, Peter, and Liuren Wu. 2003b. “What Type of 
Process Underlies Options? A Simple Robust Test.” 
Journal of Finance 58 (6): 2581–2610.

Carr, Peter, and Liuren Wu. 2004. “Time-Changed 
Lévy Processes and Option Pricing.” Journal of 
Financial Economics 71 (1): 113–41. 

Cont, Rama, and Cecilia Mancini. 2011. “Nonpara-
metric Tests for Pathwise Properties of Semimartin-
gales.” Bernoulli 17 (2): 781–813.

Cootner, Paul H. 1964. The Random Character of Stock 
Market Prices. Cambridge, Mass. and London: MIT 
Press.

Delattre, Sylvain. 1997. “Estimation du coefficient de 
diffusion avec erreur d’arrondi.” Unpublished.

Delattre, Sylvain, and Jean Jacod. 1997. “A Central 
Limit Theorem for Normalized Functions of the 
Increments of a Diffusion Process, in the Presence 
of Round-Off Errors.” Bernoulli 3 (1): 1–28.

Delbaen, Freddy, and Walter Schachermayer. 1994. 
“A General Version of the Fundamental Theorem 
of Asset Pricing.” Mathematische Annalen 300: 
463–520.

Duffie, Darrell, Jun Pan, and Kenneth Singleton. 2000. 
“Transform Analysis and Asset Pricing for Affine 
Jump-Diffusions.” Econometrica 68 (6): 1343–76.

Dungey, Mardi, and Abdullah Yalama. 2010. 



1049Aït-Sahalia and Jacod: Analyzing the Spectrum of Asset Returns

“ Observing the Crisis: Characterising the Spectrum 
of US Treasury Markets with High Frequency Data, 
2004–2008.” Unpublished.

Eberlein, Ernst, and Ulrich Keller. 1995. “Hyperbolic 
Distributions in Finance.” Bernoulli 1 (3): 281–99.

Fan, Jianqing, and Yazhen Wang. 2007. “Multi-scale 
Jump and Volatility Analysis for High-Frequency 
Financial Data.” Journal of the American Statistical 
Association 102 (480): 1349–62.

Fan, Yingying, and Jianqing Fan. 2011. “Testing and 
Detecting Jumps Based on a Discretely Observed 
Process.” Journal of Econometrics 164 (2): 331–44.

Foresi, Silverio, and Liuren Wu. 2005. “Crash-O-Pho-
bia: A Domestic Fear or a Worldwide Concern?” 
Journal of Derivatives 13 (2): 8–21.

Gatheral, Jim, and Roel C. A. Oomen. 2010. “Zero-
Intelligence Realized Variance Estimation.” Finance 
and Stochastics 14 (2): 249–83.

Glosten, Lawrence R. 1987. “Components of the Bid–
Ask Spread and the Statistical Properties of Transac-
tion Prices.” Journal of Finance 42 (5): 1293–1307.

Glosten, Lawrence R., and Lawrence Harris. 1988. 
“Estimating the Components of the Bid/Ask Spread.” 
Journal of Financial Economics 21 (1): 123–42.

Gottlieb, Gary, and Avner Kalay. 1985. “Implications of 
the Discreteness of Observed Stock Prices.” Journal 
of Finance 40 (1): 135–53.

Hansen, Lars Peter, and Jose Alexandre Scheinkman. 
1995. “Back to the Future: Generating Moment 
Implications for Continuous-Time Markov Pro-
cesses.” Econometrica 63 (4): 767–804.

Hansen, Peter Reinhard, and Asger Lunde. 2006. 
“Realized Variance and Market Microstructure 
Noise.” Journal of Business and Economic Statistics 
24 (2): 127–61.

Harris, Lawrence. 1990a. “Estimation of Stock Price 
Variances and Serial Covariances from Discrete 
Observations.” Journal of Financial and Quantitative 
Analysis 25 (3): 291–306.

Harris, Lawrence. 1990b. “Statistical Properties of the 
Roll Serial Covariance Bid/Ask Spread Estimator.” 
Journal of Finance 45 (2): 579–90.

Harrison, J. Michael, and Stanley R. Pliska. 1981. “Mar-
tingales and Stochastic Integrals in the Theory of 
Continuous Trading.” Stochastic Processes and Their 
Applications 11 (3): 215–60.

Hasbrouck, Joel. 1993. “Assessing the Quality of a 
Security Market: A New Approach to Transaction-
Cost Measurement.” Review of Financial Studies 6 
(1): 191–212.

Heyde, C. C., and S. G. Kou. 2004. “On the Contro-
versy over Tailweight of Distributions.” Operations 
Research Letters 32 (5): 399–408.

