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a b s t r a c t

We develop and implement a technique for closed-form maximum likelihood

estimation (MLE) of multifactor affine yield models. We derive closed-form approxima-

tions to likelihoods for nine Dai and Singleton (2000) affine models. Simulations show

our technique very accurately approximates true (but infeasible) MLE. Using US

Treasury data, we estimate nine affine yield models with different market price of risk

specifications. MLE allows non-nested model comparison using likelihood ratio tests;

the preferred model depends on the market price of risk. Estimation with simulated and

real data suggests our technique is much closer to true MLE than Euler and quasi-

maximum likelihood (QML) methods.

& 2010 Elsevier B.V. All rights reserved.

1. Introduction

We develop and implement in this paper a technique
for closed-form maximum likelihood estimation of multi-
variate affine yield models of the term structure of
interest rates, and for statistical comparison of nested
and non-nested families of these models. Affine yield
models are popular among both practitioners and aca-
demics, largely because they have desirable analytical
properties and allow for straightforward pricing of bonds
and other interest rate derivatives. Bond prices, in general,
are solutions to a second-order linear partial differential

equation. For most non-affine term structure models,
solutions to this differential equation must be found
through numeric methods, which become increasingly
impractical as the number of factors underlying the model
increases. However, for affine yield models, this partial
differential equation decomposes into a system of Ricatti-
type ordinary differential equations (see, for example,
Duffie and Kan, 1996) which can be solved quickly, even
with a large number of underlying factors.

Despite their desirable analytic properties, the estima-
tion of affine yield models still poses many challenges.
The likelihood function for a vector of yields in an affine
yield model is known in closed-form only for a few special
cases. Most studies of estimation of affine yield models
outside this relatively restricted subclass have therefore
focused either on numeric techniques or method of
moments estimators. Each of these methods has its
advantages and disadvantages, which we will briefly
discuss in turn.
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Moments of affine diffusions can be found in closed-
form,1 so estimation of affine yield models through the
generalized method of moments (GMM) is feasible. As an
early example, Gibbons and Ramaswamy (1993) use this
method to estimate the model of Cox, Ingersoll, and Ross
(1985). Chacko and Viceira (2003) and Singleton (2001)
consider estimation methods based on moments derived
from the characteristic function of the transition density,
which is known in closed-form for affine diffusions, even
though the density itself is, in general, not known in
closed-form.

Dai and Singleton (2000) estimate several affine yield
models using the simulation-based efficient method of
moments. At least in theory, efficiency can be achieved if
the number of moment conditions goes to infinity with the
number of data observations. This method is computation-
ally intensive, requiring many simulations, and is also highly
flexible, requiring the a priori selection of an auxiliary model
and resulting moment conditions. Little is known about its
behavior in repeated simulation trials, although its perfor-
mance has been questioned in the context of dynamic term
structure models (see Duffee and Stanton, 2001; Tauchen,
2004). In addition, most affine yield models have lower
bounds on one or more state variables. Most implementa-
tions of the method of moments techniques calculate
moments of bond yields directly, and never explicitly
calculate the values of the state variables implied by the
observed bond yields. The implied values of some of the
state variables may lie on the wrong side of the boundary
for some observations, in which case the estimated model
implies that the observed data could not have occurred.
Duffee (2002) notes that the parameters estimated by Dai
and Singleton (2000) imply that many of the observations in
the data set could not have occurred if the estimated model
were in fact the true data-generating model.

One alternative to method of moments estimation is the
use of Gaussian likelihood approximations, in which the
conditional density of the state vector is assumed to have a
multivariate Gaussian distribution. The mean vector and
covariance matrix of the state vector can be assumed to be
proportional to the length of time between observations (i.e.,
the properties of the process at a finite time horizon are
approximated by an Euler discretization). Alternately, the
true means, variances, and covariances of the state vector
can be used; this latter approach in the literature on affine
processes is usually referred to as quasi-maximum likelihood
(QML); see, for example, Fisher and Gilles (1996a) and Duffee
(2002). With either approach, if the number of observed
yields is greater than the number of state variables in the
model being estimated (as is necessary for full identification
of all parameters for some affine yield models), it must be
assumed that at least some of the yields are observed with
error; see, for example, Piazzesi (2009). Estimation using
Euler or QML approximation of the likelihood function has
the advantages that it is feasible for all affine yield models,

and avoids the problem of estimated models that imply the
state vector took on unattainable values for some observa-
tions. Use of the Euler approximate likelihood produces
inconsistent estimates; QML is consistent but inefficient,
except in the cases where the true likelihood is Gaussian.

Instead of quasi-maximum likelihood, one can
consider approximate maximum likelihood estimation with
the likelihood function calculated numerically or through
simulation techniques. The transition function can be found
as a solution to the Kolmogorov forward equation; in
general, this partial differential equation must be solved
numerically. Maximum likelihood estimation can be im-
plemented via simulations. Pedersen (1995) develops a
technique for estimating the likelihood function of discrete
observations of a diffusion process by simulations, which
Brandt and Santa-Clara (2002) extend to multivariate
diffusions. When applied to term structure models, like-
lihood methods usually assume, as do Chen and Scott (1993)
and Duffee (2002), that an arbitrary set of benchmark yields
are observed without error, with all remaining yields
observed with some error; Brandt and He (2002) perform
simulated maximum likelihood estimation of a model when
all yields are observed with some error. However, because
new simulations are required for each parameter vector
considered during the likelihood search, the computing time
required is substantial, as is generally the case with
simulation-based methods. On the other hand, their method
does not require that an arbitrary set of bond yields be
assumed to be observed without error. Finally, Liu, Pan, and
Pedersen (2001) propose to Fourier-invert numerically the
known characteristic function of an affine diffusion to
recover an approximation of its density. The transition
density must be calculated for each data observation, and
for each value of the parameter vector considered during a
likelihood search, which quickly becomes computationally
very intensive; see Jensen and Poulsen (2002) for a
comparison of different methods which demonstrates this
in the univariate case. Already numerically intensive in the
univariate case, estimation by numerical methods becomes
exponentially more difficult for multivariate diffusions,
which typically involve large numbers of parameters.

As an alternative to the above techniques, we propose
maximum likelihood estimation with the likelihood
function approximated by a series of accurate expansions
for the log-likelihood function (or equivalently the
density) due to Aı̈t-Sahalia (2008), which generalizes to
arbitrary multivariate processes the univariate results
developed in Aı̈t-Sahalia (2002).2 What we do in this

1 For some models with multiple factors, ‘‘closed-form’’ must be

interpreted to include finding the spectral or Jordan decomposition of a

non-symmetric matrix. See Fisher and Gilles (1996b) for a detailed

discussion of the calculation of first and second moments of affine

diffusions.

2 Aı̈t-Sahalia (1999) contains examples of application of the

univariate method to models in finance. Jensen and Poulsen (2002),

Stramer and Yan (2005), and Hurn, Jeisman, and Lindsay (2007)

conducted extensive comparisons of different techniques for approx-

imating the transition function and demonstrated that the method

described is both the most accurate and the fastest to implement for the

types of problems and sampling frequencies one encounters in finance.

The method has been extended to time inhomogeneous processes by

Egorov, Li and Xu (2003) and to jump-diffusions by Schaumburg (2001)

and Yu (2007). DiPietro (2001) has extended the methodology to make it

applicable in a Bayesian setting. Bakshi and Ju (2005) propose an

alternative centering in the univariate case. Li (2005) considers the case

of ‘‘damped diffusion’’ processes.
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paper is a natural but not quite straightforward applica-
tion of these results, because unlike the standard max-
imum-likelihood theory developed there, multifactor
term structure models typically rely on a state vector
that is at least partly unobservable, or latent. The key
aspect of the method is that, unlike the approaches
described above, the resulting density expansion from this
approach is in closed-form. Furthermore, because it is
maximum-likelihood, it is efficient, achieving the
Cramér-Rao lower bound for the asymptotic variance of
the estimators.

The affine class of models has been studied extensively
by Dai and Singleton (2000). They show the existence of
N+1 distinct non-nested families of affine models with N

state variables, M of which enter the diffusion matrix; we
use the notation AM(N) with 0rMrN to identify each
family of models. Without parameter restrictions, the
likelihood function is known in closed-form for only one
of these N+1 families, corresponding to M=0. (The only
exception is N=1; in this case, both single-factor affine
models have closed-form likelihoods.) Duffie, Pedersen,
and Singleton (2003) propose a decomposition of the
likelihood function of an affine model, an approach
that requires independence of the volatility variables
and the simulation of the remaining part of the likelihood.
The independence assumption is, in general, not satisfied
when M41.

By contrast, we derive closed-form approximations to
the likelihood functions for all N+1 families for all Nr3 (a
total of nine models, four of which have known likelihood
functions). No simulations are required in our approach,
and we are not limited to any particular affine model,
such as those with independent volatility variables as in
Duffie, Pedersen, and Singleton (2003), nor for that matter
to affine specifications, although they are our focus here.
We show how maximum-likelihood estimation can be
implemented using, for instance, bond yields as the
observables. The likelihood expansions computed in this
paper for affine term structure models are also being used
by Mosburger and Schneider (2005), Cheridito, Filipović,
and Kimmel (2007), Thompson (2008), and Egorov, Li,
and Ng (2008), the latter two of which apply this
method in the four-factor case. Expansions using the
same method but for stochastic volatility models are used
by Bakshi, Ju, and Ou-Yang (2006) and Aı̈t-Sahalia and
Kimmel (2007).

Maximum likelihood estimation allows us to use
likelihood ratio tests to evaluate the fit of non-nested
models (see Vuong, 1989), which is difficult or impossible
for other methods, such as the method of moments.
Although other studies, such as Dai and Singleton (2000)
and Cheridito, Filipović, and Kimmel (2007), have eval-
uated non-nested models, these studies have used ad hoc
model selection criteria, rather than rigorous statistical
tests. Based on synthetic US Treasury strips data, we
implement a likelihood ratio test for non-nested models
to compare the fit of different models with the same
number of state variables. We find that, with the simple
market price of risk specification for affine models
proposed by Dai and Singleton (2000), models with fewer
state variables entering the diffusion matrix (i.e., AM(N)

models with smaller values of M) are usually preferred to
models with more state variables in the diffusion matrix
(although the preference is not always significant at the
conventional 95% confidence level). However, when the
more flexible market price of risk specification used by
Cheridito, Filipović, and Kimmel (2007) is used, this
preference sometimes reverses; models with very
non-Gaussian state variable processes are preferred to
those with more Gaussian state processes. Although these
authors have commented on the apparent reversal of
preference when the market price of risk specification is
extended, they do not perform any rigorous statistical
tests; the tests they do perform are confined to compar-
ison of different market price of risk within the same class
of affine model (that is, with the same values of M and N).
Our procedure allows rigorous statistical testing of such
hypotheses involving non-nested models. We also con-
sider nested likelihood ratio tests of the Dai-Singleton
market price of risk relative to the Cheridito-Filipović-
Kimmel specifications, and also of parameter restrictions
needed for existence of closed-form likelihoods. We find
to some extent that these two sets of parameters are
substitutes; although each set is still statistically signifi-
cant (at the 95% level) in almost every model considered,
the degree of statistical significance of either set is usually
much reduced when the other set is introduced. We also
perform the likelihood ratio tests using Euler and QML
likelihood approximations, and find that they are
sometimes much less accurate than our likelihood
approximation method.

The paper is organized as follows. We start with a brief
review of affine term structure models in Section 2. Next,
we describe our estimation technique in Section 3,
including the construction of the closed-form likelihood
expansions. We then examine in Section 4, through Monte
Carlo simulations, the accuracy of this method by
imposing necessary parameter restrictions so that
closed-form likelihood functions are available, and com-
pare estimates derived using the true likelihoods on
simulated data to those derived using our approximations
on the same data. We also compare these estimates to
those obtained using Euler and QML approximations to
the likelihood function. We find uniformly that the
maximum-likelihood estimates produced by our method
are very close to the estimates produced by the exact
likelihood function; the Euler and QML approximations
are much less accurate (except in the case of Gaussian
models, for which the QML likelihood approximation is
exact). In Section 5, we apply the estimation technique to
US Treasury security data and discuss the results, and also
perform nested and non-nested model selection tests
using the approximate likelihoods. We compare these
results to those obtained using Euler and QML approx-
imations to the likelihood function, and, as with the
simulated data, find our method approximates true
maximum likelihood much more closely than the other
two methods. Section 6 concludes. The explicit formulae
we derive for the affine term structure models are
contained in Appendix B for the bivariate models. They
are available in computer form from the authors in
dimensions 1, 2, and 3 upon request.
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2. Affine term structure models

A multivariate term structure model typically specifies
that the instantaneous riskless rate rt is a deterministic
function of an N � 1 vector of state variables, Xt

rt ¼ rðXt; yÞ: ð1Þ

Under an equivalent martingale measure Q, the state
vector follows the dynamics:

dXt ¼ mQ ðXt; yÞdtþsðXt ; yÞdWQ
t , ð2Þ

where Xt and mQ ðXt; yÞ are N � 1 vectors, sðXt; yÞ is
an N � N matrix, y is a vector containing the model
parameters, and Wt

Q is an N � 1 vector of independent
Brownian motions.

In order to avoid arbitrage opportunities, the price at t

of a zero-coupon bond maturing at T is given by the
Feynman-Kac representation

Pðx,t,T; yÞ ¼ EQ exp �

Z T

t
ru du

� �����Xt ¼ x

� �
, ð3Þ

where the expectation is taken with respect to the risk-
neutral dynamics of X specified in (2). It is also well-known
that P satisfies the partial differential equation (PDE)

@P

@t
þmQ ðx; yÞ0

@P

@x
þ

1

2
Trace vðx; yÞ

@2P

@x@x0

� �
�rðx; yÞP¼ 0, ð4Þ

where vðx; yÞ � sðx;yÞs0ðx; yÞ (with 0 denoting transposi-
tion). The bond price must also satisfy the final condition
Pðx,T,T;yÞ ¼ 1 for all x, T, and y. Such a model is
well-defined provided that (2) is well-defined, and the
expected value (3) is finite, or, equivalently, the PDE (4) has
a well-defined solution (subject only to technical regularity
conditions).

Although there are several different ways to define
affine yield term structure models, we use the following
definition. An affine yield model is any model where the
short rate (1) is an affine function of the state vector and
the risk-neutral dynamics (2) are affine. We write the
risk-neutral dynamics of the state vector as

dXt ¼ ð
~Aþ ~BXtÞdtþS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SðXt;a,bÞ

p
dWQ

t , ð5Þ

where ~A is an N-element column vector, ~B and S are N � N

matrices, and SðXt;a,bÞ is the diagonal matrix with
elements Sii ¼ aiþX0tbi, with each ai a scalar and each bi

an N � 1 vector, 1r irN. The parameters of ~A, ~B, S, a, and
b cannot be chosen arbitrarily; as discussed in
Dai and Singleton (2000), there are admissibility restric-
tions required for the existence of the process Xt. These
authors demonstrate the existence, for each value of N, of
N+1 disjoint admissible regions of the parameter space.
Let b denote the N � N matrix whose i-th column
is the vector bi, and let M denote the rank of b. M is
the number of independent linear combinations of state
variables entering the diffusion structure for the state
variables.

With N factors, there are N+1 non-nested families of
affine models corresponding to M=0,1,y,N; in each of
these families different restrictions are imposed on the
parameters of ~A, ~B, S, a, and b. Dai and Singleton (2000)
also note that affine models do not have a unique

representation, that is, there exist different choices of
the model parameters that generate identical behavior
of the interest rate and yield processes. They proceed
to describe a canonical representation for each family of
affine yield models, in which the S matrix is equal to the
identity matrix; this choice does not result in a loss of
generality, since, for a S matrix not equal to identity, we
can construct a new set of state variables

Yt ¼S�1Xt : ð6Þ

The diffusion matrix of Yt is then diagonal. We consider
N=1, 2, and 3, in which case there are two, three, and four,
respectively, non-nested families of models, each with its
own form of likelihood function.3 We characterize the
affine yield models with three or fewer state variables, as
per Dai and Singleton (2000) (with our alternate para-
meterization for the drift), in Appendix A.

It can then be shown that, in affine models, bond prices
have the exponential affine form

Pðx,t,T; yÞ ¼ expð�g0ðt; yÞ�gðt; yÞ
0xÞ, ð7Þ

where t¼ T�t is the bond’s time to maturity. That is, bond
yields (non-annualized, and denoted by gðx,t,T; yÞ ¼
�ln½Pðx,t,T; yÞ�) are affine functions of the state vector

gðx,t,T; yÞ ¼ g0ðt; yÞþgðt; yÞ
0x: ð8Þ

Alternatively, one can start with the requirement that the
yields be affine, and show that the dynamics of the state
vector must be affine; see Duffie and Kan (1996). The same
authors also show that, when the coefficients are affine, (4)
is equivalent to a system of Ricatti-type ordinary differential
equations, for which numeric solution is typically much
faster than a general PDE with non-linear coefficients. This
analytic tractability of bond prices accounts for much of the
popularity of affine models.

