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This supplement contains the technical results and proofs.

1. Preliminary results. We first show a few facts which have been stated

without proof in Section 2 of the paper, like Lemmas 1 and 2 and the inclusion

Ω ⊂ Ω . We first introduce, for each  ≥ 0, the two increasing processes:

(A.1) () =

Z 

0



Z
(|| ∧ 1)()  0() =

X
≤

|∆| ∧ 1

When  ≥ 2 these processes are finite-valued, but not necessarily so when   2. In

this case we have to be careful: if  = inf( : () =∞) and 0 = inf( :  0() =
∞) then both processes () and  0() are null at 0 and finite-valued on [0 ) and
[0 0) respectively, the first continuous and the second one càdlàg with jumps not
bigger than 1, and they are infinite on (∞) and (0∞). However, if 0   ∞
or 0  0 ∞ we may have () or 

0()0 finite or infinite, and the left limits
satisfy ()− = () and  0()0− ≤  0()0 ≤  0()0− + 1.
Note that  0(0) is the number of jumps over [0 ], whereas (0) =

R 
0
(R) .

Lemma 3. For any random time  and any  ≥ 0, the two sets {() =∞} and
{ 0() =∞} are a.s. equal.
Proof. Set  = inf( : () ≥ ) and 0 = inf( :  0() ≥ ), and consider

the sets  = {()  ∞} and 0 = { 0()  ∞}. Observe that () ≤ 

and  0()0 ≤  + 1, which entail  = ∪≥1{ ≤ } and 0 = ∪≥1{ ≤ 0}.
Moreover () is the predictable compensator of  0(), so for any stopping time 
we have E(() ) = E( 0() ). We deduce that  0()  ∞ and ()0  ∞
a.s., and the almost sure equality  = 0 is then obvious.

Proof of (9). If  = 0 we have (R) ≤ (1), whereas (R) = ∞ if   0.

Hence {  0} = {(0) =∞}, which is a.s. equal to Ω by the previous lemma,
and (9) follows.
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Proof of Lemma 1. Denote by Γ0 the right side of (13). Then obviously

Γ = inf( : () ∞) Γ0 = inf( :  0() ∞)

Since by the previous lemma, for any  ≥ 0 we have {() ∞} = { 0() ∞}
a.s., the almost sure equality Γ = Γ

0
 is obvious. If   Γ we have

R
(||∧1)() 

∞ for -almost all  ∈ [0 ], hence (14). When the last condition holds, and if  is
bigger than the right side of (14), we have () ∞, and thus Γ ≤ : hence (14)

is an equality.

Proof of Ω ⊂ Ω under Assumption 5. On the set Ω
Γ0
 it is obvious that

(R) =∞ for all  smaller than  and in a -positive set, so (0) =∞. On the
set {(0) ∞}, and with the notation ( ) of (17), we haveZ 

0

( ) ≤
Z 

0

([− ]) 

which goes to 0 as  → 0 by the dominated convergence theorem, thus {(0) 

∞} ⊂ (Ω
Γ=0
 ). So finally Ω ⊂ {(0) = ∞}, which by Lemma 3 equals Ω

a.s.

Proof of Lemma 2. We suppose Assumption 3, so we can obviously apply the last

part of Lemma 1, plus the fact that the instantaneous BG index of  is  1{0},
to obtain that Γ = − ess sup ( :   0  ∈ [0 ]). A simple calculation shows,
for all   0,  ∈ R,   ∈ (0 1] and  ∈ ( 1],

1

 (log(1))
−

³
1− 



´
≤ R 



(log(1))

1+
 ≤ (log(1))

+

R (1+)


(log(1))

1+
 ≤ 

(log(1))
+




whereas if   0 and  ≥ 0 we getR 1


(log(1))


 ≤ (log(1))+1R (1+)


(log(1))


 ≤ (log(1))+1

1


 (log(1)) ≤ R 
0

 (log(1))


 ≤  

(log(1))

Furthermore (8) implies, with | |0 denoting the tail function of | 0 |, and for  ∈
(0 1]:

| |0() ≤ 


and also, when  = 0 or  = 0, and  ∈ (0 1],

| |0()− | |
0
((1 + )) ≤ (2)