Huang, Jing-Zhi, and Liuren Wu. 2004. “Specification 
Analysis of Option Pricing Models Based on Time-
Changed Lévy Processes.” Journal of Finance 59 (3): 
1405–39.

Huang, Xin, and George Tauchen. 2005. “The Relative 
Contribution of Jumps to Total Price Variance.” Jour-
nal of Financial Econometrics 3 (4): 456–99.

Jacod, Jean, Yingying Li, Per A. Mykland, Mark 

 Podolskij, and Mathias Vetter. 2009. “Microstructure 
Noise in the Continuous Case: The Pre-averaging 
Approach.” Stochastic Processes and Their Applica-
tions 119 (7): 2249–76.

Jiang, George J., and Roel C. A. Oomen. 2008. “Test-
ing for Jumps When Asset Prices Are Observed with 
Noise—a ‘Swap Variance’ Approach.” Journal of 
Econometrics 144 (2): 352–70. 

Jing, Bing-Yi, Xin-Bing Kong, Zhi Liu, and Per A. 
Mykland. 2012. “On the Jump Activity Index for 
Semimartingales.” Journal of Econometrics 166 (2): 
213–23.

Kalnina, Ilze, and Oliver Linton. 2008. “Estimating 
Quadratic Variation Consistently in the Presence 
of Endogenous and Diurnal Measurement Error.” 
Journal of Econometrics 147 (1): 47–59. 

Lee, Suzanne S., and Jan Hannig. 2010. “Detecting 
Jumps from Lévy Jump Diffusion Processes.” Jour-
nal of Financial Economics 96 (2): 271–90. 

Lee, Suzanne S., and Per A. Mykland. 2008. “Jumps in 
Financial Markets: A New Nonparametric Test and 
Jump Dynamics.” Review of Financial Studies 21 (6): 
2535–63.

Li, Yingying, and Per A. Mykland. 2007. “Are Volatil-
ity Estimators Robust with Respect to Modeling 
Assumptions?” Bernoulli 13 (3): 601–22.

Li, Yingying, Per A. Mykland, Eric Renault, Lan Zhang, 
and Xinghua Zheng. 2010. “Realized Volatility 
When Sampling Times Are Possibly Endogenous.” 
Unpublished.

Madan, Dilip B., Peter Carr, and Eric C. Chang. 1998. 
“The Variance Gamma Process and Option Pricing.” 
European Finance Review 2 (1): 79–105.

Madan, Dilip B., and Frank Milne. 1991. “Option Pric-
ing with V. G. Martingale Components.” Mathemati-
cal Finance 1 (4): 39–55.

Madan, Dilip B., and Eugene Seneta. 1990. “The 
Variance Gamma (V.G.) Model for Share Market 
Returns.” Journal of Business 63 (4): 511–24.

Madhavan, Ananth, Matthew Richardson, and Mark 
Roomans. 1997. “Why Do Security Prices Change? A 
Transaction-Level Analysis of NYSE Stocks.” Review 
of Financial Studies 10 (4): 1035–64.

Mancini, Cecilia. 2001. “Disentangling the Jumps of 
the Diffusion in a Geometric Jumping Brownian 
Motion.” Giornale dell’Istituto Italiano Attuari 64: 
19–47.

Mandelbrot, B. 1966. “Forecasts of Future Prices, 
Unbiased Markets, and ‘Martingale’ Models.” Jour-
nal of Business 39: 242–55.

Merton, Robert C. 1976. “Option Pricing When Under-
lying Stock Returns Are Discontinuous.” Journal of 
Financial Economics 3 (1–2): 125–44.

Merton, Robert C. 1992. Continuous-Time Finance. 
Malden, Mass. and Oxford: Blackwell.

Osborne, M. F. M. 1959. “Brownian Motion in the 
Stock Market.” Operations Research 7 (2): 145–73.

Roll, Richard. 1984. “A Simple Implicit Measure of the 
Effective Bid–Ask Spread in an Efficient Market.” 
Journal of Finance 39 (4): 1127–39.

Rosi  ́    n ski, Jan. 2007. “Tempering Stable Processes.” 



Journal of Economic Literature, Vol. L (December 2012)1050

Stochastic Processes and Their Applications 117 (6): 
677–707.

Samuelson, Paul A. 1965. “Proof That Properly Antici-
pated Prices Fluctuate Randomly.” Industrial Man-
agement Review 6 (2): 41–49.

Schoutens, Wim. 2003. Lévy Processes in Finance: 
Pricing Financial Derivatives. Hoboken, N.J.: 
Wiley.