3. Estimation procedure

Maximum-likelihood estimation requires evaluation of
the likelihood of the observed panel of yield data for each
parameter vector considered during a search procedure.
The procedure for evaluating the likelihood of the
observed yields at a particular value of the parameter
vector consists of four steps. First, we extract the value of
the state vector Xt (which is not directly observed) from a
set of benchmark yields, which are assumed to be
observed without error. Second, we evaluate the joint
likelihood of the series of implied observations of the state
vector Xt, using accurate closed-form approximations to
the likelihood function. Third, we multiply this joint
likelihood by a Jacobian determinant, to find the
likelihood of the panel of observations of the benchmark
yields. Finally, for a set of additional yields assumed to be

3 Gouriéroux and Sufana (2004) identify some affine diffusions that

do not fit into the classification scheme of Dai and Singleton (2000). We

do not consider this class of diffusions. Cheridito, Filipović, and Kimmel

(2010) show that the assumption of a diffusion matrix of the form shown

in (5) also excludes some affine diffusions with four or more factors.

However, in this paper, we consider only models with three or fewer

factors, for which (5) is not restrictive.
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observed with error (the additional yields are needed to
identify some model parameters; see below), we calculate
the likelihood of the observation errors, and multiply this
likelihood by the likelihood of the benchmark yields
found in the previous step, to find the joint likelihood of
the panel of all yields. This procedure is repeated for
different values of the parameter vector, until the
maximum likelihood estimate is found.

Fig. 1 summarizes our estimation method: for each
parameter vector, we can evaluate the likelihood of the
observed bond yields using a combination of the affine
pricing model and our closed-form likelihood expansions.
As the figure shows, the only role the affine structure
plays in our estimation method consists in allowing the
transformation from observed yields to state variables
(i.e., the pricing model) to be easily solvable.

3.1. Extracting state from yields

We estimate the parameter vector y based on a panel
of observed bond prices or, equivalently, yields. The state
vector Xt is not directly observable, and must be inferred
from the cross-section of bond yields at date t. In affine
yield models, zero-coupon yields are affine functions of
the state vector, so the likelihood function of yields is
readily determined from the likelihood function of the
state vector.

It is well-known that, in general, affine models are not
identified under both true and risk-neutral probability
measures if the number of observed yields is equal to the
number of state variables. Following Chen and Scott
(1993) and Duffee (2002), we use N+H observed yields,
H40, in the postulated model AM(N), and include
observation errors for H of those yields. At each date t,
the state vector Xt is then exactly identified by the yields
observed without error, and these N yields jointly follow a
Markov process. Denoting the times to maturity of the
yields observed without error as t1, . . . ,tN , the observed
values of these yields, on the left-hand side, are equated
with the predicted values from (8) given the model
parameters and the current values of the state variables,
X1t,y,XNt:

gðXt ,t,tþt1; yÞ
^

gðXt ,t,tþtN; yÞ

2
64

3
75¼

g0ðt1; yÞ
^

g0ðtN; yÞ

2
64

3
75þ

gðt1; yÞ0

^

gðtN; yÞ0

2
64

3
75

X1t

^

XNt

2
64

3
75: ð9Þ

By introducing a vector G0ðyÞ whose elements are g0ðt1; yÞ
through g0ðtN ; yÞ, and a matrix GðyÞ whose columns are
gðt1; yÞ through gðtN; yÞ, this equation can be expressed in
matrix form,

gt ¼G0ðyÞþGðyÞ0Xt : ð10Þ

The current value of the state vector Xt can be found by
inverting this equation:

Xt ¼ ½GðyÞ0��1½gt�G0ðyÞ�: ð11Þ

3.2. Likelihood of the state vector

While the only parameters entering the transformation
from observed yields to the state variables are the
parameters of the risk-neutral (or Q-measure) dynamics
of the state variables, once we have constructed our time
series of values of Xt sampled at dates t0, t1,y,tn, the
dynamics of the state variables that can be inferred from
this time series are the dynamics under the physical
measure (denoted by P). In the first step of the estimation
procedure, we rely on the tractability of the affine bond
pricing model, but in this step, we do not. In particular, we
can now specify freely (that is, without regard for
considerations of analytical tractability) the market prices
of risk of the different Brownian motions, or equivalently
the Radon-Nikodym derivative dQ/dP. The P-measure
dynamics are

dXt ¼ mPðXt; yÞdtþsðXt; yÞdWP
t

¼ fmQ ðXt; yÞþsðXt; yÞLðXt ; yÞgdtþsðXt; yÞdWP
t : ð12Þ

Observed bond yields: y 

Vector of latent state variables: S  

Transition density: pX(Δ,SΔ|S0;θ)

For a given θ

Ordinary      differential equations

Closed-form          approximation

ln(θ)

Fig. 1. The likelihood-based estimation method. This figure describes

the steps involved in implementing the estimation method. The

derivation of the closed-form expression for the log-likelihood is done

once and for all for each model. Given that expression, maximum-

likelihood proceeds as in the standard case with the additional step

(requiring for affine models the solution of ordinary differential

equations) necessary to transform the observed yields into the latent

state variables of the model.
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For example, Dai and Singleton (2000) use the simple
market price of risk specification

LðXt; yÞ ¼ sðXt; yÞ0l, ð13Þ

with l an N � 1 vector of constant parameters, so that
under P, the instantaneous drift of each state variable is its
drift under the risk-neutral measure, plus a constant
times its volatility squared. Under this specification,
the drift of the state vector is then affine under both the
physical and risk-neutral measures, since

mPðXt; yÞ ¼ ð ~Aþ ~BXtÞþSSðXt;bÞS0l� AþBXt :

We consider a canonical representation of affine models
where A, B, a, and b have the normalized form

A¼
AM�1

0ðN�MÞ�1

" #
, B¼

BM�M 0M�ðN�MÞ

BðN�MÞ�M BðN�MÞ�ðN�MÞ

" #
,

a¼
0M�1

1ðN�MÞ�1

" #
, b¼

IM�M bM�ðN�MÞ

0ðN�MÞ�M 0ðN�MÞ�ðN�MÞ

" #
: ð14Þ

This normalization is similar, but not identical, to that of
Dai and Singleton (2000), who, as discussed earlier, write
the drift of the state variables as B(A�Xt), and who also
normalize the last (N�M) elements of y to be zero. In our
normalization, the last (N�M) state variables (when
MoN) differ by a constant from their counterparts under
the Dai and Singleton (2000) normalization.

Given the identification normalization in which S is
taken to be the identity matrix, existence of the process
and non-attainment of the boundaries require that the
parameters governing the state variable dynamics be
constrained as follows:

ðAM�1ÞiZ
1
2, 1r irM, ð15Þ

ðBM�MÞijZ0, 1r i, jrM, iaj, ð16Þ

ðbM�ðN�MÞÞijZ0, 1r irM, Mþ1r jrN: ð17Þ

We further discuss these restrictions, and additional
restrictions for stationarity, in Appendix A. Note that, in
an AM(N) model with M40, there are restrictions on the
values of the state variables, but (at least for the more
complicated models), there is no straightforward way to
restrict a search to those parameter values which imply
that the panel of state variables extracted from the
observed yields satisfies these restrictions. We deal with
this problem simply by setting the likelihood equal to zero
whenever a state variable violates the model restrictions.

As mentioned above, an affine mP is not required for
our likelihood expansions. See Duarte (2004) for a model
that is affine under the risk-neutral probability measure,
but not under the true probability measure. However, we
do rely on the affine character of the dynamics under Q,
because those allow us to go from state to yields in the
tractable manner given by (9).

3.3. Likelihood of yields observed without error

Since the relationship between the state vector and
bond yields is affine, as given by (10), the transition
function of the bond yields can be derived from the

transition function of the state vector by a change of
variables and multiplication by a Jacobian determinant,
which is a constant (i.e., not dependent on the state
vector) in this case. Specifically, consider the stochastic
differential equation describing the dynamics of the state
vector Xt under the measure P, as specified by (12). Let
pXðD,xjx0; yÞ denote its transition function, that is
the conditional density of XtþD ¼ x given Xt=x0. Let
pGðD,gjg0;yÞ similarly denote the transition function of
the vector of yields observed D time units apart. Since
x¼G0�1

ðyÞðg�G0ðyÞÞ, we have

pGðD,gjg0;yÞ ¼ detjG0�1
ðyÞjpXðD,G0�1

ðyÞðg�G0ðyÞÞjG0�1
ðyÞ

�ðg0�G0ðyÞÞ; yÞ: ð18Þ

Then, recognizing that the vector of yields is Markovian
and applying Bayes’ Rule, the log-likelihood function for
discrete data on the yield vector gt sampled at dates
t0,t1,y,tn has the simple form

‘nðyÞ � n�1
Xn

i ¼ 1

lGðti�ti�1,gti
jgti�1

; yÞ, ð19Þ

where lG � lnpG. As usual in likelihood estimation, we
discard the unconditional distribution of the first
observation since it is asymptotically irrelevant.

We assume in this paper that the sampling process is
deterministic (see Aı̈t-Sahalia and Mykland, 2003 for a
treatment of maximum likelihood estimation in the case
of randomly spaced sampling times). In typical practical
situations for term structure models, and hence in our
Monte Carlo experiments below, these types of models
are estimated on the basis of weekly or monthly data, so
that ti�ti�1 ¼D¼ 7

365 or ti�ti�1 ¼D¼ 1
12 is a fixed number.

3.4. Likelihood of all yields

From the coefficients g0ðt; yÞ and gðt; yÞ and the value
of the state vector Xt found in the first step, we can
calculate the implied values of the yields which are
assumed to be observed with error, whose maturities are
denoted by tNþ1, . . . ,tNþH

gðXt ,t,tþtNþ1; yÞ
^

gðXt ,t,tþtNþH; yÞ

2
64

3
75¼

g0ðtNþ1; yÞ
^

g0ðtNþH; yÞ

2
64

3
75

þ

gðtNþ1; yÞ0

^

gðtNþH; yÞ0

2
64

3
75

X1t

^

XNt

2
64

3
75: ð20Þ

The observation errors, denoted by eðt,tþtNþ iÞ, are the
difference between these implied yields and the yields
from the data. By assumption, these errors are Gaussian
with zero mean and constant variance, and are indepen-
dent across time and maturity (and also independent of
the state variable processes). The joint likelihood of the
observation errors can be calculated from the Gaussian
density function, where si is the standard deviation of the
observation error for the yield with maturity tNþ i

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½eðt,tþtNþ iÞ�

p
: ð21Þ

Since the observation errors are independent of the state
variable process, the joint likelihood of the panel of all
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observed yields is simply the product of the likelihood of
the yields observed without error, multiplied by the
likelihood of the observation errors. Equivalently, the two
log-likelihoods can simply be added to find the joint log-
likelihood of the panel of all yields.

3.5. Closed-form likelihood expansions

We now describe how we obtain closed-form approx-
imations to lG, hence to the log-likelihood function of the
discretely sampled vector of yields in light of (19). To
construct an expansion for lG, we first construct an
expansion for lX � lnpX and then take logs on both sides
of (18) to recover the corresponding expansion for lG. So
we can reduce the problem to one of approximating lX,
and for that we use the closed-form method of Aı̈t-Sahalia
(2008), which extends to multivariate diffusions the
univariate results of Aı̈t-Sahalia (1999, 2002).

The expansion of the log-likelihood has the form of a
Taylor series in D at order K

lðKÞX ðD,xjx0; yÞ ¼ �
m

2
lnð2pDÞ�Dvðx; yÞþ

Cð�1Þ
X ðxjx0; yÞ

D

þ
XK

k ¼ 0

CðkÞX ðxjx0; yÞ
Dk

k!
, ð22Þ

with

Dvðx; yÞ � 1
2lnðDet½vðx; yÞ�Þ, ð23Þ

for vðx; yÞ � sðx; yÞsT ðx; yÞ.
As defined in Aı̈t-Sahalia (2008), a diffusion X is

reducible if and only if there exists a one-to-one
transformation of the diffusion X into a diffusion Y whose
diffusion matrix sY is the identity matrix. That is, there
exists an invertible function gðx; yÞ such that Yt � gðXt; yÞ
satisfies the stochastic differential equation

dYt ¼ mY ðYt; yÞdtþdWP
t : ð24Þ

Every univariate diffusion is reducible. However, this is
not the case for every multivariate diffusion, and
Aı̈t-Sahalia (2008) gives necessary and sufficient condi-
tions for reducibility. In the reducible case, the coefficients
CX

(k) for k=�1,0,y,K are obtained in closed-form.
In the irreducible case, the approach is to calculate in

closed-form a Taylor series in (x�x0) of each coefficient
CX

(k), at order jk in (x�x0). Such an expansion is denoted by
Cðjk ,kÞ

X and it turns out that the order should be jk=2(K�k)
for k=�1,0,y,K. The resulting expansion will then be

~l
ðKÞ

X ðD,xjx0; yÞ ¼ �
m

2
lnð2pDÞ�Dvðx; yÞþ

Cðj�1 ,�1Þ
X ðxjx0; yÞ

D

þ
XK

k ¼ 0

Cðjk ,kÞ
X ðxjx0;yÞ

Dk

k!
: ð25Þ

Such a further Taylor expansion in x�x0 is unnecessary in
the reducible case; however, even for an irreducible
diffusion, it is still possible to compute the coefficients
Cðjk ,kÞ

X in closed-form. For details, we refer to Aı̈t-Sahalia
(2008). The specific expressions for the models under
consideration in dimension 2 are reproduced in Appendix
B; they are available in computer form from the authors
for dimensions 1, 2, and 3 upon request.

3.6. Alternate methods

It is possible to substitute other approximations for the
closed-form likelihood expressions described in Section 3.5.
One such method is what we call the Euler method, in
which the conditional likelihood of the vector of state
variables is approximated by a Gaussian density, with mean
and variance equal to its instantaneous mean and variance,
multiplied by the time between observations. Although an
accurate approximation when consecutive observations are
very close together in time, the Euler approximate likelihood
is inaccurate for longer time periods, because, for any AM(N)
with m40, the true transition density is not Gaussian, and
the mean and variance of the state vector is calculated as if
its drift and diffusion were constant over the entire time
between observations, when in fact, they are state depen-
dent. Nonetheless, the Euler approximate likelihood is very
simple to calculate, and may be a reasonable alternative to
our method, despite its potential inaccuracy. In Section 4,
we therefore examine the performance of this method,
alongside our method, to judge whether the inaccuracy
from use of the Euler method is sizable or not.

Another alternative method, often used in the literature,
is usually referred to as quasi-maximum likelihood (QML);
see Fisher and Gilles (1996a). (These authors do not use the
term quasi-maximum likelihood or its acronym.) With
this method, the transition density is approximated (as
with the Euler method) by a Gaussian density. However, the
mean and variance of this Gaussian transition density are
the true mean and variance, rather than Euler approxima-
tions. The only source of inaccuracy is therefore the
assumption of a Gaussian density, although in the case of
A0(N) models, the true transition density is Gaussian, and
consequently coincides with the QML likelihood. We
calculate the conditional means and variances numerically,
as solutions to the Chapman–Kolmogorov backward equa-
tion; with affine coefficients, this partial differential equa-
tion decomposes into a system of ordinary differential
equations, the solution to which can be found by fast
numeric methods. It is also possible to find these moments
in closed-form, provided the definition of ‘‘closed-form’’
includes calculation of the Jordan decomposition of the
slope matrix in the drift of the state vector.4 However, the
expressions for the conditional means and variances are
subject to numeric instability in some cases; they frequently
contain expressions of the form [f(b)� f(a)]/(b�a). If the
parameters of the model are such that a and b are very close
together, calculation of this expression is problematic, due
to the finite numeric precision of computers.5 One potential
solution is to use a Taylor approximation to f(b) (around a)
when a and b are close together; we instead avoid the

4 The spectral decomposition is a special case of the Jordan

decomposition. However, since there is no requirement that the slope

matrix in the drift of the state vector be symmetric, there is no guarantee

that it has a spectral decomposition. The Jordan decomposition coincides

with the spectral decomposition, when the latter exists. See Fisher and

Gilles (1996b) for a derivation of the first and second conditional

moments of affine processes.
5 The same problem arises when the true likelihood function is used,

for those cases in which it is known explicitly.
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problem entirely by using numerically calculated moments,
as discussed above. Since the QML method uses more
accurate moments than Euler, but still retains the simplicity
of the Gaussian approximation, we examine in Section 4 the
performance of the QML method (with moments calculated
numerically), alongside our method and the Euler method,
to judge whether the inaccuracy from use of this method is
sizable or not.