Z 

0

|| | 0 |() ≤  
 ()
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If we combine these results, we deduce from (5) and (6) that for   ∈ (0 1] and
  0,

(A.2)⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

  () ≤ (log(1))
+1 + 

(1−)

 ()−  ((1 + )) ≤
(

 (log(1))



( + (1−)) if   0   0

(log(1))
+1( + (2)) otherwise

 = 0 or  = 0 ⇒
R
{||≤} || () ≤  

(log(1))

(A.3)

⎧⎨⎩  0  ≤ 12 ⇒  () ≥ (1−2−)
(log)

−  
(1−)

 = 0  ≤ 1 ⇒
R
{||≤} || () ≥

 (log(1)) 


³
1− ()

(log(1))

´


(A.2) implies (16) for suitable processes () and 0(), and  = (1− )2 and the

functions  7→ ((2)∧1) and () = (log(1)). It remains to prove that Ω = Ω
a.s., which by (9) and Ω ⊂ Ω a.s. amounts to {  0} ⊂ Ω a.s. First, if Γ  0

we have   0 and for any 0 ∈ (0 1) the set of all  ∈ [0  ] such that   0 and

  0 Γ has positive Lebesgue measure. For such an , we deduce from the first

part of (A.3) that 
0Γ  () → ∞ as  → 0, hence {  0Γ  0} ⊂ ΩΓ0 .

On the other hand if Γ  0 and   0 the set of all  ∈ [0  ] such that   0

and  = 0 has positive Lebesgue measure. For such an  we deduce from the last

part of (A.3) that lim inf→0( )  0, hence {  0Γ = 0} ⊂ ΩΓ=0 , and

this ends the proof.

2. Estimates. Throughout this section, we assume without special mention the

following:

Assumption 7. There are three constants   1,  ≥ 0 and  ∈ (0 2], and a
function  as in (15), such that with the notation 0() =  when  ∈ (0 1] and
0() = () when  = 0, we have for all  and :

(A.4)

|| ≤  || ≤ 
R
(2 ∧ 1)() ≤ 

 ∈ (0 1] ⇒   () ≤ 

  ∈ (0 1] ⇒  ()−  ((1 + )) ≤ 


³
 + 0()

´


A simple calculation shows that we then have (below,  denotes a constant which

may change from line to line, and may depend on the bounds for  like  

above and also on the power  used in the statistics, and is denoted  if we want

to emphasize its dependency on an additional parameter ):

(A.5)    ⇒
Z
{||≤}

||() ≤  
− 
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(A.6)  ∈ (0 1) ⇒
Z
{||≤1}

||() ≤

⎧⎪⎨⎪⎩
1− if   1

 log(1) if  = 1

 if   1

We fix the sequence , subject to (30) for some  ∈ (0 12), and we may assume
 ≤ 1 since  → 0. We also pick  ∈ ¡0 2

3
− 2
3

¢
, so that

(A.7)  =
∆


(1+)


+
∆2


(2+3)


→ 0

Next, we introduce additional notation. We denote by E−1 and P

−1, respectively,

the conditional expectation and conditional probability with respect to F(−1)∆
.

With any càdlàg process  and any  ∈ (0 1) we associate the processes

(A.8)  () =
X
≤
∆1{|∆|)}  0() =  −  ()

and the variables

(A.9) ( ) = |∆
  | 1{|∆

  |≤}

We also define the following increasing processes ( is an integer):

(A.10)
(  ) =

P
≤ |∆| 1{1+ |∆|≤}

( ) =
P

≤ |∆| 1{|∆|≤}

Lemma 4. If    we have

(A.11) E−1
¡¯̄
((1+ ) ) −∆

 (1  )
¯̄¢ ≤ ∆ 

−
 

Proof. 1) The compensator of (  ) is

e(  ) = Z 

0



Z
{1+ ||≤}

||()

Next, (A.5) yields

e(  )+ − e(  ) ≤    −

for all   ≥ 0. Hence for any finite stopping time  we have

(A.12) E((  )+ −(  ) | F) ≤   − 

2) The compensator of the process 
 =

P
≤ 1{|∆|1+ } is e

 =
R 
0
 (

1+
 ).