Stoll, Hans R., and Christoph Schenzler. 2006. “Trades 
Outside the Quotes: Reporting Delay, Trading 
Option, or Trade Size?” Journal of Financial Eco-
nomics 79 (3): 615–53. Todorov, Viktor, and George 
Tauchen. 2010. “Activity Signature Functions for 
High-Frequency Data Analysis.” Journal of Econo-
metrics 154 (2): 125–38. 

Woerner, Jeannette H. C. 2011. “Analyzing the Fine 

Structure of Continuous Time Stochastic Processes.” 
In Seminar on Stochastic Analysis, Random Fields 
and Applications VI, edited by Robert C. Dalang, 
Marco Dozzi, and Francesco Russo, 473–92. Berlin: 
Springer.

Xiu, Dacheng. 2010. “Quasi-maximum Likelihood 
Estimation of Volatility with High Frequency Data.” 
Journal of Econometrics 159 (1): 235–50. 

Zhang, Lan. 2006. “Efficient Estimation of Stochastic 
Volatility Using Noisy Observations: A Multi-scale 
Approach.” Bernoulli 12 (6): 1019–43.

Zhang, Lan, Per A. Mykland, and Yacine Aït-Sahalia. 
2005. “A Tale of Two Time Scales: Determining Inte-
grated Volatility with Noisy High-Frequency Data.” 
Journal of the American Statistical Association 100 
(472): 1394–1411.


	Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data
	1. Introduction
	2. The Measurement Device
	2.1	The First Control: Varying the Power
	2.2	The Second Control: Varying the Truncation Rate
	2.3	The Third Control: Varying the Sampling Frequency

	3. Which Component(s) Are Present
	3.1	Jumps: Present or Not
	3.2	Jumps: Finite or Infinite Activity
	3.2.1	Null Hypothesis: Finite Activity
	3.2.2	Null Hypothesis: Infinite Activity
	3.3	Brownian Motion: Present or Not
	3.3.1	Null Hypothesis: Brownian Motion
	Present
	3.3.2	Null Hypothesis: No Brownian
	Motion

	4. The Relative Magnitude
of the Components
	5. Estimating the Degree of Jump Activity
	6. Summary of the Spectrogram Methodology: Tuning Power, Truncation, and Sampling Frequency
	7. Theoretical Limits When Market Microstructure Noise Dominates
	7.1	Additive Noise
	7.2	Rounding Noise
	7.3	Limit of Our Statistics

	8. The Data
	8.1	The Starting Data
	8.2	Bouncebacks and National Best Bid
and Offer Filter
	8.3	Individual Stocks versus Indices

	9. Empirical Results and
Economic Implications
	9.1	Jumps: Present or Not
	9.2	Jumps: Finite or Infinite Activity
	9.3	Brownian Motion: Present or Not
	9.4	QV Relative Magnitude
	9.5	Estimating the Degree of Jump Activity
	9.6	Economic Implications of the Empirical Results
	9.6.1	Implications for Option Pricing
	9.6.2	Implications for Risk Management
	9.6.3	Individual Assets versus Stock
	Indices, Factor Models and
	Systematic versus Idiosyncratic Risk
	9.6.4	Implications for Optimal Portfolio
	Choice

	10. Conclusions
	References
	Figures
	Figure 1. Deconvoluting the Log-Returns Distribution into Continuous and Jump Components
	Figure 2. Discretely Sampled Data at Interval Δ n versus Continuous-Time Sample Path, and Differencebetween Increments and Jumps
	Figure 3. Adjusting the Power p and Dominating Components in the Power Variation
	Figure 4. Adjusting the Truncation Rate u n and the Asymptotic Elimination of Large Jumps
	Figure 5. Three Possible Asymptotic Behaviors of the Power Variation (Diverge to Infinity,Converge to a Finite Limit, Converge to Zero) and Means of Identifying Them
	Figure 6. Truncating to Retain or Avoid the Contribution from the Brownian Component of the Model
	Figure 7. Index of Jump Activity β: Example of Processes
	Figure 8. Splitting up the QV into Continuous and Jump Components, and into Small and Big Jumpsas a Function of the Jump Size Cutoff ε
	Figure 9. Test Statistic SJ to Test for the Presence of Jumps DJIA30 Components
	Figure 10. Test Statistic SFA to Test Whether Jumps Have Finite or Infinite Activity DJIA 30 Components
	Figure 11. Test Statistic SW to Test Whether Brownian Motion is Present DJIA 30 Components
	Figure 12. Proportion of Quadratic Variation Attributable to the ContinuousComponent DJIA 30 Components
	Figure 13. Estimate of the Degree of Jump Activity β DJIA 30 Components

	Tables
	Table 1. The Choice of Turning Parameters p (Power), u (Truncation Parameter),and Δ (Sampling Interval)