4. Monte Carlo results

To assess the accuracy of our technique, we now
consider models for which the likelihood function is
known in closed-form, and compare parameter estimates
using our technique to those obtained using the true
likelihood functions. We also compare estimates by
alternate approximation methods, Euler and QML, to the
true MLE. We calculate the conditional means and
variances for QML numerically; estimates calculated with
exact expressions for the conditional moments (not
presented—see the discussion in Section 3.6) produce
nearly identical results. In all models considered but one,
we find our parameter estimates are very close to the true
maximum likelihood estimates for simulated data at
the weekly frequency; in the one case for which
the approximate estimates are not close to the true MLE,
the deviation can be traced to an identification issue, and
we find that, when the model is rewritten in terms of
observed yields, the results using our technique are
extremely close to the true MLE results. The deviations
between the Euler and QML methods and the true MLE are
substantially larger (except for QML estimates of the A0(N)
models, since QML then coincides with the true like-
lihood). Since our estimation approach is based on Taylor
expansions in the sampling interval D, observations at the
daily frequency would result in even greater accuracy.

4.1. Procedure

The full parameter vector y consists of all the elements
of ðA,B,a,b,d0,d,l,sÞ; with our normalization, the a vector
contains no free parameters. We consider all nine models
corresponding to N=1, 2, and 3 and estimate each AM(N)
model using n time series observations of N+H

zero-coupon bond yields.
The individual models themselves are described in

Appendix A, and parameter restrictions needed for exis-
tence, boundary non-attainability, and stationarity are
presented in Table 1. For the purpose of studying the
accuracy of our likelihood expansion approach, we also
consider further parameter restrictions whenever necessary
to obtain a closed-form likelihood to which we can then
compare our expansion. These further parameter
restrictions are presented in Table 2. Note again that our
method does not require these further restrictions, and
remains closed-form in all cases. The only reason we impose
them is to have an exact likelihood to which our expansion
can be compared in these Monte Carlo simulations.

For each canonical model, we simulate 1,000 data
series of 501 weekly observations ðD¼ 7=365Þ of the

vector of N state variables, giving n=500 pairs of discrete
transitions of that process. Each of the simulated
sample paths is produced by an Euler discretization of
the process, using 30 intervals per week. Twenty-nine out
of every 30 observations are discarded, leaving only the
observations at the weekly frequency. Each simulated
data series is initialized based on the unconditional
distribution of the yields.

From this time series of the canonical state variables,
we calculate the instantaneous interest rate and yields of
varying maturities. Including the instantaneous interest
rate (which can be interpreted as a yield with maturity
of zero), we generate twice as many yields as state
variables in each model (i.e., H=N), with maturities spaced
evenly every two years. For example, for the three-factor
models, we calculate the instantaneous interest rate
and yields with maturities of two, four, six, eight, and
10 years. As discussed, more yields than state variables
are needed to ensure identification of all model
parameters, including the market price of risk. For an
N-factor model, the N longest maturity yields include
observation errors, which are assumed to be Gaussian
with mean zero and constant variance, and further
assumed to be uncorrelated across maturities and over
time. Since the parameter restrictions which ensure
existence of closed-form likelihoods also ensure existence
of closed-form yield expressions, we calculate yields
exactly rather than through numeric solution of the
pricing partial differential equation.

From the time series observations of 2� N yields for
each N-factor model, we then proceed to estimate the
model parameters, using the true likelihoods, the 2-term
reducible approximate likelihoods, and also the Euler and
QML approximate likelihood functions. For some models,
numeric instability was encountered in evaluating the
true MLE; this occurred for three of the 1,000 simulations
for the A1(2) model, seven of the 1,000 simulations for the
A2(3) model, and 82 of the 1,000 simulations for the A3(3)
model. In these cases, the true MLE was calculated with
considerable error, and was very far from estimates
produced by all the approximation methods; these
particular simulations therefore do not allow meaningful
comparison of the error introduced by different approx-
imation techniques, and were excluded in the presenta-
tion of the results.6

Because there are nine models, some of them contain-
ing many parameters, we present results only for the
three-factor models; these results for simulations with
weekly observations are presented in Tables 3–6, which
also present the data-generating values of the
parameters.7 The results for the one-factor and two-factor

6 The problem is with the implementation of the modified Bessel

function of the first kind in Matlab, which has difficulty with certain

combinations of inputs. Specifically, in some cases, the function returns

an error code indicating a loss of accuracy at the estimated parameter

vector. In other cases, it returns zero, instead of a very small positive

number, for some parameter vectors, so the search algorithm avoids

these values.
7 The data-generating values are based on estimates from Cheridito,

Filipović, and Kimmel (2007).
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models (not presented) are qualitatively similar. We present
the results in a common format that allows for the
comparison of the sampling noise error in the parameter

estimates, ŷ
ðMLEÞ
�yðTRUEÞ, to the error due to the

approximation of the true likelihood by our approach,

ŷ
ð2Þ
�ŷ
ðMLEÞ

, as well as the corresponding error for the
approximation of the likelihood by the Euler and QML

methods, ŷ
ðEulerÞ
�ŷ
ðMLEÞ

and ŷ
ðQMLÞ
�ŷ
ðMLEÞ

, respectively. The

notation ŷ
ð2Þ

indicates that we use an expansion at order 2
in D (i.e., K=2 in Section 3.5) to obtain the approximate
likelihood estimator. The bias (i.e., the average deviation

from yðTRUEÞ) and the standard deviation for ŷ
ðMLEÞ

are
reported, as well as the mean and standard deviation of

the differences between ŷ
ð2Þ

, ŷ
ðEulerÞ

, and ŷ
ðQMLÞ

, respectively,

from ŷ
ðMLEÞ

. The biases and standard deviations of the

differences between the approximate MLE, ŷ
ð2Þ

, and the true

MLE, ŷ
ðMLEÞ

, are reported as percentages of the
corresponding biases and standard deviations of the

difference between the true MLE ŷ
ðMLEÞ

and the data-

generating values yðTRUEÞ. The biases and standard

Table 1
Parameter restrictions for the models.

This table shows the parameter restrictions imposed on the different models under consideration, which are sufficient to ensure existence of the

state variable process, non-attainment of the boundaries (if any), and stationarity. ‘‘Eigen’’ denotes the eigenvalues of the indicated matrix. In some

cases (e.g., the A2(2) model), the eigenvalues must be real due to restrictions for existence. The restriction in the table refers to the real part anyway,

since eigenvalues may be complex conjugate pairs for some other models. Note that, although the data-generating values used in simulations

satisfy the stationarity constraints, these constraints were not imposed during the estimation procedure. Finally, to be able to apply the

closed-form likelihood expansion to square-root variables, we need to strengthen the condition ai Z
1
2 to ai Z

3
4. After reduction to unit diffusion

of a square-root variable dXt ¼ bðy�XtÞdtþsX1=2
t dWt , the process becomes dYt ¼ mY ðYtÞdtþdWt , where mY ðyÞ ¼ k=y�by=2. So mY ðyÞ diverges near 0

like k=y, with k¼ 2by=s2�1=2. But in the limiting case represented by square-root variables, to make zero an entrance boundary requires kZ 1
2;

for technical reasons, namely the ability to apply Girsanov’s Theorem, we require slightly more for the likelihood expansion for this model,

specifically kZ1: see Assumption 3.1 in Aı̈t-Sahalia (2002, p. 228). That translates here into ai Z
3
4. A divergence faster than k=y (such as mY ðyÞ � k=yg ,

g41) generates exponential convergence of the transition density, so this is only an issue in the limiting case represented by square-root

processes.

Model Existence Boundary Stationarity

A0(1) – – b11 o0

A1(1) a1 Z0, d1 Z0 a1 Z
1
2

b11 o0

A0(2) – – b11 o0, b22 o0

A1(2) a1 Z0, d1 Z0, b21 Z0 a1 Z
1
2

b11 o0, b22 o0

A2(2) a1 Z0,a2 Z0

d1 Z0,d2 Z0

b12 Z0,b21 Z0

a1 Z
1
2, a2 Z

1
2 Re Eigen

b11 b12

b21 b22

" #" #
o0

A0(3) – – b11 o0, b22 o0, b33 o0

A1(3) a1 Z0,d1 Z0

b21 Z0,b31 Z0

a1 Z
1
2

b11 o0

Re Eigen
b22 b23

b32 b33

" #" #
o0

A2(3) a1 Z0,a2 Z0

d1 Z0,d2 Z0

b12 Z0,b21 Z0

b31 Z0,b32 Z0

a1 Z
1
2, a2 Z

1
2 Re Eigen

b11 b12

b21 b22

" #" #
o0

b33 o0

A3(3) a1 Z0,a2 Z0,a3 Z0

d1 Z0,d2 Z0,d3 Z0

b12 Z0,b13 Z0,b21 Z0

b23 Z0,b31 Z0,b32 Z0

a1 Z
1
2, a2 Z

1
2, a3 Z

1
2

Re Eigen

b11 b12 b13

b21 b22 b23

b31 b32 b33

2
64

3
75

2
64

3
75o0

Table 2
Parameter restrictions for Monte Carlo simulations of canonical affine

processes.

This table shows the additional parameter restrictions (relative to

those in Table 1) needed to ensure existence of a known exact likelihood

function. The method does not require these restrictions, and remains

closed-form in all cases. The only reason we impose them here is to have

an exact likelihood so that the method’s performance can be assessed in

these Monte Carlo simulations. These restrictions are not imposed in the

empirical work that follows. The purpose of imposing these restrictions

is to allow us to test the accuracy of our expansion in Monte Carlo

simulations by comparing it to the exact, closed-form, likelihood

function. The restriction b23=0 for the A1(3) model is not actually

needed for existence of a closed-from likelihood function, but is inherent

to that model: it is required for identification of that affine model if the

other restrictions are imposed.

Model Restrictions for exact density

A0(1) none

A1(1) none

A0(2) none

A1(2) b21 ¼ b21 ¼ 0

A2(2) b12 ¼ b21 ¼ 0

A0(3) none

A1(3) b21 ¼ b23 ¼ b31 ¼ b21 ¼ b31 ¼ 0

A2(3) b12 ¼ b21 ¼ b31 ¼ b32 ¼ b31 ¼ b32 ¼ 0

A3(3) b12 ¼ b21 ¼ b13 ¼ b31 ¼ b23 ¼ b32 ¼ 0
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Table 3
Monte Carlo simulations for the A0(3) model—structural parameters, weekly observations.

This table reports the results of 1,000 Monte Carlo simulations for the A0(3) model, with weekly observations, comparing the distribution of the

maximum-likelihood estimator ŷ
ðMLEÞ

around the true value of the parameters yðTRUEÞ , to the distribution of the differences between the reducible and

Euler estimates (ŷ
ð2Þ

and ŷ
ðEulerÞ

, respectively) and the exact MLE ŷ
ðMLEÞ

. The reducible likelihoods are based on the expansion with K=2 terms. QML

estimates are not presented, since for this model, they coincide with the exact MLE. The means and standard deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

are reported as

percentages of the corresponding deviations of ŷ
ðMLEÞ

from yðTRUEÞ . The means and standard deviations of ŷ
ðEulerÞ

from ŷ
ðMLEÞ

are reported as multiples of the

corresponding deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

. The results appear to show that the difference ŷ
ð2Þ
�ŷ
ðMLEÞ

is smaller, but still a significant fraction of, the

difference ŷ
ðMLEÞ
�yðTRUEÞ due to the sampling noise, and that, for many parameters, the Euler likelihoods perform nearly as well as the approximate MLE.

However, this conclusion is unwarranted, since there is an identification problem with this model, as discussed in Section 4.2. Table 7 shows that, when

the model is written in terms of observed bond yields instead of latent state variables, the approximate MLE strongly outperforms the Euler likelihood.

ŷ
ð2Þ
�ŷ
ðMLEÞ

ŷ
ðEulerÞ
�ŷ
ðMLEÞ

Parameter yðTRUEÞ
ŷ
ðMLEÞ
�yðTRUEÞ (perc. of ŷ

ðMLEÞ
�yðTRUEÞ) (mult. of ŷ

ð2Þ
�ŷ
ðMLEÞ

)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

b11 �0.5000 �0.19 0.57 3.31% 25.83% 0.91 0.99

b21 1.5000 �0.19 0.52 2.49% 20.29% 0.99 0.99

b22 �1.5000 0.15 0.65 4.97% 22.26% 2.05 1.00

b31 0.1000 0.10 0.35 �1.47% 20.99% 3.02 0.99

b32 �0.2000 �0.25 0.52 �0.56% 18.56% 4.86 1.00

b33 �0.0500 �0.11 0.34 0.80% 7.95% 0.51 1.01

d0
M 0.0022 �3.4E�04 3.6E�03 0.03% 0.01% 23.80 198.17

d1 0.0100 �4.3E�03 7.1E�03 2.54% 25.40% �0.78 1.00

d2 0.0200 �3.3E�03 8.2E�03 0.13% 15.45% 60.58 1.01

d3 0.0100 1.9E�03 4.9E�03 1.27% 18.73% �0.24 1.00

l1 �0.0500 0.053 0.35 7.10% 14.54% 1.26 1.01

l2 �0.5000 0.034 0.37 �0.59% 11.84% 29.43 1.00

l3 �0.1000 �0.090 0.37 1.10% 4.35% 1.85 1.23

s1 0.0100 �1.6E�05 3.3E�04 �0.01% 0.02% �6.98 34.24

s2 0.0100 �6.7E�06 3.2E�04 0.04% 0.01% �25.18 44.85

s3 0.0100 �3.9E�05 3.2E�04 0.00% 0.02% 2064.35 47.59

Table 4
Monte Carlo simulations for the A1(3) model—structural parameters, weekly observations.

This table reports the results of 1,000 Monte Carlo simulations for the A1(3) model, with weekly observations, comparing the distribution of the

maximum-likelihood estimator ŷ
ðMLEÞ

around the true value of the parameters yðTRUEÞ , to the distribution of the differences between the reducible, Euler,

and QML estimates (ŷ
ð2Þ

, ŷ
ðEulerÞ

, and ŷ
ðQMLÞ

, respectively) and the exact MLE ŷ
ðMLEÞ

. The reducible likelihoods are based on the expansion with K=2 terms.

The means and standard deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

are reported as percentages of the corresponding deviations of ŷ
ðMLEÞ

from yðTRUEÞ . The means and

standard deviations of ŷ
ðEulerÞ

and ŷ
ðQMLÞ

from ŷ
ðMLEÞ

are reported as multiples of the corresponding deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

. The results show that the

difference ŷ
ð2Þ
�ŷ
ðMLEÞ

is much smaller, and often several orders of magnitude smaller, than the difference ŷ
ðMLEÞ
�yðTRUEÞ due to the sampling noise. It also

shows that the approximate MLE is much closer than the Euler or QML estimate to the exact MLE; the mean and standard deviation of the difference is

much smaller for the two-term approximate MLE than for Euler or QML, for most parameters; for a few, the QML means are smaller than the approximate

MLE means, but the mean-squared errors for the same parameters (which combine the mean and standard deviation) are much larger for QML. The QML

estimates are generally better than the Euler estimates, although not dramatically so.

ŷ
ð2Þ
�ŷ
ðMLEÞ

ŷ
ðEulerÞ
�ŷ
ðMLEÞ

ŷ
ðQMLÞ
�ŷ
ðMLEÞ

Parameter yðTRUEÞ
ŷ
ðMLEÞ
�yðTRUEÞ (perc. of ŷ

ðMLEÞ
�yðTRUEÞ) (mult. of ŷ

ð2Þ
�ŷ
ðMLEÞ

) (mult. of ŷ
ð2Þ
�ŷ
ðMLEÞ

)

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

a1
M 0.0189 6.9E�04 4.2E�03 �2.10% 4.00% �12.84 5.76 �8.70 5.44

b11 �0.5000 �0.14 0.33 0.10% 2.41% �52.99 4.00 �43.86 4.07

b22 �0.0400 4.6E�05 1.6E�03 �1.96% 1.76% �26.61 15.08 �21.72 15.35

b32 1.1000 �2.8E�03 0.11 �4.47% 1.33% 9.84 6.59 7.66 7.47

b33 �2.0000 �6.0E�03 0.031 0.19% 2.11% 3.79 12.84 13.88 12.89

d0
M 0.0000 0.059 0.021 �0.11% 3.59% 2.81 3.69 1.06 3.98

d1 0.0200 4.7E�04 2.3E�03 5.72% 4.52% �22.53 7.32 �9.93 7.21

d2 0.0400 �6.8E�05 3.0E�03 �4.85% 1.77% 178.88 5.62 0.22 5.42

d3 0.0600 �2.5E�04 2.1E�03 0.01% 0.84% 43,405.07 19.01 256.44 13.24

l1 �0.1000 �0.11 0.30 0.21% 2.47% �25.17 3.26 �21.42 3.29

l2 �0.2500 0.88 0.32 �0.13% 3.45% 2.06 3.79 0.34 3.99

l3 �0.3500 0.92 0.33 �0.02% 0.72% �25.50 12.84 �3.15 11.22

s1 0.0100 4.8E�06 3.2E�04 �0.02% 0.07% �2852.16 88.08 �2491.88 90.13

s2 0.0100 �1.5E�05 3.3E�04 �0.06% 0.09% 304.16 76.89 247.41 52.77

s3 0.0100 �8.8E�06 3.2E�04 �0.13% 0.09% 191.37 58.84 230.47 70.59
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deviations of the differences between the alternative

approximations, ŷ
ðEulerÞ

and ŷ
ðQMLÞ

, and the true MLE, ŷ
ðMLEÞ

,
are reported as multiples of the biases and standard

deviations of the differences between ŷ
ð2Þ

and ŷ
ðMLEÞ

.