Let 
0 = 

0 = ( − 1)∆ and 
1  


2  · · · (resp. 

1  · · · ) be the successive jump
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times of (1+ ) after time ( − 1)∆ (resp., and with jump size bigger than ).

Using (A.4), we have for  ≥ 1, and on the set {−1  ∆}:

P(
 ≤ ∆ | F−1) ≤ E

³

∆
−

−1
| F−1

´
= E

³ e∆ − e
−1

| F−1

´
≤ ∆ 

−(1+)
 (A.13)

Then by induction on  we see that

(A.14) P−1(

 ≤ ∆) ≤ ∆

 
−(1+)
 

and in the same way,

(A.15) P−1(

 ≤ ∆) ≤ ∆

 
−
 

3) Now we consider the variable  = ((1+ ) ) − ∆
 (1  ), which we

evaluate on the sets 
 = {

 ≤ ∆  
+1}, which form a partition of Ω when

 = 0 1 · · · . First,  = 0 on the sets 
0 and 

1 . Second, on the set 

2 we have

|| ≤ (∆
 (2  ) +  1{

2≤∆})

(because ∆
 (1  ) = 0 when 

2 ≤ ∆, whereas ((1+ ) ) = 0 when

|∆
| ≤   2  |∆


| for either ( ) = (1 2) or ( ) = (2 1)). Therefore

E−1
¡||1

2

¢ ≤ E−1
³
∆
 (2  ) 1{2≤∆}

´
+ P


−1(


2 ≤ ∆)

The variable under the first conditional expectation in the right is smaller than

((2  )∆−(2  )1 )1{1≤∆}+((2  ) −(2  )(−1)∆
)1{2≤∆}

and by conditioning first w.r.t. F1
we deduce from (A.12) and (A.13) and (A.14)

that its conditional expectation w.r.t. F(−1)∆
is smaller than ∆2 

−(2+)
 . If

we use also (A.15), we arrive at

(A.16) E−1
¡||1

2

¢ ≤ ∆2 
−(2+)
 

Finally || ≤ 

(1 + ) on the set 

 , hence by (A.14) we getX
≥3

E−1(|| 1

) ≤ 2

X
≥3


³
∆ 

−(1+)


´
≤ ∆3 

−3(1+)
 

by virtue of (A.7) (which yields that for any   0 we have ∆
−(1+)
 ≤ 12

for all  large enough, whereas
P

≥3 2
−3 ∞). This and (A.16) and  = 0 on


0 ∪

1 readily yield (A.11).
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Lemma 5. We have, for all  ∈ (0 14):

(A.17)
P−1

¡
(1− ) ≤ |∆

 (
1+
 )| ≤ (1 + )

¢
≤ ∆ 

−


³
 + 0() +  +∆

−(1+)


¡



¢ 1
+2

´


Proof. For  ∈ R we set () = { : ||  1+  (1−) ≤ |+ | ≤ (1 +)},
and also ( 0) = { :  ≤ || ≤ (1 + 0)} when  0  0. A simple calculation,

using the fact that  ∈ ¡0 1
4

¢
, shows that for all  ∈ (0 1):

(A.18)
|| ≤ 

2
⇒ () ⊂ (() 8) for some () ∈

£

4
 2

¤
() ∩

©
 : || ≤ 

2

ª ⊂ 
¡
()

2


¢ ∪(1+  − ) for some () ∈ [ ]

The compensator of the process ( 0) =
P

≤ 1(0)(∆) is e() =R 
0
(( 

0)) . Therefore, the last part of (A.4) yield, for any finite stopping
time :

(A.19) E(( 0)+ −( 0) | F) ≤ 


(0 + 0())

Below, we use the notation of the previous proof, and denote by 0 the successive
jump times of (1+ ) after (−1)∆, and whose absolute size is bigger than 4.