4.2. Identification

Affine models do not have unique representations; given
any affine yield model, an equivalent model can be
constructed by replacing the state vector with a
non-singular affine transformation of itself. To ensure that
the estimated models have a unique representation,
additional restrictions are needed. We use the parameter-
ization of the Dai-Singleton canonical models, with the
modification to the drift of the state variables discussed
earlier. However, we make two additional modifications to
the parameterization when reporting the results. The Dai-
Singleton normalizations, although useful in characterizing
the varying families of affine yield models, are unstable at
certain values of the parameter vector, and result in poor
identification of some parameters near these values. For
example, consider the single-factor affine yield model

drt ¼ ðc1þc2rtÞdtþc3dWt : ð26Þ

This model is in the A0(1) family, and is equivalent to the
model of Vasicek (1977). In the Dai-Singleton canonical
form (with our alternate drift parameterization), this model

is described as

dX1t ¼ ðb11XtÞdtþdWt , ð27Þ

rt ¼ d0þdX1t , ð28Þ

where b11=c2, d0 ¼�c1=c2, and d¼ c3: If c1=c2=0, then the
d0 parameter is unidentified. When c2 is very small and c1 is
not, then the d0 parameter is very poorly identified; even
small sampling variation in the estimated c2 parameter (i.e.,
the constant term in the drift of the observed quantity, rt)
results in huge variation in the estimated d0 parameter.
When a large number of simulations are performed, it is
likely that some of the estimated values of b11 (and
therefore c2, in the above representation) will be close to
zero, and the d0 parameter estimates then take on very
extreme values. In this case, the distribution of the
estimated d0 parameter provides little useful information
about the accuracy of the estimation; although the d0

estimate may be very far from the true value, this deviation
has little effect on the implied process followed by the
interest rate and bond yields. This problem is exacerbated in
models with multiple state variables, where d0 is poorly
identified when any of the eigenvalues of the B matrix are
close to zero. We therefore report instead of d0 a modified
parameter dM

0 , which is the d0 parameter multiplied by the
harmonic average of the eigenvalues of B, that is

dM
0 ¼ d0

XN

i ¼ 0

1

vi
,

,
ð29Þ

Table 5
Monte Carlo simulations for the A2(3) model—structural parameters, weekly observations.

This table reports the results of 993 Monte Carlo simulations for the A2(3) model, with weekly observations, comparing the distribution of the

maximum-likelihood estimator ŷ
ðMLEÞ

around the true value of the parameters yðTRUEÞ , to the distribution of the differences between the reducible, Euler,

and QML estimates (ŷ
ð2Þ

, ŷ
ðEulerÞ

, and ŷ
ðQMLÞ

, respectively) and the exact MLE ŷ
ðMLEÞ

. Seven of the originally generated 1,000 simulations have been deleted

from the sample due to numeric stability problems in calculating the exact MLE, ŷ
ðMLEÞ

. The reducible likelihoods are based on the expansion with K=2

terms. The means and standard deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

are reported as percentages of the corresponding deviations of ŷ
ðMLEÞ

from yðTRUEÞ . The means

and standard deviations of ŷ
ðEulerÞ

and ŷ
ðQMLÞ

from ŷ
ðMLEÞ

are reported as multiples of the corresponding deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

. The results show that

the difference ŷ
ð2Þ
�ŷ
ðMLEÞ

is much smaller, and often several orders of magnitude smaller, than the difference ŷ
ðMLEÞ
�yðTRUEÞ due to the sampling noise. It

also shows that the approximate MLE is much closer than the Euler or QML estimate to the exact MLE; the mean and standard deviation of the difference

is much smaller for the two-term approximate MLE than for Euler or QML, for most parameters; for a few, the QML means are smaller than the

approximate MLE means, but the mean-squared errors for the same parameters (which combine the mean and standard deviation) are much larger for

QML. The QML estimates are generally better than the Euler estimates, although not dramatically so.

ŷ
ð2Þ
�ŷ
ðMLEÞ

ŷ
ðEulerÞ
�ŷ
ðMLEÞ

ŷ
ðQMLÞ
�ŷ
ðMLEÞ

Parameter yðTRUEÞ
ŷ
ðMLEÞ
�yðTRUEÞ (perc. of ŷ

ðMLEÞ
�yðTRUEÞ) (mult. of ŷ

ð2Þ
�ŷ
ðMLEÞ

) (mult. of ŷ
ð2Þ
�ŷ
ðMLEÞ

)

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

a1
M 0.0025 0.018 0.050 �0.01% 0.04% �1119.50 943.40 �1390.04 884.09

a2
M 0.0300 0.035 0.081 �0.06% 0.16% �112.48 214.35 �122.17 230.79

b11 �0.1000 0.067 0.038 0.01% 0.09% 6.23 156.01 �64.26 139.22

b22 �0.7500 0.060 0.17 0.27% 0.16% 23.62 47.13 �2.93 44.12

b33 �5.0000 �0.20 0.52 �0.93% 0.61% 24.71 19.88 �0.69 12.68

d0
M

�0.0017 �9.2E�03 0.039 �0.00% 0.04% �6864.24 965.82 �8190.57 917.43

d1 0.0025 �4.9E�04 8.4E�04 0.07% 0.10% 73.28 146.54 55.89 140.87

d2 0.0100 1.6E�04 2.9E�03 �0.21% 0.08% 980.70 263.29 376.34 265.30

d3 0.0500 �4.0E�04 1.9E�03 �1.11% 0.20% �509.33 48.38 �0.47 22.95

l1 0.0050 0.074 0.036 �0.02% 0.09% 50.53 151.78 44.51 130.36

l2 �0.0500 0.11 0.12 �0.03% 0.05% 33.27 121.83 7.16 117.19

l3 �0.1000 6.25 0.70 �0.04% 0.50% �113.09 18.09 �0.69 13.64

s1 0.0100 �1.0E�05 3.2E�04 0.01% 0.00% 11.90 43.79 20.59 37.47

s2 0.0100 �1.4E�05 3.2E�04 0.02% 0.01% 26.85 53.36 18.29 44.20

s3 0.0100 �9.8E�06 3.2E�04 0.04% 0.01% 16.52 59.90 7.93 51.01
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where v1,y,vN are the eigenvalues of B. For consistency,
this normalization is used in all models, even those
for which non-identification of the d0 parameter is not an
issue.

A similar problem occurs in some models when elements
of the d vector are very small. Consider the single factor
affine yield in which the interest rate process is

drt ¼ ðc1þc2rtÞdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c3þc4rt
p

dWt : ð30Þ

(These parameters must be restricted to ensure existence of
this process.) This model is in the A1(1) family (which is a
slight generalization of the model of Cox, Ingersoll, and Ross,
1985), and the Dai-Singleton canonical representation (with
our modified parameterization of the drift) is

dX1t ¼ ða1þb11XtÞdtþ
ffiffiffiffiffiffiffi
X1t

p
dWt , ð31Þ

rt ¼ d0þdX1t , ð32Þ

where a1=c1/c4�c2c3/c4
2, b11=c2, d0 ¼�c3=c4, and d¼ c4.

Note that, when c4 is very small, two of the parameters
may take on very large values; the a1 parameter is more
severely affected, since the square of c4 appears in the
denominator. The distribution of the estimated values of
a1 therefore provides little useful information by which
we can judge the quality of the estimation. In multiple-
factor models, this problem can occur with the ai

parameter for any 1r irM. We therefore report instead

a scaled version of ai parameter8

aM
i ¼ aidi: ð33Þ

With some models, even with the normalizations
discussed, another identification issue can arise, which is
the reordering of state variables (see Babbs and Nowman,
1999). For example, in the A3(3) model, if the off-diagonal
elements of the drift are zero, then it is possible simply to
reorder the three state variables. The parameter vector is
then different, even though the implied interest rate and
bond yield processes are exactly the same as without the
reordering. To guard against this problem, we sort by the
eigenvalues of the drift matrix. With the parameter
restrictions imposed on this model in the Monte Carlo
simulations, the eigenvalues of the drift matrix are simply
the diagonal elements, and each one is clearly associated
with a state variable. When reporting the results, if the size
ordering of the eigenvalues of the estimated drift matrix is
different than the size ordering of the eigenvalues from the

Table 6
Monte Carlo simulations for the A3(3) model—structural parameters, weekly observations.

This table reports the results of 918 Monte Carlo simulations for the A3(3) model, with weekly observations, comparing the distribution of the

maximum-likelihood estimator ŷ
ðMLEÞ

around the true value of the parameters yðTRUEÞ , to the distribution of the differences between the reducible, Euler,

and QML estimates (ŷ
ð2Þ

, ŷ
ðEulerÞ

, and ŷ
ðQMLÞ

, respectively) and the exact MLE ŷ
ðMLEÞ

. Of the originally generated 1,000 simulations, 82 have been deleted

from the sample due to numeric stability problems in calculating the exact MLE, ŷ
ðMLEÞ

. The reducible likelihoods are based on the expansion with K=2

terms. The means and standard deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

are reported as percentages of the corresponding deviations of ŷ
ðMLEÞ

from yðTRUEÞ . The means

and standard deviations of ŷ
ðEulerÞ

and ŷ
ðQMLÞ

from ŷ
ðMLEÞ

are reported as multiples of the corresponding deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

. The results show that

the difference ŷ
ð2Þ
�ŷ
ðMLEÞ

is much smaller, and often several orders of magnitude smaller, than the difference ŷ
ðMLEÞ
�yðTRUEÞ due to the sampling noise. It

also shows that the approximate MLE is much closer than the Euler or QML estimate to the exact MLE; the mean and standard deviation of the difference

is much smaller for the two-term approximate MLE than for Euler or QML, for most parameters; for a few, the QML means are smaller than the

approximate MLE means, but the mean-squared errors for the same parameters (which combine the mean and standard deviation) are much larger for

QML. The QML estimates are generally better than the Euler estimates, although not dramatically so.

ŷ
ð2Þ
�ŷ
ðMLEÞ

ŷ
ðEulerÞ
�ŷ
ðMLEÞ

ŷ
ðQMLÞ
�ŷ
ðMLEÞ

Parameter yðTRUEÞ
ŷ
ðMLEÞ
�yðTRUEÞ (perc. of ŷ

ðMLEÞ
�yðTRUEÞ) (mult. of ŷ

ð2Þ
�ŷ
ðMLEÞ

) (mult. of ŷ
ð2Þ
�ŷ
ðMLEÞ

)

Mean Std. dev. Mean Std. dev. Mean Std. dev. Mean Std. dev.

a1
M 0.0025 0.102 0.097 0.04% 0.91% �23.04 19.32 19.79 8.28

a2
M 0.1767 0.52 0.92 �0.29% 3.09% �16.89 16.42 �36.16 15.42

a3
M 0.0300 2.7 1.3 0.13% 2.32% �4.58 10.35 12.77 6.11

b11 �0.1000 0.091 0.019 �0.01% 0.60% �19.72 22.89 13.26 10.43

b22 �5.0000 �0.44 1.3 �2.76% 0.76% 23.53 13.63 0.04 3.80

b33 �1.0000 0.38 0.18 �0.04% 0.77% �2.76 14.39 14.24 8.69

d0
M

�0.0009 �0.023 0.058 0.15% 0.56% �27.73 51.51 15.18 14.11

d1 0.0025 �6.2E�04 3.3E�04 �0.01% 0.79% 68.08 15.10 �41.46 7.18

d2 0.0035 8.9E�04 3.0E�03 �0.02% 1.14% 2565.82 33.53 �514.41 36.21

d3 0.0100 �6.7E�03 2.1E�03 0.03% 0.83% 15.28 13.52 13.88 8.20

l1 0.0200 0.093 0.018 �0.01% 0.59% �16.27 22.81 12.88 10.33

l2 �0.2000 0.47 0.76 0.07% 0.74% �5.64 37.37 29.62 39.48

l3 �0.1000 0.38 0.18 �0.05% 0.77% 0.40 14.40 13.53 8.67

s1 0.0100 �1.3E�05 3.2E�04 0.17% 0.15% 1.81 2.38 1.21 1.10

s2 0.0100 �1.7E�05 3.1E�04 �0.05% 0.09% 3.66 3.70 �0.68 1.87

s3 0.0100 �4.5E�06 3.2E�04 �0.10% 0.07% 3.57 2.87 �4.20 2.95

8 Collin-Dufresne, Goldstein, and Jones (2003) propose an alter-

native to the parameterization scheme in which the choice of state

variables is based on observed quantities such as level and slope of the

term structure. Although our parameterization is based on Dai and

Singleton (2000), the modifications to this scheme we propose are

similar in spirit to those of Collin-Dufresne, Goldstein, and Jones (2003).
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data-generating drift matrix, we reorder the state variables.
This procedure eliminates this final identification problem
for the A2(2), A2(3), and A3(3) models.

A similar identification issue potentially arises in the
A0(2), A0(3), and A1(3) models, although in our simula-
tions, it has manifested itself only in the A0(3) case. For
this latter model, the matrix of slope coefficients in the
drift, in the Dai-Singleton canonical form, is

B¼

b11 0 0

b21 b22 0

b31 b32 b33

2
64

3
75: ð34Þ

For over 400 of the 1,000 simulations for this model, the
ordering of the diagonal elements is different, for at least
one of the estimation methods, from the data-generating
values. In this case, the state variables cannot simply be
reordered while still preserving the Dai-Singleton cano-
nical form, because a reordering would cause some of the
elements of B above the diagonal to be non-zero.
Investigation of these estimates shows, for these simula-
tions, that the true likelihood function is extremely flat in
some directions in the parameter space. In one extreme
case, the true likelihoods of the MLE estimated with and
without an ordering constraint on the diagonal elements
of B differ beginning only in the twelfth significant
decimal place. The reversal of the diagonal elements is
therefore indicative of poor identification, and, absent any
convenient alternate parameterization that is better
identified, we present the results for this model in a
second form as well, expressing the state variable
dynamics in terms of observed quantities.

Affine yield models are usually expressed (as we
express them) in terms of latent variables, rather than
directly observable quantities such as yields. As noted by
Duffie and Kan (1996), these models can be expressed in
terms of bond yields instead of latent state variables;
however, expressing the parameter restrictions needed to
satisfy existence and no-arbitrage conditions in a straight-
forward way, and imposing them in estimation, has
proved challenging; see Collin-Dufresne, Goldstein, and
Jones (2003) for one approach. However, given an
estimated model (expressed in a latent variable form), it
is relatively easy to construct an observationally equiva-
lent model in terms of bond yields. Furthermore, since
bond yields are well-defined and observable quantities,
there are no identification problems. Therefore, even
though the models are estimated using their latent
variable representations (with the Dai-Singleton normal-
izations, and the modifications discussed above), we can
also report the results in yield autoregressive form

ym ¼jmþ
XN

n ¼ 1

cmnynþZm, ð35Þ

where y1,y,yN are the first N yields generated (i.e., those
observed without error); unlike the yields referenced in
Section 3, these yields are annualized. The residuals
Z1, . . . ,ZN have mean zero and covariance structure

Cov½Zi,Zj� ¼oij0þ
XM
k ¼ 1

oijkyk, ð36Þ

with the stipulation that oijk ¼ojik for any 1r i,jrN and
0rkrM.

Presenting the results for the A0(3) model in yield
autoregressive form resolves the final identification
issue for this model; these results are presented in Table 7,
and, as discussed in the next section, confirm the accuracy
of our method. The same issue could also have affected
other models, but an examination of the parameter
estimates shows that it did not; for these models,
not a single simulation experienced a reversal of the
diagonal elements of the drift matrix, for either the true
MLE, or for the estimates using any of the approximation
methods.

4.3. Results

Tables 3–6 present the Monte Carlo results for the three-
factor models with weekly observations, in terms of the
model parameters. Deferring discussion of the A0(3) model
for now, our technique produces parameter estimates for
the other models that are extremely close to the MLE based
on the true likelihood, both in absolute terms and relative
to the sampling distribution of the latter relative to the
true parameter. The mean difference between the two
estimates is typically very small compared to the mean
difference between the true maximum likelihood estimator
and the true parameter value; the standard deviation
of the difference between the two estimators is also
typically very small compared to the standard deviation of
the MLE itself; the ratios are no more than a few percent,
and for many parameters, much less than 1%. These results
suggest that the approximation error introduced by our
likelihood approximation is swamped by the sampling error
of the MLE estimator, i.e., the noise resulting from the fact
that the parameters are estimated from random data.
Consequently, the exact MLE can be replaced by our
estimator at almost no cost (and of course, our estimator
can always be calculated, unlike the exact MLE, which is
only available for models which have a known closed-form
likelihood).

Tables 3–6 also present the difference between esti-
mates obtained using the Euler approximate likelihood and
the true MLE, and between estimates using the QML
approximate likelihood and the true MLE (for those models
for which these two are different). For QML, the conditional
means and variances were calculated numerically; esti-
mates using explicit expressions for the conditional
moments for the one- and two-factor models (not
presented) are very close to the estimates using numeric
moments. QML estimates are only presented when they
are different from the true MLE, i.e., for all models except
A0(3). Again deferring discussion of the A0(3) model, both
of these methods produce for the other models estimates
with substantially larger deviations from the true MLEs
than our method. For nearly all parameters in all models,
the mean of the difference between the estimates using
these two methods and the true MLE is much larger (in
absolute magnitude) than the mean difference between
estimates from the 2-term approximate likelihood and the
true MLE; in all cases, the Euler and QML methods have

Y. Aı̈t-Sahalia, R.L. Kimmel / Journal of Financial Economics 98 (2010) 113–144 125



Author's personal copy

much larger standard deviation from the true MLE than the
2-term approximate likelihood.9 Even in the few cases
where the other two methods have smaller mean differ-
ences, the standard deviation of the difference is much
larger, so that the 2-term likelihood method produces
much smaller mean-squared error. Perhaps surprisingly,
the QML method usually produces only a small improve-
ment over the Euler method (except for the Gaussian
models, for which the QML estimates coincide with the
true MLE); most of the differences from the true MLE seem
to be driven by the use of a Gaussian density when the true
density is non-Gaussian, rather than the Euler method’s
use of approximate rather than true conditional moments.

The results for the unmodified ai and d0 parameters
(not presented) are characterized by a few very extreme
outliers, in both the true and approximate MLE results. The
estimates, as well as the conformance between the true
and approximate estimates, of the modified
versions of these parameters suggest that the extreme
values of the ai parameters occur only when the
corresponding di parameters are very close to zero, and
the extreme values of the d0 parameter occur only when
the B matrix contains a very small eigenvalue. As argued
above, these extreme values are then indicative of
the poor identification of the parameter which is intrinsic
to the parameterization method, rather than poor
performance of the estimation technique. The results
in yield autoregressive form are presented only for the
A0(3) model in Table 7, to save space, but were calculated
for all models, and confirm this interpretation. The
dynamics of observed yields implied by the approximate
MLE closely conform to those implied by the true MLE.

From Table 3, our method appears to perform relatively
poorly for the A0(3) model10; however, closer examination

Table 7
Monte Carlo simulations for the A0(3) model—yield autoregressions, weekly observations.

This table reports the results of 1,000 Monte Carlo simulations for the A0(3) model in yield autoregressive form, with weekly observations, comparing

the distribution of the maximum-likelihood estimator ŷ
ðMLEÞ

around the true value of the parameters yðTRUEÞ , to the distribution of the differences between

the reducible and Euler estimates (ŷ
ð2Þ

and ŷ
ðEulerÞ

, respectively) and the exact MLE ŷ
ðMLEÞ

. The reducible likelihoods are based on the expansion with K=2

terms. QML estimates are not presented, since for this model, they coincide with the exact MLE. The means and standard deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

are

reported as percentages of the corresponding deviations of ŷ
ðMLEÞ

from yðTRUEÞ . The means and standard deviations of ŷ
ðEulerÞ

from ŷ
ðMLEÞ

are reported as

multiples of the corresponding deviations of ŷ
ð2Þ

from ŷ
ðMLEÞ

. The results show that the difference ŷ
ð2Þ
�ŷ
ðMLEÞ

is several orders of magnitude smaller than

the difference ŷ
ðMLEÞ
�yðTRUEÞ due to the sampling noise. It also shows that the approximate MLE is much closer than the Euler estimate to the exact MLE;

the mean and standard deviation of the difference is much smaller for the two-term approximate MLE than for the Euler likelihood, for all parameters.

The analogous information expressed in terms of the parameters of the canonical model is presented in Table 3.

ŷ
ð2Þ
�ŷ
ðMLEÞ

ŷ
ðEulerÞ
�ŷ
ðMLEÞ

Parameter yðTRUEÞ
ŷ
ðMLEÞ
�yðTRUEÞ (perc. of ŷ

ðMLEÞ
�yðTRUEÞ) (mult. of ŷ

ð2Þ
�ŷ
ðMLEÞ

)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

j1 �0.0115 �5.1E�04 8.1E�03 �0.09% 0.07% 43.11 33.32

j2 �0.0041 �2.0E�04 6.6E�03 0.01% 0.00% 178.09 359.59

j3 �0.0022 �1.7E�04 4.9E�03 �0.00% 0.00% �175.75 539.41

c11 �2.7824 �0.14 0.38 �0.19% 0.17% 32.75 25.76

c12 5.4942 0.40 1.2 �0.19% 0.18% 32.10 25.20

c13 �2.7540 �0.27 0.89 �0.19% 0.18% 31.61 25.46

c21 �0.5818 4.3E�03 0.016 �0.17% 0.08% 35.90 32.98

c22 0.0613 �0.012 0.049 �0.17% 0.08% 35.00 28.78

c23 0.5251 7.7E�03 0.039 �0.18% 0.08% 34.10 27.34

c31 �0.2150 �1.8E�03 8.6E�03 �0.19% 0.06% 36.55 35.71

c32 �0.4608 4.4E�03 0.029 �0.20% 0.06% 35.27 28.64

c33 0.6710 �2.2E�03 0.026 �0.26% 0.05% 33.79 26.40

o110 0.0006 �3.6E�06 3.7E�05 �0.06% 0.01% �3634.91 653.28

o120 0.0004 �2.4E�06 2.6E�05 �0.03% 0.01% 643.76 565.89

o130 0.0003 �1.8E�06 2.0E�05 �0.03% 0.01% 2307.07 526.67

o210 0.0004 �2.4E�06 2.6E�05 �0.03% 0.01% 643.76 565.89

o220 0.0004 �1.4E�06 2.3E�05 0.02% 0.01% 3259.58 190.58

o230 0.0003 �1.0E�06 1.8E�05 0.02% 0.01% 2836.08 167.21

o310 0.0003 �1.8E�06 2.0E�05 �0.03% 0.01% 2307.07 526.67

o320 0.0003 �1.0E�06 1.8E�05 0.02% 0.01% 2836.08 167.21

o330 0.0002 �7.6E�07 1.4E�05 0.03% 0.01% 3037.14 153.93

9 Note that the biases for the Euler and QML estimates are reported

as multiples of the corresponding biases for the reducible estimates. In a

few cases, the sample bias for the reducible estimates was very close to

zero, with the result that the biases for the other two methods are many

times larger. In these cases, it does not necessarily follow that the bias

for the other two methods is extreme, merely that it is very small for the

reducible method. This phenomenon did not occur for any parameter

estimates in reverse, that is, none of the Euler or QML estimates had

extremely small bias, so that this multiple was extremely close to zero.

Also, this phenomenon does not occur with the standard deviations. In

any event, the tables contain all the information necessary to back out

the absolute instead of relative estimation errors, if so desired.

10 It is unlikely that anyone would use our method to estimate an

A0(3) model, since the true likelihood function is known explicitly, but

we include results anyway for completeness.
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shows that this is not the case. The errors in estimation of
the parameter vector introduced by our method as reported
in the table are still substantially smaller than the sampling
variability inherent in maximum likelihood estimation, but
are relatively larger than in the other models. However,
much of the deviation of our approximate MLE from the true
MLE is symptomatic of an identification issue, as discussed
in the previous section, not a problem with our method. The
results for the A0(3) model are presented in yield auto-
regressive form as well in Table 7. As shown, the parameters
of the yield autoregressive representation of the model
estimated using our method are extremely close to those
parameters estimated using the exact likelihood function;
the mean difference and standard deviation of difference
are, in all cases, much smaller than 1% of the bias and
standard deviation of the true MLE itself. The Euler
estimates are much less accurate, with biases and standard
deviations always dozens, and often hundreds of times
larger than our technique.11 For this model, the QML
likelihood coincides with true likelihood, so results are not
presented.

In summary, we find that any additional bias and
variance introduced by the use of an approximate likelihood
are insignificant in magnitude relative to the bias and
variance of the MLE estimator itself, so that use of our
approximations does not result in a degradation of the
quality of the MLE estimates. We further find that estimates
using the Euler and QML methods deviate much more from
the MLE estimate, with the additional error sometimes
nearly as large as the intrinsic variability of MLE itself.
Although the A0(3) model (for which the QML likelihood
approximation is exact) appears to be an exception, in
which Euler performs as well as our method for at least
some of the parameters, this is the side-effect of an
identification problem; when the results for this model are
viewed in yield autoregressive form, our method strongly
outperforms the Euler method, as it does in the other
models. This outperformance relative to Euler occurs
with the A0(3) model, despite the fact that the
Gaussian likelihood of the state vector for this model
would seem to give Gaussian approximation methods an
advantage.

5. Empirical application

We now estimate the nine affine models with one, two,
and three factors on a data set of synthetic US Treasury
strips, constructed by the method of McCulloch (1975).
This method for construction of strips prices from prices
of coupon securities was used to construct the data set of
McCulloch and Kwon (1993); the method was evaluated
by Bliss (1997), who also produces periodic extensions of
the data set. We use synthetic strips for a period of 31
years, from January of 1972 until December of 2002;
although the data set includes yields from January 1970,

yields for the longer maturities used in this study are not
available for the first two years. The selection of
maturities, parameterization of the models, etc., follows
that of Section 4 closely. In particular, we use the modified
ai

M parameters; however, since poor identification of the
d0 parameter is not evident in the estimates for any of the
models, we do not use the modified version of this
parameter. We use a number of observed yields equal to
twice the number of factors in the model, with maturities
spaced every two years, except that the shortest maturity
is one month rather than zero.12 For an N-factor model,
the N shortest maturities are considered observed without
error, and the remaining yields are considered to have
observation error. For example, in the AM(3) models,
maturities of one month, two years, and four years are
assumed observed without error, and maturities of six,
eight, and 10 years are observed with error. All models are
estimated four ways: with and without the parameter
restrictions used in Section 4 to ensure existence of a
closed-form likelihood, and with the Dai-Singleton and
Cheridito-Filipović-Kimmel market price of risk specifica-
tions. For the A0(N) models, there are no parameter
restrictions needed for existence of a closed-form like-
lihood, so there are only two distinct estimations to
perform; for the other models, all four possible combina-
tions are estimated. In all cases, the estimates are found
using the 2-term approximate likelihoods as well as the
Euler and QML approximations; the true MLE is also
estimated when the exact likelihood function is known in
closed-form.

The parameter estimates, with standard errors, for the
three-factor models with the Dai-Singleton market price
of risk specification, are presented in Tables 8, 10, and 12
using the 2-term approximate likelihoods, Euler
approximations, and QML approximations, respectively.
Analogous estimates using the Cheridito-Filipović-
Kimmel market price of risk specification are presented
in Tables 9, 11, and 13. Standard errors have been
calculated by evaluating the sample means of the cross
products of the score functions, which in turn have been
calculated by numeric differentiation of the log likelihood.
All six tables present results for all three-factor models,
both with and without the parameter restrictions for
existence of a closed-form likelihood, from Table 2
(Tables 10–13). Not all parameters appear in all model
specifications, so the tables contain some blank entries.
Estimates using the true likelihood function and for the
one- and two-factor models are not presented, although
those estimates are used in the likelihood ratio tests
discussed later. An examination of the true estimates
(which are available only for the restricted versions of the
models, and, as per the above, are not presented) suggests
that they are generally quite close to the estimates using
reducible likelihoods. Estimates for the A3(3) restricted
model, with the Dai-Singleton market price of risk, using
the true likelihood function, were not calculated, due to a

11 Further confirmation that the results presented in Table 3 are

affected by an identification problem comes from the d0
M, s1, s2, and s3

results. These parameters are invariant to linear transformation of the

state vector, and therefore not subject to an identification problem. As

shown, our method strongly outperforms Euler for these parameters.

12 Although the original data sets of McCulloch (1975) and

McCulloch and Kwon (1993) included zero-maturity yields, the subse-

quent extensions do not always do so.
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ić
-K

im
m

e
l

m
a

rk
e

t
p

ri
ce

o
f

ri
sk

,
re

d
u

ci
b

le
li

k
e

li
h

o
o

d
.

T
h

is
ta

b
le

re
p

o
rt

s
th

e
p

a
ra

m
e

te
r

e
st

im
a

te
s

fo
r

th
e

A
0
(3

),
A

1
(3

),
A

2
(3

),
a

n
d

A
3
(3

)
m

o
d

e
ls

w
it

h
th

e
re

d
u

ci
b

le
li

k
e

li
h

o
o

d
a

p
p

ro
x

im
a

ti
o

n
w

it
h

K
=

2
te

rm
s.

Fo
r

th
e

la
tt

e
r

th
re

e
m

o
d

e
ls

,r
e

su
lt

s
fo

r
b

o
th

th
e

re
st

ri
ct

e
d

(i
.e

.,
w

it
h

th
e

p
a

ra
m

e
te

r
re

st
ri

ct
io

n
s

fr
o

m
T

a
b

le
2

im
p

o
se

d
)

a
n

d
u

n
re

st
ri

ct
e

d
v

e
rs

io
n

s
o

f
th

e
m

o
d

e
l

a
re

re
p

o
rt

e
d

.
S

ta
n

d
a

rd
e

rr
o

rs
a

re
re

p
o

rt
e

d
in

p
a

re
n

th
e

se
s.

T
h

e
d

a
ta

u
se

d
a

re
sy

n
th

e
ti

c
U

S
T

re
a

su
ry

st
ri

p
s,

co
n

st
ru

ct
e

d
b

y
th

e
m

e
th

o
d

o
f

M
cC

u
ll

o
ch

(1
9

7
5

),
fr

o
m

Ja
n

u
a

ry
o

f
1

9
7

2
u

n
ti

l
D

e
ce

m
b

e
r

o
f

2
0

0
2

.Y
ie

ld
s

w
it

h
m

a
tu

ri
ti

e
s

o
f

o
n

e
m

o
n

th
,t

w
o

y
e

a
rs

,a
n

d
fo

u
r

y
e

a
rs

a
re

co
n

si
d

e
re

d
o

b
se

rv
e

d
w

it
h

o
u

t
e

rr
o

r;
a

d
d

it
io

n
a

l

y
ie

ld
s

w
it

h
m

a
tu

ri
ti

e
s

o
f

si
x

,
e

ig
h

t,
a

n
d

1
0

y
e

a
rs

a
re

co
n

si
d

e
re

d
o

b
se

rv
e

d
w

it
h

e
rr

o
r.

S
e

e
S

e
ct

io
n

5
fo

r
a

d
d

it
io

n
a

l
d

e
ta

il
.