Exactly as for (A.15), we have

(A.20) P−1(
0
 ≤ ∆) ≤  ∆

 
−
 

Let  = {(1−) ≤ |∆
 (

1+
 )| ≤ (1 + )}. First, we have

(A.21) P−1
¡
 ∩ (∪≥3

 )
¢ ≤ P−1(


3 ≤ ∆) ≤ ∆3

−3(1+)
 

Next,  ∩
1 ⊂ (0), hence (A.18) and (A.19) with  = (0) ≥ 4 yield

(A.22) P−1( ∩
1 ) ≤ E−1(∆


 ((0) 8)

) ≤ ∆
−
 ( + 0())

The analysis of  ∩ 
2 is more difficult. We have  ∩ 

2 ∩ {01  ∆} = ∅,
hence  ∩

2 ⊂ 
1 ∪ 

2 ∪
3 , where


1 = {

2 ≤ ∆ |∆1
| ≤ 4 ∆2

∈ (∆1
)}


2 = {

2 ≤ ∆ 
0
1 = 

1  |∆1
|  4 |∆2

| ≤ 4 ∆1
∈ (∆2

)}

3 = {02 ≤ ∆}

(A.18) and (A.19) yield on the sets {
1  ∆} and {01  ∆} respectively (since

0() for  ≤ 2 and 0(1+ ) are bounded):

P−1(

1 | F1

) ≤ E−1
³

sup
∈[42]

E(( 8)∆ −( 8)1
| F1

)
´

≤ 
∆


( + 0(2)) ≤ 

∆
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P−1(

2 | F01 ) = E−1

³
sup

∈[4]
E(( 2)∆ −( 2)01

| F01 )

+ E((1+  )∆ −(1+  )

01

| F01 )
´

≤ ∆

³ 

+1
+




+(1+)


+
1


(1+)


´
These expressions vanish on the sets {

1 ≥ ∆} and {01 ≥ ∆} respectively, so
by (A.14) and (A.20), we get

(A.23) P(∩
2 ) ≤ 

∆2


(2+)


³
1+




+

 

+1

´
≤ 

∆2


(2+)


³
1+

¡ 


¢ 1
+2

´


where the last inequality follows upon taking  =  = (
(+1)
 )1(+2).

Putting together (A.21), (A.22) and (A.23), plus the property  ∩ 
0 = ∅, we

get the result.

The next lemma is an auxiliary result on an Itô semimartingale  satisfying

(A.24)  =  = 0 |∆| ≤  ≤ 1
Z
||( ) ≤  ∞

(use the notation (2), here  ∈ [0 2]). Many versions of this type of results are
scattered in the literature, but the following seems to be new.

Lemma 6. Under (A.24), for all   ≥ 0 and  ≥  ∨ 1 and  as in (A.24) we have

(A.25) E
µ
sup
≤

|+ −| | F
¶
≤
½
 

− if  ≤ 2


¡
− + 22−2

¢
if  ≥ 2

Proof. We set () =
P

≤ |∆|, which by assumption is locally integrable with
compensator e() satisfying e()+ − e() ≤ − , as soon as  ≥ . Then


≤  ≤ 1 implies

(A.26) E((()+ − ())
 | F) ≤ E(()+ − () | F) ≤ − 

When   1 we can write () = ()− e() + e() and use Burkholder-Davis-
Gundy inequality to obtain (when  ≥ ):

E((()+ − ())
 | F) ≤ 

³
E(((2)+ − (2))

2 | F) + (−)
´


This and (A.26) show that if 2   ≤ 2+1 for some  ≥ 1, then

E((()+ − ())
 | F) ≤ 

³
− +

X
=0

¡
2

−¢2´
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Now, when 1 ≤ 0 ≤ 0 we obviously have 
0 ≤  +  for any  ≥ 0. Therefore

we deduce from the above that

(A.27)  ≥ 1 ⇒ E((()+ − ())
 | F) ≤ 

¡
− + −

¢


Coming back to the problem at hand, another use of Burkholder-Davis-Gundy

inequality yields that the left side of (A.25) is smaller than E((2)+−(2))2 |
F). Then the result readily follows from (A.26) and (A.27).