A
0
(3

)
A

1
(3

)—
R

e
st

ri
ct

e
d

A
1
(3

)—
U

n
re

st
ri

ct
e

d
A

2
(3

)—
R

e
st

ri
ct

e
d

A
2
(3

)—
U

n
re

st
ri

ct
e

d
A

3
(3

)—
R

e
st

ri
ct

e
d

A
3
(3

)—
U

n
re

st
ri

ct
e

d

P
a

ra
m

e
te

r
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.

a
1M

–
–

0
.0

(3
.6

)
0

.0
(3

.5
)

�
0

.0
3

(0
.8

2
)

�
0

.0
(1

.8
)

0
.0

(5
.8

)
0

.0
(6

.0
)

a
2M

–
–

–
–

–
–

�
0

.0
(4

.0
)

�
0

.0
(4

.6
)

0
.0

0
(0

.8
1

)
0

.0
(2

.5
)

a
3M

–
–

–
–

–
–

–
–

–
–

0
.0

(2
.0

)
0

.0
(5

.6
)

b
1

1
�

0
.1

5
(0

.1
2

)
�

0
.1

6
(0

.1
2

)
�

0
.1

6
(0

.1
1

)
0

.0
0

(0
.1

2
)

�
0

.0
0

(0
.1

8
)

�
0

.2
4

(0
.1

3
)

�
0

.5
0

(0
.1

9
)

b
1

2
–

–
–

–
–

–
–

–
0

.0
0

0
(0

.0
8

3
)

–
–

0
.1

6
(0

.8
4

)

b
1

3
–

–
–

–
–

–
–

–
–

–
–

–
1

.0
(1

.1
)

b
2

1
�

0
.0

0
(0

.6
6

)
–

–
�

0
.0

9
(0

.2
1

)
–

–
0

.8
2

(0
.4

9
)

–
–

0
.0

0
(0

.1
0

)

b
2

2
�

3
.7

2
(0

.4
2

)
�

3
.4

8
(0

.4
1

)
�

3
.5

5
(0

.4
2

)
�

0
.1

8
(0

.1
2

)
�

0
.3

7
(0

.1
6

)
�

0
.1

6
(0

.1
2

)
�

0
.6

1
(0

.4
6

)

b
2

3
–

–
–

–
�

0
.3

(1
3

.8
)

–
–

–
–

–
–

0
.5

4
(0

.5
2

)

b
3

1
�

0
.3

9
(0

.2
4

)
–

–
0

.0
4

(0
.4

4
)

–
–

0
.3

6
(0

.1
3

)
–

–
0

.0
0

(0
.2

1
)

b
3

2
0

.9
5

(0
.5

7
)

0
.5

3
(0

.5
6

)
0

.3
(1

3
.7

)
–

–
0

.0
7

3
(0

.0
4

6
)

–
–

1
.9

1
(0

.7
4

)

b
3

3
�

0
.8

5
(0

.2
4

)
0

.0
0

0
0

(0
.0

0
4

1
)

�
0

.6
3

(0
.2

4
)

�
2

.6
5

(0
.3

5
)

�
3

.3
3

(0
.3

7
)

�
0

.0
0

(0
.1

8
)

�
2

.7
1

(0
.4

1
)

d
0

0
.0

0
6

(0
.0

3
1

)
�

0
.0

(1
0

.4
)

0
.0

0
0

(0
.0

2
6

)
�

0
.0

(1
2

.3
)

0
.0

(6
.5

)
�

0
.0

0
0

(0
.0

1
6

)
�

0
.0

0
2

(0
.0

1
6

)

d
1

0
.0

1
7

1
(0

.0
0

5
4

)
0

.0
0

0
8

7
(0

.0
0

0
3

7
)

0
.0

0
0

3
9

(0
.0

0
0

5
3

)
�

0
.0

(1
.7

)
�

0
.1

(2
.1

)
0

.0
0

0
3

7
(0

.0
0

0
4

3
)

0
.0

0
0

2
7

(0
.0

0
0

5
0

)

d
2

�
0

.0
2

9
(0

.0
1

2
)

�
0

.0
2

0
2

(0
.0

0
3

7
)

�
0

.0
2

7
(0

.0
7

9
)

�
0

.0
0

(0
.1

1
)

�
0

.0
1

(0
.3

1
)

0
.0

0
0

0
6

(0
.0

0
0

7
7

)
0

.0
0

0
4

5
(0

.0
0

0
8

9
)

d
3

0
.0

0
8

0
(0

.0
0

4
8

)
0

.0
2

0
2

(0
.0

0
1

4
)

0
.0

2
(0

.1
3

)
0

.3
(1

0
.5

)
0

.3
(1

1
.0

)
0

.0
0

7
6

(0
.0

0
1

4
)

0
.0

0
8

9
(0

.0
0

1
8

)

a
1Q

1
.5

(1
.8

)
0

.7
6

(0
.4

1
)

0
.7

6
(0

.2
3

)
1

.9
5

(0
.8

9
)

1
.7

3
(0

.9
9

)
0

.5
(1

.2
)

0
.5

(1
.1

)

a
2Q

�
2

.7
(4

.8
)

�
6

0
.8

(5
8

9
.3

)
4

.8
(8

.4
)

0
.5

0
(0

.4
9

)
0

.5
0

(0
.5

3
)

0
.7

(2
.1

)
0

.6
(1

.9
)

a
3Q

0
.4

4
(0

.6
2

)
�

1
0

.6
(7

3
.7

)
�

1
.3

(2
2

.5
)
�

0
.2

E
+

0
3

(7
.5

E
+

0
3

)
�

0
.1

E
+

0
3

(4
.0

E
+

0
3

)
0

.5
(7

.5
)

0
.5

(8
.0

)

b
1

1
Q

0
.9

(1
.2

)
�

0
.0

0
5

4
(0

.0
0

4
4

)
�

0
.0

0
5

5
(0

.0
0

3
2

)
�

0
.7

2
8

(0
.0

3
1

)
�

0
.7

2
0

(0
.0

3
8

)
�

0
.1

2
4

(0
.0

5
1

)
�

0
.1

2
9

(0
.0

5
4

)

b
1

2
Q

7
.0

(2
.5

)
–

–
–

–
0

.1
4

5
(0

.0
5

5
)

0
.1

5
8

(0
.0

6
5

)
0

.5
(1

.1
)

0
.4

(1
.1

)

b
1

3
Q

0
.0

6
(0

.8
8

)
–

–
–

–
–

–
–

–
0

.0
0

(0
.5

8
)

0
.0

0
(0

.9
3

)

b
2

1
Q

�
2

.6
(3

.9
)

�
0

.1
6

4
(0

.0
9

7
)

�
0

.4
9

(0
.9

9
)

0
.1

2
(0

.1
1

)
0

.1
4

(0
.1

1
)

0
.1

8
7

(0
.0

8
8

)
0

.2
1

6
(0

.0
8

4
)

b
2

2
Q

�
1

5
.8

(8
.8

)
�

7
.9

(3
.3

)
�

1
2

.1
(9

.1
)

�
0

.0
3

1
(0

.0
2

9
)

�
0

.0
3

9
(0

.0
3

5
)

�
1

.7
0

(0
.5

8
)

�
1

.1
8

(0
.6

7
)

b
2

3
Q

�
1

.3
(1

.8
)

�
1

.1
3

(0
.6

8
)

�
3

.2
(5

8
.5

)
–

–
–

–
0

.5
2

(0
.2

1
)

0
.4

2
(0

.4
2

)

b
3

1
Q

0
.0

6
(0

.5
1

)
0

.1
3

1
(0

.0
5

9
)

0
.2

(2
.3

)
0

.0
E

+
0

3
(1

.0
E

+
0

3
)

0
.0

E
+

0
3

(1
.3

E
+

0
3

)
0

.0
0

(0
.2

8
)

0
.0

0
(0

.3
3

)

b
3

2
Q

1
.8

(2
.5

)
4

.0
(1

.5
)

3
.9

(5
8

.7
)

1
.8

(6
6

.5
)

5
.9

(1
9

2
.6

)
5

.5
(1

.6
)

4
.7

(1
.7

)

b
3

3
Q

�
0

.3
0

(0
.1

0
)

�
0

.1
5

(0
.2

6
)

0
.3

(3
.1

)
�

0
.2

E
+

0
3

(6
.4

E
+

0
3

)
�

0
.2

E
+

0
3

(6
.8

E
+

0
3

)
�

3
.4

6
(0

.8
1

)
�

4
.5

(1
.2

)

s 1
0

.0
0

0
9

9
1

(6
.3

E
�

0
5

)
0

.0
0

0
9

8
8

(6
.2

E
�

0
5

)
0

.0
0

0
9

8
7

(6
.3

E
�

0
5

)
0

.0
0

0
9

8
7

(6
.1

E
�

0
5

)
0

.0
0

0
9

8
7

(6
.2

E
�

0
5

)
0

.0
0

0
9

9
2

(6
.2

E
�

0
5

)
0

.0
0

0
9

9
1

(6
.3

E
�

0
5

)

s 2
0

.0
0

1
7

1
(0

.0
0

0
2

3
)

0
.0

0
1

7
1

(0
.0

0
0

2
3

)
0

.0
0

1
7

1
(0

.0
0

0
2

3
)

0
.0

0
1

7
1

(0
.0

0
0

2
2

)
0

.0
0

1
7

1
(0

.0
0

0
2

2
)

0
.0

0
1

7
2

(0
.0

0
0

2
3

)
0

.0
0

1
7

1
(0

.0
0

0
2

3
)

s 3
0

.0
0

2
2

6
(0

.0
0

0
2

1
)

0
.0

0
2

2
5

(0
.0

0
0

2
1

)
0

.0
0

2
2

5
(0

.0
0

0
2

1
)

0
.0

0
2

2
5

(0
.0

0
0

2
1

)
0

.0
0

2
2

5
(0

.0
0

0
2

1
)

0
.0

0
2

2
5

(0
.0

0
0

2
1

)
0

.0
0

2
2

5
(0

.0
0

0
2

1
)

Y. Aı̈t-Sahalia, R.L. Kimmel / Journal of Financial Economics 98 (2010) 113–144 129



Author's personal copy

T
a

b
le

1
0

P
a

ra
m

e
te

r
e

st
im

a
te

s
fo

r
th

re
e

-f
a

ct
o

r
m

o
d

e
ls

—
D

a
i-

S
in

g
le

to
n

m
a

rk
e

t
p

ri
ce

o
f

ri
sk

,
E

u
le

r
li

k
e

li
h

o
o

d
.

T
h

is
ta

b
le

re
p

o
rt

s
th

e
p

a
ra

m
e

te
r

e
st

im
a

te
s

fo
r

th
e

A
0
(3

),
A

1
(3

),
A

2
(3

),
a

n
d

A
3
(3

)
m

o
d

e
ls

w
it

h
th

e
E

u
le

r
li

k
e

li
h

o
o

d
a

p
p

ro
x

im
a

ti
o

n
.

Fo
r

th
e

la
tt

e
r

th
re

e
m

o
d

e
ls

,
re

su
lt

s
fo

r
b

o
th

th
e

re
st

ri
ct

e
d

(i
.e

.,
w

it
h

th
e

p
a

ra
m

e
te

r
re

st
ri

ct
io

n
s

fr
o

m
T

a
b

le
2

im
p

o
se

d
)

a
n

d
u

n
re

st
ri

ct
e

d
v

e
rs

io
n

s
o

f
th

e
m

o
d

e
l

a
re

re
p

o
rt

e
d

.S
ta

n
d

a
rd

e
rr

o
rs

a
re

re
p

o
rt

e
d

in
p

a
re

n
th

e
se

s.
T

h
e

d
a

ta
u

se
d

a
re

sy
n

th
e

ti
c

U
S

T
re

a
su

ry
st

ri
p

s,
co

n
st

ru
ct

e
d

b
y

th
e

m
e

th
o

d
o

f
M

cC
u

ll
o

ch
(1

9
7

5
),

fr
o

m
Ja

n
u

a
ry

o
f

1
9

7
2

u
n

ti
l

D
e

ce
m

b
e

r
o

f
2

0
0

2
.

Y
ie

ld
s

w
it

h
m

a
tu

ri
ti

e
s

o
f

o
n

e
m

o
n

th
,

tw
o

y
e

a
rs

,
a

n
d

fo
u

r
y

e
a

rs
a

re
co

n
si

d
e

re
d

o
b

se
rv

e
d

w
it

h
o

u
t

e
rr

o
r;

a
d

d
it

io
n

a
l

y
ie

ld
s

w
it

h

m
a

tu
ri

ti
e

s
o

f
si

x
,

e
ig

h
t,

a
n

d
1

0
y

e
a

rs
a

re
co

n
si

d
e

re
d

o
b

se
rv

e
d

w
it

h
e

rr
o

r.
S

e
e

S
e

ct
io

n
5

fo
r

a
d

d
it

io
n

a
l

d
e

ta
il

.

A
0
(3

)
A

1
(3

)—
R

e
st

ri
ct

e
d

A
1
(3

)—
U

n
re

st
ri

ct
e

d
A

2
(3

)—
R

e
st

ri
ct

e
d

A
2
(3

)—
U

n
re

st
ri

ct
e

d
A

3
(3

)—
R

e
st

ri
ct

e
d

A
3
(3

)—
U

n
re

st
ri

ct
e

d

P
a

ra
m

e
te

r
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.
E

st
im

a
te

S
td

.
d

e
v

.

a
1M

–
–

0
.0

0
(0

.2
3

)
0

.0
0

(0
.2

3
)

0
.0

4
(0

.2
3

)
0

.0
1

(0
.2

9
)

0
.0

0
(0

.4
1

)
0

.0
E

+
0

3
(1

.2
E

+
0

3
)

a
2M

–
–

–
–

–
–

0
.0

0
(0

.2
6

)
0

.0
0

(0
.4

8
)

0
.0

E
+

0
6

(1
.9

E
+

0
6

)
0

.0
E

+
0

5
(2

.3
E

+
0

5
)

a
3M

–
–

–
–

–
–

–
–

–
–

0
.0

5
(0

.5
5

)
0

.0
(2

2
3

.9
)

b
1

1
�

0
.0

1
6

4
(0

.0
0

1
5

)
0

.0
0

0
(0

.0
3

9
)

0
.0

0
0

(0
.0

3
7

)
0

.0
0

(0
.1

4
)

0
.0

0
(0

.1
3

)
�

0
.0

3
7

(0
.0

3
8

)
�

0
.0

4
1

(0
.0

8
1

)

b
1

2
–

–
–

–
–

–
–

–
0

.0
2

0
(0

.0
1

2
)

–
–

0
.0

0
0

0
(0

.0
0

9
5

)

b
1

3
–

–
–

–
–

–
–

–
–

–
–

–
0

.1
(1

.1
)

b
2

1
�

0
.3

3
(0

.1
4

)
–

–
0

.0
(7

.4
)

–
–

0
.0

0
(0

.1
7

)
–

–
3

1
.7

(3
0

.0
)

b
2

2
�

2
.6

7
(0

.2
1

)
�

0
.8

9
8

(0
.0

2
8

)
�

0
.8

(1
3

7
.0

)
�

0
.0

3
7

(0
.0

3
8

)
�

0
.0

3
8

(0
.0

4
0

)
�

4
.8

3
(0

.2
6

)
�

2
.9

5
(0

.3
9

)

b
2

3
–

–
–

–
�

0
.0

(1
0

6
.1

)
–

–
–

–
–

–
3

4
7

.7
(9

1
.0

)

b
3

1
0

.5
9

(0
.1

2
)

–
–

0
.1

3
(0

.9
0

)
–

–
1

.4
8

(0
.1

5
)

–
–

0
.0

6
8

(0
.0

5
6

)

b
3

2
2

.4
2

(0
.1

2
)

2
.2

3
(0

.1
0

)
2

.4
(1

0
6

.0
)

–
–

0
.1

4
3

(0
.0

4
5

)
–

–
0

.0
0

0
0

(0
.0

0
1

7
)

b
3

3
�

0
.8

6
0

(0
.0

2
4

)
�

2
.4

6
(0

.2
0

)
�

2
.7

(1
3

6
.9

)
�

4
.7

8
(0

.2
5

)
�

2
.8

3
(0

.2
2

)
�

0
.8

0
(0

.1
1

)
�

0
.8

8
(0

.2
4

)

d
0

0
.0

0
(0

.1
8

)
0

.0
0

0
(0

.0
1

6
)

0
.0

0
0

(0
.0

1
5

)
0

.0
0

0
(0

.0
1

6
)

0
.0

0
0

(0
.0

1
4

)
�

0
.4

(1
6

.5
)

�
0

.3
(2

.1
)

d
1

0
.0

0
5

9
(0

.0
0

1
1

)
0

.0
0

2
7

3
(0

.0
0

0
5

5
)

0
.0

0
1

1
3

(0
.0

0
0

3
1

)
0

.0
1

8
0

(0
.0

0
1

6
)

0
.0

0
4

8
5

(0
.0

0
0

5
8

)
0

.0
0

2
7

7
(0

.0
0

0
8

3
)

0
.0

0
0

8
4

(0
.0

0
0

6
4

)

d
2

�
0

.0
0

8
8

9
(0

.0
0

0
9

3
)

0
.0

0
6

6
(0

.0
0

1
4

)
0

.0
(1

.4
)

0
.0

0
2

8
0

(0
.0

0
0

5
9

)
0

.0
0

1
1

2
(0

.0
0

0
3

1
)

0
.0

0
0

0
8

(0
.0

0
0

1
1

)
6

.7
E
�

0
5

(2
.0

E
�

0
5

)

d
3

0
.0

2
3

5
4

(0
.0

0
0

4
4

)
0

.0
2

5
4

5
(0

.0
0

0
6

3
)

0
.0

2
(0

.4
1

)
0

.0
3

1
9

(0
.0

0
1

1
)

0
.0

2
4

1
3

(0
.0

0
0

5
6

)
0

.0
1

3
2

(0
.0

0
1

3
)

0
.0

0
3

0
8

(0
.0

0
0

5
5

)

l 1
�

0
.1

9
(0

.2
0

)
0

.0
0

1
(0

.0
3

9
)

0
.0

0
3

(0
.0

3
7

)
0

.6
8

(0
.1

4
)

0
.7

7
(0

.1
3

)
�

0
.0

3
5

(0
.0

3
9

)
�

0
.0

3
1

(0
.0

4
7

)

l 2
0

.6
0

(0
.2

4
)

�
0

.1
0

(0
.2

0
)

�
0

.1
(6

8
.0

)
�

0
.0

3
5

(0
.0

3
9

)
�

0
.0

3
6

(0
.0

4
0

)
�

0
.0

0
2

9
(0

.0
0

4
0

)
�

0
.0

0
3

4
(0

.0
0

1
2

)

l 3
�

1
.0

3
(0

.2
3

)
�

1
.0

2
(0

.2
3

)
�

1
.2

(8
.7

)
�

1
.1

6
(0

.2
8

)
�

1
.2

2
(0

.2
6

)
�

0
.0

9
(0

.1
0

)
�

0
.0

7
6

(0
.0

9
6

)

s 1
0

.0
0

1
0

0
5

(6
.1

E
�

0
5

)
0

.0
0

1
0

0
0

(6
.1

E
�

0
5

)
0

.0
0

1
0

0
0

(6
.1

E
�

0
5

)
0

.0
0

1
0

0
1

(6
.1

E
�

0
5

)
0

.0
0

1
0

0
3

(6
.2

E
�

0
5

)
0

.0
0

0
9

9
6

(6
.1

E
�

0
5

)
0

.0
0

1
0

0
0

(6
.2

E
�

0
5

)

s 2
0

.0
0

1
7

2
(0

.0
0

0
2

1
)

0
.0

0
1

7
2

(0
.0

0
0

2
2

)
0

.0
0

1
7

2
(0

.0
0

0
2

2
)

0
.0

0
1

7
3

(0
.0

0
0

2
1

)
0

.0
0

1
7

3
(0

.0
0

0
2

2
)

0
.0

0
1

7
2

(0
.0

0
0

2
1

)
0

.0
0

1
7

2
(0

.0
0

0
2

2
)

s 3
0

.0
0

2
2

6
(0

.0
0

0
2

0
)

0
.0

0
2

2
7

(0
.0

0
0

2
0

)
0

.0
0

2
2

6
(0

.0
0

0
2

1
)

0
.0

0
2

2
6

(0
.0

0
0

2
0

)
0

.0
0

2
2

6
(0

.0
0

0
2

0
)

0
.0

0
2

2
6

(0
.0

0
0

2
0

)
0

.0
0

2
2

5
(0

.0
0

0
2

1
)

Y. Aı̈t-Sahalia, R.L. Kimmel / Journal of Financial Economics 98 (2010) 113–144130



Author's personal copy

T
a

b
le

1
1

P
a

ra
m

e
te

r
e

st
im

a
te

s
fo

r
th

re
e

-f
a

ct
o

r
m

o
d

e
ls

—
C

h
e

ri
d

it
o

-F
il

ip
o

v
ić
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numeric stability problem in evaluating the likelihood
function.13

A few common features are evident. The estimates for
the standard deviations of the observation errors across
different models, market price of risk specifications, and
likelihood method, are quite close, suggesting that neither
the choice of M for an AM(3) model, nor choice of the
market price of risk specification, has a strong influence
on the implied cross-sectional shape of the yield curve.
However, the implied time series behavior of the
yield curve may be very different across models and
market price of risk specification. Note, for example, that
some combinations of model and market price of
risk specification have a very slowly mean-reverting (or
non-mean-reverting) component, with an eigenvalue
of the B matrix very close to zero; other combinations
do not. This particular feature of the estimates, as well as
some others, does vary somewhat across likelihood
methods, as well as across models and market price of
risk specifications.

However, rather than focusing on the many individual
parameter estimates across a wide variety of model
specifications and estimation methods, we examine like-
lihood ratio tests for groups of parameters. Specifically,
we test the significance of the Cheridito-Filipović-Kimmel
market price of risk specification, relative to the Dai-
Singleton specification, both with and without the para-
meter restrictions of Table 2. We also test for the
significance of the unrestricted models, relative to those
with the restrictions of Table 2 imposed, under both
market price of risk specifications. These likelihood ratio
tests are presented in Table 14, and are performed using
the 2-term approximate likelihood, the Euler and QML
approximate likelihoods, and the true likelihood (when
known), allowing comparison of the likelihood methods,
in addition to the empirical results. As previously
discussed, numeric instability occurs when calculating
the true likelihood of the restricted A3(3) model with the
Dai-Singleton market price of risk at the estimated
parameter vector; likelihood ratio tests involving this
model are therefore not presented.

As shown, the Cheridito-Filipović-Kimmel specification
is significant at the 95% level for every model, both
restricted and unrestricted, except the A0(1) model, and
often at much higher levels of significance. Our method,
using the 2-term reducible likelihood approximation,
closely reproduces the true likelihood ratios for all cases
where the true likelihood is known, providing further
confirmation of the accuracy of our approach. The
likelihood ratios using the Euler and QML approximations
are typically not as close to the true likelihood ratios as
our methods.

The parameter restrictions in Table 2 are statistically
significant in every case. No comparison of the various

likelihood approximation methods to the true likelihood
is possible for these tests, although we note that the 2-
term approximate likelihood ratio and QML ratio are
usually closer to each other than to the Euler likelihood
ratio. In all cases, the parameter restrictions are much less
significant under the Cheridito-Filipović-Kimmel market
price of risk than under the Dai-Singleton market price of
risk. Similarly, the more general market price of risk is
much less significant, in all cases, when the parameter
restrictions of Table 2 are not imposed. Together, these
results suggest that the additional parameters of the more
general market price of risk and the additional parameters
included when the restrictions of Table 2 are relaxed are,
to some extent, substitutes; when one group of para-
meters is included, the other is much less statistically
significant.

Tests of nested models (for example, an AM(N) model
with the Cheridito-Filipović-Kimmel market price of risk
specification, relative to the same model with the Dai-
Singleton model) are possible, if perhaps more difficult, to
perform when the estimation is by method of moments or
other techniques. However, the use of maximum like-
lihood estimation allows us to perform likelihood ratio
tests of non-nested models, as described in Vuong (1989).
Such tests would be difficult or impossible with estima-
tion methods other than maximum likelihood. We per-
form tests of AM(N) models with the same N but different
M, using both the Dai-Singleton and Cheridito-Filipović-
Kimmel market price of risk specifications, and with and
without the parameter restrictions of Table 2, in Table 15.
As shown, our method (the reducible MLE) closely
approximates the results for the true MLE, for all cases
in which the true likelihood ratio statistic can be
calculated. (As discussed above, there is numeric
instability in calculating the true likelihood of the
restricted A3(3) model with the Dai-Singleton market
price of risk.) With the Dai-Singleton market price of risk
and the parameter restrictions of Table 2 imposed, smaller
values of M are usually preferred to larger values of M;
the only exceptions are that the A1(1) model is preferred
to the A0(1) model, and the A3(3) model is preferred to
the A2(3). The Euler and QML likelihood ratios are
sometimes quite different from the true likelihood ratio,
although not enough to reverse the model preference. Dai
and Singleton (2000) discussed choice of non-nested
three-factor models, and argued that the A1(3) model
provided the best fit, but this conclusion was based on ad
hoc model comparison criteria. Here, we reach a rather
different conclusion, using a rigorous statistical test, made
possible by the use of maximum likelihood estimation
(although it should be noted that those authors use a
different data set and a different estimation method).
Some of the model preferences are statistically significant
at the 95% level, and some are not.

From the analogous results for the Cheridito-Filipović-
Kimmel market price of risk specification, the preferred
model is always the model with the higher M, although
the preference is not always statistically significant. As
with the previous set of results, the likelihood ratio
statistic using our method closely approximates the true
likelihood ratio statistic. The Euler and QML likelihood

13 The search algorithm attempts to explore a region of the

parameter space in which the Matlab function for the modified Bessel

function of the first kind reports an overflow. The same type of overflow

occurs at the parameter vectors estimated using the approximation

methods, suggesting that the true MLE is in a region in which the true

likelihood cannot be evaluated accurately.
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ratios are generally less accurate. Considering the three-
factor models, the A1(3) model is preferred to the A0(3)
model, and the A3(3) model is preferred to the A2(3)
model, neither preference is statistically significant. By
contrast, comparisons between these two groups of
models are all statistically significant at the 95% level.

For the unrestricted models, under the Dai-Singleton
market price of risk, whichever AM(N) model has the
higher M value is preferred when comparing single- or
three-factor models; for two-factor models, the prefer-

ence is usually for smaller M. Some results are statistically
significant, and some are not; no comparison with the
true likelihood ratio is possible. When the Cheridito-
Filipović-Kimmel market price of risk is used, the
preference is always for higher values of M, and is usually
statistically significant.

Perhaps surprisingly, the QML likelihood ratios are
sometimes further from the true ratios (when known), or
from ratios using our approximate likelihood, than the
Euler likelihood ratios are. A possible explanation for this

Table 14
Likelihood ratio tests for market price of risk specifications and parameter restrictions.

This table reports likelihood ratio statistics for nested versions of each of the nine basic models. The third through sixth columns show likelihood ratio

statistics for the Cheridito, Filipović, and Kimmel (2007) (CFK) market price of risk specification, relative to the Dai and Singleton (2000) (DS)

specification, at the estimated parameter vector for both the restricted (i.e., with the parameter restrictions of Table 2 imposed) and unrestricted versions

of each model. The seventh through 10th columns show likelihood ratio statistics for the restricted version of each model, relative to the unrestricted

version. For comparisons involving two restricted models, the likelihood ratio is calculated using the true likelihood function, and the two-term reducible,

Euler, and QML approximate likelihoods. For comparisons in which at least one of the models is unrestricted, the true likelihood is not known, and

therefore not used. Comparisons involving the restricted A3(3) model with the DS market price of risk are not made using the true likelihood, due to

numeric instability in calculating the modified Bessel function at the estimated parameter vector. The results using QML for the A0(1), A0(2), and A0(3)

models are not presented, since for these models, QML coincides with true MLE. For these models and the A1(1) model, the restricted and unrestricted

models coincide, so no comparison is made. As shown, the CFK market price of risk specification is statistically significant, for each feasible likelihood

method for both restricted and unrestricted models, in all cases except the A0(1) model. The difference between the restricted and unrestricted models is

also statistically significant, using every feasible likelihood method under both market price of risk specifications. As shown, the two-term reducible

likelihood approximations reproduce the results of the true likelihoods (when known) more closely, and often much more closely, than either the Euler or

the QML likelihoods.

Likelihood ratio tests Likelihood ratio tests

Market price of risk specifications Parameter restrictions

Model Likelihood Restricted Unrestricted Degrees of Degrees of

model model freedom Cutoff value DS CFK freedom Cutoff value

A0(1) MLE

Reducible

Euler

2:45

2:45

2:44

2

2:45

2:44

1 3.84 – – – –

A1(1) MLE

Reducible

Euler

QML

7:82

7:83

10:69

10:55

2

7:83

10:69

10:55

1 3.84 – – – –

A0(2) MLE

Reducible

Euler

20:65

20:57

21:52

2

20:57

21:52

4 9.49 – – – –

A1(2) MLE

Reducible

Euler

QML

182:68

182:72

181:02

181:37

2

10:75

11:34

10:77

3 7.82 2

183:41

181:10

182:09

2

11:43

11:42

11:49

1 3.84

A2(2) MLE

Reducible

Euler

QML

636:55

636:95

700:79

685:17

2

278:03

293:38

297:53

4 9.49 2

373:92

420:42

402:47

2

15:00

13:01

14:83

2 5.99

A0(3) MLE

Reducible

Euler

54:84

55:01

64:42

2

55:01

64:42

9 16.92 – – – –

A1(3) MLE

Reducible

Euler

QML

74:89

74:97

81:19

74:77

2

45:59

54:75

45:14

7 14.07 2

42:44

39:44

42:64

2

13:06

13:00

13:01

2 5.99

A2(3) MLE

Reducible

Euler

QML

326:02

328:25

369:65

338:50

2

158:56

182:46

166:57

7 14.07 2

196:63

214:14

199:18

2

26:95

26:94

27:24

4 9.49

A3(3) MLE

Reducible

Euler

QML

N=A

299:87

341:17

311:84

2

132:94

160:22

153:27

9 16.92 2

221:27

234:74

219:69

2

54:34

53:79

61:12

6 12.59
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phenomenon is that there are two sources of error in the
Euler likelihood; a Gaussian likelihood is used in place of
the true density, and approximate moments are used in
place of the true first and second moments. With the QML
likelihood, only the first source of error is present.
Although the two types of errors in the Euler likelihood
may sometimes reinforce each other, it is possible
that sometimes they will pull in opposite directions, with

the effect that the combined error of the two sources may
be smaller in magnitude than the first source alone.
To take an example from Table 15, in the non-nested
likelihood ratio tests comparing the unrestricted
versions of the A2(3) and A3(3) models, using the
Cheridito-Filipović-Kimmel market price of risk, the Euler
results reproduce the reducible likelihood results
more closely than the QML results do. Although

Table 15
Non-nested likelihood ratio tests.

This table reports likelihood ratio statistics comparing non-nested models (with the same number of factors). For each pair of models, both the Dai and

Singleton (2000) (DS) and Cheridito, Filipović, and Kimmel (2007) (CFK) market price of risk specification are used. For the restricted models (i.e., those

satisfying the restrictions of Table 2), the likelihood ratio is calculated using the exact likelihood function, and the two-term reducible, Euler, and QML

approximations. For the unrestricted models, the true likelihood is not known, and therefore not used. The comparison is not made for the restricted A3(3)

model with the DS market price of risk using the true likelihood function, due to numeric instability in calculating the modified Bessel function at the

estimated parameter value. As shown, the approximate likelihood closely reproduces the results obtained using the true likelihood (when known),

sometimes much more closely than the Euler and QML likelihoods.

Restricted model Unrestricted model

Model DS CFK DS CFK

comparison Likelihood Preferred Preferred Preferred Preferred

Statistic model Statistic model Statistic model Statistic model

A0(1) vs. A1(1) MLE

Reducible

Euler

QML

�6:78

�6:78

�6:62

�6:62

A1ð1Þ

A1ð1Þ

A1ð1Þ

A1ð1Þ

�7:68

�7:68

�7:91

�7:91

A1ð1Þ

A1ð1Þ

A1ð1Þ

A1ð1Þ

2

�6:78

�6:62

�6:62

2

A1ð1Þ

A1ð1Þ

A1ð1Þ

2

�7:68

�7:91

�7:91

2

A1ð1Þ

A1ð1Þ

A1ð1Þ

A0(2) vs. A1(2) MLE

Reducible

Euler

QML

2:84

2:85

2:81

2:82

A0ð2Þ

A0ð2Þ

A0ð2Þ

A0ð2Þ

�1:33

�1:34

�1:15

�1:17

A1ð2Þ

A1ð2Þ

A1ð2Þ

A1ð2Þ

2

�2:76

�2:65

�2:67

2

A1ð2Þ

A1ð2Þ

A1ð2Þ

2

�2:11

�1:88

�1:92

2

A1ð2Þ

A1ð2Þ

A1ð2Þ

A0(2) vs. A2(2) MLE

Reducible

Euler

QML

8:14

8:16

8:16

7:90

A0ð2Þ

A0ð2Þ

A0ð2Þ

A0ð2Þ

�4:97

�4:98

�5:14

�5:18

A2ð2Þ

A2ð2Þ

A2ð2Þ

A2ð2Þ

2

1:69

1:83

1:86

2

A0ð2Þ

A0ð2Þ

A0ð2Þ

2

�5:99

�6:07

�6:09

2

A2ð2Þ

A2ð2Þ

A2ð2Þ

A1(2) vs. A2(2) MLE

Reducible

Euler

QML

9:09

9:12

9:16

8:86

A1ð2Þ

A1ð2Þ

A1ð2Þ

A1ð2Þ

�6:68

�6:68

�7:21

�7:20

A2ð2Þ

A2ð2Þ

A2ð2Þ

A2ð2Þ

2

3:17

3:16

3:18

2

A1ð2Þ

A1ð2Þ

A1ð2Þ

2

�6:56

�7:11

�7:08

2

A2ð2Þ

A2ð2Þ

A2ð2Þ

A0(3) vs. A1(3) MLE

Reducible

Euler

QML

0:66

0:65

0:59

0:72

A0ð3Þ

A0ð3Þ

A0ð3Þ

A0ð3Þ

�0:31

�0:32

�0:24

�0:24

A1ð3Þ

A1ð3Þ

A1ð3Þ

A1ð3Þ

2

�2:64

�2:60

�2:59

2

A1ð3Þ

A1ð3Þ

A1ð3Þ

2

�1:59

�1:48

�1:47

2

A1ð3Þ

A1ð3Þ

A1ð3Þ

A0(3) vs. A2(3) MLE

Reducible

Euler

QML

2:85

2:88

3:02

2:75

A0ð3Þ

A0ð3Þ

A0ð3Þ

A0ð3Þ

�3:35

�3:37

�3:29

�3:29

A2ð3Þ

A2ð3Þ

A2ð3Þ

A2ð3Þ

2

�0:85

�0:77

�0:91

2

A2ð3Þ

A2ð3Þ

A2ð3Þ

2

�4:73

�4:47

�4:49

2

A2ð3Þ

A2ð3Þ

A2ð3Þ

A0(3) vs. A3(3) MLE

Reducible

Euler

QML

N=A

1:83

1:90

1:61

2

A0ð3Þ

A0ð3Þ

A0ð3Þ

-4:18

-4:22

-4:55

-4:55

A3ð3Þ

A3ð3Þ

A3ð3Þ

A3ð3Þ

2

�4:09

�3:71

�3:71

2

A3ð3Þ

A3ð3Þ

A3ð3Þ

2

�6:54

�6:52

�6:53

2

A3ð3Þ

A3ð3Þ

A3ð3Þ

A1(3) vs. A2(3) MLE

Reducible

Euler

QML

2:96

3:01

3:16

2:83

A1ð3Þ

A1ð3Þ

A1ð3Þ

A1ð3Þ

�2:78

�2:79

�2:72

�2:71

A2ð3Þ

A2ð3Þ

A2ð3Þ

A2ð3Þ

2

�0:16

�0:10

�0:26

2

A2ð3Þ

A2ð3Þ

A2ð3Þ

2

�4:31

�4:13

�4:14

2

A2ð3Þ

A2ð3Þ

A2ð3Þ

A1(3) vs. A3(3) MLE

Reducible

Euler

QML

N=A

1:81

1:91

1:54

2

A1ð3Þ

A1ð3Þ

A1ð3Þ

-3:98

-4:01

-4:12

-4:12

A3ð3Þ

A3ð3Þ

A3ð3Þ

A3ð3Þ

2

�3:28

�2:93

�2:95

2

A3ð3Þ

A3ð3Þ

A3ð3Þ

2

�6:19

�6:29

�6:32

2

A3ð3Þ

A3ð3Þ

A3ð3Þ

A2(3) vs. A3(3) MLE

Reducible

Euler

QML

N=A

�4:35

�4:22

�4:22

2

A3ð3Þ

A3ð3Þ

A3ð3Þ

-1:18

-1:19

-1:48

-1:51

A3ð3Þ

A3ð3Þ

A3ð3Þ

A3ð3Þ

2

�4:62

�4:46

�4:45

2

A3ð3Þ

A3ð3Þ

A3ð3Þ

2

�3:44

�3:69

�4:17

2

A3ð3Þ

A3ð3Þ

A3ð3Þ
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comparison to the true likelihood results in this case is not
possible, the reducible likelihoods have been found to be
quite accurate in all cases where a comparison is possible.
The actual QML log-likelihood (not reported—

only differences are presented in the table) for the A2(3)
model in this case is quite close to the reducible likelihood
for the same model; most of the discrepancy in the
likelihood ratio test comes from the difference between
the reducible and QML likelihoods for the A3(3) model.
Tables 9 and 13 present that the QML parameter
estimates for this model are often further from the
reducible estimates than the Euler estimates are, suggest-
ing that the discrepancy (across methods) in the like-
lihood ratio has led to discrepancy in the parameter
estimates as well.

In summary, for all results in which comparison is
possible, our method closely reproduces results obtained
using the true likelihood function. The Euler and QML
likelihood approximations are almost always less accu-
rate; sometimes the reduction in accuracy is small, but in
other cases, the loss of accuracy is quite noticeable.

6. Conclusions

We have developed and implemented a technique for
maximum likelihood estimation of affine yield models,
implemented this technique for several families of such
models, and performed likelihood ratio tests, both nested
and non-nested, on various pairs of models. In those cases
where the likelihood function for a model is known in
closed-form, we find through simulations that estimates
obtained through our technique are very close to the true
maximum-likelihood estimates, and substantially
more accurate than alternative methods, such as Euler
or QML approximation. Our technique, which applies to
all affine yield models (including those for which the
likelihood function is not known in closed-form), there-
fore promises to be an accurate and computationally

efficient estimation method. The bias and variance
introduced by using an approximation to the likelihood
function, rather than the true likelihood function, are
trivial compared to the bias and variance of the true
maximum likelihood estimator itself; alternate approx-
imation methods, such as Euler or QML, generate
much larger approximation errors. Not only do we
produce maximum-likelihood estimates (as opposed to
second-best solutions such as GMM or other estimators),
but we do so at a small computational cost given the
closed-form nature of our formulae. Furthermore, we use
the likelihood statistics generated by the estimation
process to perform rigorous statistical tests of both nested
and non-nested pairs of models, comparing models with
different market price of risk specifications, models with
and without parameter restrictions needed to ensure
existence of a closed-form likelihood, and models with
different numbers of bounded state variables. For the
cases where the true likelihood is available, we find
likelihood ratio tests performed using our method
reproduce the true results more accurately, and often
much more accurately, than Euler or QML likelihood
approximations.

Although we have focused exclusively on affine models,
much broader application of our method is possible. For
example, our technique can be applied to models that are
affine under the risk-neutral probability measure, but
non-affine under true probabilities. The affine property is
useful only for pricing; it is irrelevant as far as deriving
closed-form likelihood expansions, which are available
for unconstrained multivariate diffusions. Such models
have been proposed by several papers, but have been
estimated only in restricted special cases. For other
implementations of our method in various contexts and
with various data sets, see Bakshi, Ju, and Ou-Yang (2006),
Cheridito, Filipović, and Kimmel (2007), Mosburger
and Schneider (2005), Thompson (2008), and Egorov,
Li, and Ng (2008).

Appendix A. Families of admissible affine diffusions

Several practical issues arise when we study affine yield models. First, as discussed in Duffie and Kan (1996), existence
considerations impose constraints on the coefficients of both the drift vector and diffusion matrix. Furthermore, there will
typically be infinitely many model specifications that produce identical interest rate dynamics. Dai and Singleton (2000)
consider these issues, and, for affine yield models with N state variables, specify N+1 non-nested canonical models that
very nearly achieve three goals: (1) each canonical model satisfies all existence and uniqueness requirements, (2) each
affine yield model is observationally equivalent to a canonical model, and (3) each canonical model is observationally
different from all others. As we show in this appendix, neither of the last two goals is completely achieved, although Dai
and Singleton (2000) come very close. We detail in Table 1 the parameter restrictions corresponding to the various models.

Each affine diffusion can be assigned to a family AM(N), in which N is the number of state variables and M is the number
of independent linear combinations of those state variables that appear in the diffusion matrix. The vector of state
variables is premultiplied by a non-singular matrix of constants; the result is taken to be a new state vector. If the diffusion
is affine in the old state vector, the diffusion followed by the alternate state vector is also affine, and by judicious choice of
the matrix of constants, also corresponds to one of the canonical models.

Considering affine yield models with one, two, or three state variables, there are a total of nine observationally distinct
canonical models, not counting the trivial zero-factor model with a constant interest rate. The likelihood function for each
of the nine models is different, so we discuss each model in turn. The likelihood function is known in closed-form for four
of the nine canonical models (as well as for special cases of the other five). Those models for which a closed-form likelihood
function is known provide useful test cases for evaluating our estimation technique.
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A.1. One-factor models

In single-factor affine yield models, the interest rate is a linear function of a single state variable

rt ¼ d0þdX1t : ðA:1Þ

The dynamics of the state variable (under the physical measure P) may take one of two distinct forms. In the A0(1) model,
we have

dX1t ¼ b11X1t dtþdWP
1t : ðA:2Þ

This model is an Ornstein-Uhlenbeck process, corresponding to the model of Vasicek (1977), and has a Gaussian transition
function.

The A1(1) model has the dynamics

dX1t ¼ ða1þb11X1tÞdtþ
ffiffiffiffiffiffiffi
X1t

p
dWP

1t : ðA:3Þ

When d0 ¼ 0, the A1(1) model reduces to Feller’s square-root model, corresponding to the model of Cox, Ingersoll, and Ross
(1985), and the transition density of the state variable is non-central chi-squared. When d0a0, the transition function
readily follows by a simple change of variable. The likelihood function is therefore known for all single-factor affine yield
models.

Under the risk-neutral probability measure Q, the dynamics of the state variables of the A0(1) and A1(1) model are,
respectively,

dX1t ¼ ½�l1þb11X1t�dtþdWQ
1t , ðA:4Þ

dX1t ¼ ½a1þðb11�l1ÞX1t�dtþ
ffiffiffiffiffiffiffi
X1t

p
dWQ

1t : ðA:5Þ

A.2. Two-factor models

There are three families of two-factor affine yield models. In all three the interest rate is specified as

rt ¼ d0þd1X1tþd2X2t : ðA:6Þ

In the A0(2) family, the dynamics of the state variables are (under the physical measure P)

d
X1t

X2t

" #
¼

b11 0

b21 b22

" #
X1t

X2t

" #
dtþd

WP
1t

WP
2t

" #
: ðA:7Þ

The transition function for this type of diffusion is known in closed-form, and is bivariate Gaussian.
The A1(2) model has dynamics under P

d
X1t

X2t

" #
¼

a1

0

� �
þ

b11 0

b21 b22

" #
X1t

X2t

" # !
dtþ

ffiffiffiffiffiffiffi
X1t

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb21X1t

p
" #

d
WP

1t

WP
2t

" #
: ðA:8Þ

In general, the likelihood function for this type of diffusion is not known in closed-form; however, if we impose the
constraints b21=0 and b21 ¼ 0, then the two state variables are independent, and their joint transition density is the
product of the two marginal transition densities, which are Gaussian and non-central chi-squared, respectively (after
translation of the first state variable by a constant).

The A2(2) model has the representation

d
X1t

X2t

" #
¼

a1

a2

" #
þ

b11 b12

b21 b22

" #
X1t

X2t

" # !
dtþ

ffiffiffiffiffiffiffi
X1t

p
0

0
ffiffiffiffiffiffiffi
X2t

p
" #

d
WP

1t

WP
2t

" #
: ðA:9Þ

The transition density of this type of diffusion is known only if b12=0 and b21=0, in which case the two state variables are
(after translation) independent non-central chi-squared random variables.

The three canonical specifications are as presented in Dai and Singleton (2000), apart from our modified
parameterization of the drift; however, there are at least two types of two-variable affine diffusions that are not
observationally equivalent to any of the three canonical models. An example of the first type is

d
X1t

X2t

" #
¼

b11 b12

b21 b22

" #
X1t

X2t

" #
dtþd

WP
1t

WP
2t

" #
, ðA:10Þ

with the constraint ðb11�b22Þ
2o4b12b21. This diffusion shares many properties of the A0(2) model (the transition density is

bivariate Gaussian, both state variables are unbounded, etc.), but cannot be expressed in the A0(2) canonical form unless
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we allow b11 and b22 to be complex conjugate pairs. An example of the second type of non-conforming diffusion is

d
X1t

X2t

" #
¼

a1

0

� �
þ

b11 0

b21 b22

" #
X1t

X2t

" # !
dtþ

ffiffiffiffiffiffiffi
X1t

p
0

0
ffiffiffiffiffiffiffi
X1t

p
" #

d
WP

1t

WP
2t

" #
: ðA:11Þ

This diffusion most closely resembles the A1(2) canonical form, but no change of variables can generate the non-zero
constant coefficient in the diffusion term of the second state variable in the A1(2) model.

In all but a few special cases, each canonical model is observationally unique. In the A2(2) model, the two state variables
can switch places; in the A0(2), model, there are infinitely many representations of observationally equivalent models for
some restricted values of the B matrix.

Under the risk-neutral probability measure Q, the dynamics of the state vector in the three models are, respectively,

d
X1t

X2t

" #
¼ �

l1

l2

" #
þ

b11 0

b21 b22

" #
X1t

X2t

" # !
dtþd

WQ
1t

WQ
2t

2
4

3
5, ðA:12Þ

d
X1t

X2t

" #
¼

a1

�l2

" #
þ

b11�l1 0

b21�l2b21 b22

" #
X1t

X2t

" # !
dtþ

ffiffiffiffiffiffiffi
X1t

p
0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb21X1t

p
" #

d
WQ

1t

WQ
2t

2
4

3
5, ðA:13Þ

d
X1t

X2t

" #
¼

a1

a2

" #
þ

b11�l1 b12

b21 b22�l2

" #
X1t

X2t

" # !
dtþ

ffiffiffiffiffiffiffi
X1t

p
0

0
ffiffiffiffiffiffiffi
X1t

p
" #

d
WQ

1t

WQ
2t

2
4

3
5: ðA:14Þ

A.3. Three-factor models

In three-factor affine yield models, the instantaneous interest rate is defined as

rt ¼ d0þd1X1tþd2X2tþd3X3t : ðA:15Þ

The first of the four canonical three-factor models is the A0(3) family, in which the state variables have the following
dynamics:

d

X1t

X2t

X3t

2
64

3
75¼

b11 0 0

b21 b22 0

b31 b32 b33

2
64

3
75

X1t

X2t

X3t

2
64

3
75dtþd

WP
1t

WP
2t

WP
3t

2
64

3
75: ðA:16Þ

The transition density of the state vector is trivariate Gaussian.
The A1(3) model has the following dynamics:

d

X1t

X2t

X3t

2
64

3
75¼

a1

0

0

2
64

3
75þ

b11 0 0

b21 b22 b23

b31 b32 b33

2
64

3
75

X1t

X2t

X3t

2
64

3
75

0
B@

1
CAdtþ

ffiffiffiffiffiffiffi
X1t

p
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb21X1t

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb31X1t

p
2
664

3
775d

WP
1t

WP
2t

WP
3t

2
64

3
75: ðA:17Þ

The transition density function is known in closed-form only if the first state variable is independent of the other two, i.e., if
b21=0, b31=0, b21 ¼ 0, and b31 ¼ 0. In this case, the joint transition density is the product of a non-central chi-squared (the
distribution of the first state variable, after translation) and a bivariate Gaussian (the distribution of the other two).

In the A2(3) model, the state vector has the following dynamics:

d

X1t

X2t

X3t

2
64

3
75¼

a1

a2

0

2
64

3
75þ

b11 b12 0

b21 b22 0

b31 b32 b33

2
64

3
75

X1t

X2t

X3t

2
64

3
75

0
B@

1
CAdtþ

ffiffiffiffiffiffiffi
X1t

p
0 0

0
ffiffiffiffiffiffiffi
X2t

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb31X1tþb32X2t

p
2
664

3
775d

WP
1t

WP
2t

WP
3t

2
64

3
75: ðA:18Þ

The transition density is known in closed-form only if the three state variables are independent of each other, i.e., if
b12 ¼ b21 ¼ b31 ¼ b32 ¼ b31 ¼ b32 ¼ 0. In this case, the density is the product of two non-central chi-squared densities and a
Gaussian density (after translation of the first two state variables).

Finally, in the A3(3) model, the dynamics are:
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The transition density is known in closed-form only if the three state variables are independent of each other, i.e., if
b12 ¼ b13 ¼ b21 ¼ b23 ¼ b31 ¼ b32 ¼ 0. In this case, the density is the product of three independent non-central chi-squared
densities (after translation of the state variables).

As in the two-factor case, there are two types of affine diffusions with three state variables that are not observationally
equivalent to any of the canonical models. The model
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is similar to the A0(3) canonical model, but there is no change of variables that results in the A0(3) model if any two
eigenvalues of the B matrix are complex conjugate pairs. Similarly, the model
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resembles the A1(3) model, but the absence of a constant coefficient in the diffusion of the second state variable makes it
impossible to convert this model into the A1(3) model by a change of variables. Similar variants of the A2(3) model exist.

Under the risk-neutral probability measure Q, the dynamics of the state vector in the four models are, respectively,

d

X1t

X2t

X3t

2
64

3
75¼

�l1

�l2

�l3

2
64

3
75þ

b11 0 0

b21 b22 0

b31 b32 b33

2
64

3
75

X1t

X2t

X3t

2
64

3
75

0
B@

1
CAdtþd

WQ
1t

WQ
2t

WQ
3t

2
664

3
775, ðA:22Þ

d

X1t

X2t

X3t

2
64

3
75¼

a1

�l2

�l3

2
64

3
75þ

b11�l1 0 0

b21�l2b21 b22 b23

b31�l3b31 b32 b33

2
64

3
75

X1t

X2t

X3t

2
64

3
75

0
B@

1
CAdtþ

ffiffiffiffiffiffiffi
X1t

p
0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb21X1t

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb31X1t

p
2
664

3
775d

WQ
1t

WQ
2t

WQ
3t

2
664

3
775, ðA:23Þ

d

X1t

X2t

X3t

2
64

3
75¼

a1

a2

�l3

2
64

3
75þ

b11�l1 b12 0

b21 b22�l2 0

b31�l3b31 b32�l3b32 b33

2
64

3
75

X1t

X2t

X3t

2
64

3
75

0
B@

1
CAdtþ

ffiffiffiffiffiffiffi
X1t

p
0 0

0
ffiffiffiffiffiffiffi
X2t

p
0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þb31X1tþb32X2t

p
2
664

3
775d

WQ
1t

WQ
2t

WQ
3t

2
664

3
775,

ðA:24Þ

d

X1t

X2t

X3t

2
64

3
75¼

a1

a2

a3

2
64

3
75þ

b11�l1 b12 b13

b21 b22�l2 b23

b31 b32 b33�l3

2
64

3
75

X1t

X2t

X3t

2
64

3
75dtþ

ffiffiffiffiffiffiffi
X1t

p
0 0

0
ffiffiffiffiffiffiffi
X2t

p
0

0 0
ffiffiffiffiffiffiffi
X3t

p
2
664

3
775d

WQ
1t

WQ
2t

WQ
3t

2
664

3
775: ðA:25Þ

Appendix B. Formulae for the log-transition functions

In this section, we give the coefficients of the closed-form expansions for the log-transition functions corresponding to
the three two-dimensional models. Expansions for the two univariate models (Vasicek, 1977; Cox, Ingersoll, and Ross,
1985, respectively) can be found in Aı̈t-Sahalia (1999), while the expressions for the four three-dimensional models are not
reported here to save space. They are available in computer form from the authors upon request.

B.1. The A0(2) model

The coefficients below correspond to the stochastic differential equation (SDE) (A.7).
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B.2. The A1ð2Þ model

The coefficients below correspond to the SDE (A.8).
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B.3. The A2(2) model

The coefficients below correspond to the SDE (A.9).
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