Lemma 7. When   2 and   1() =
−2
2
, for all   0 we have

(A.28) E−1
¡¯̄
( ) )− ((1+ ) )

¯̄¢ ≤ ∆ 
−
 ()

where

(A.29)(
() =  

0() +
P4

=1()
− 

1 =
1

−(1 + ) 2 =

2

−(2 + 3) 3 =  − 


 4 =

−2
2

+ 

− 1

If 
 =

R 
0
 of  vanishes identically, the same holds when   1 ∨ 

and when  = 2 if  = 2, provided   −1

, and with 4 above substituted with

4 =
−1

+ 


− 1.

Proof. 1) We have

 −(1+ ) = 0 + +() +()

where

() =

Z 

0

³
 −

Z
{1+ ||≤1}

()
´


() =

Z 

0

Z
{||≤1+ }

 (− )( )

Observe that by (A.4) and (A.6), |∆
 ()| is smaller than ∆ if   1, than

∆
−
 for any   0 when  = 1, and than ∆

(1−)(1+)
 if   1. Then,

because of (A.7),

|∆
 ()| ≤ 

¡
∆
 +∆

(−)(1+)


¢
for all   1. Next, the Itô semimartingale () satisfies (A.24) with  = 1+ and

 = 2 and  = 
(2−)(1+)
 by (A.4) when  = 2 and (A.5) when   2. Then

Lemma 6 yields

E−1(|∆
 ()|) ≤ ∆

(−)(1+)


(use (A.7) again when   2), for  ≥ 2 and also for    ∨ 1. Moreover
E(|∆

 
|) ≤ ∆

2
 for any   0 by classical estimates (and because  is
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bounded). Then, setting  = 0 if  is identically 0 and  = 1 otherwise, we deduce

that for  ≥ 2 or    ∨ 1:

(A.30) E(|∆
 ( −(1+ )|) ≤ 

³
∆2

 + (1− )∆
 +∆

(−)(1+)


´


2) Next, we use the following estimate, for   ∈ (0 1) and   1:¯̄
|+ |1{|+|≤} − ||1{||≤}

¯̄
≤ ||1{||≤} +



−1
|| +  1{||} +  1{(1−)≤||≤(1+)}

We have E−1(((
1+
 ) ) ) ≤ ∆

−
 by Lemma 4 and (A.7) and the (easy)

fact that E−1(∆

 (1  )) ≤ ∆

−
 . Then, using (A.30) and Markov’s in-

equality, plus (A.17), we deduce that if    ∨ 1 or if  = 2 the inequality (A.28)
holds with

() = +
∆

2−1


−1 −

+
(1− )∆

−1


−1 −

+

−


−1
+

∆
1(+2)


(1+)+(+2)


+
∆

2−1


 
−


+
(1− )∆

−1


 
−


+

−



+  +  

0() + 

where  ≥ 2 and  ∈ (0 1) and  ∈ (0 14) are arbitrary. Taking advantage of (30)
and (A.7), we deduce that in fact (A.28) holds with

() =  
0() + 

1

−(1+)

 + 
2

−(2+3)

 + 

+ −
 −+1 +  + −

 − + 
1

−(1+)− 

+2
 

1
+2

+ 
³

−2
2
+−

 −+1 + 
−2
2
+−

 −
´

(A.31)

+ (1− )
³

−1

+−

 −+1 + 
−1

+−

 −
´


It remains to choose ,  and . We first take

 = 
−−1
(+1)

+

−1

 + −


 = 
(+2)((1−(1+))+(1+)(2+−2))−(1+)

(1+)(1+(+2))
 + 

− (+2)(1−)
(1+(+2))

 

It follows that () ≤  + 0() +
P4

=1 

 +

P8
=5 

()
 , where

()5 =
(+2)((1−)+(2+−2))−

(1+(+2))
 ()6 =  − (+2)(1−)

(1+(+2))

()7 =
(+2)(1−(1+))−

(1+(+2))
 ()8 =

(1++2−(1−+(+2)(1+)))−(1−)

(1+(+2))
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Now, for   0 arbitrary, we can choose  large enough to have () ≥ 0 −  for

 = 5 6 6 8, where

05 =
1

(1+)
 06 =  07 =

1−(1+)


 08 =
3+(1+)+2−(1+)(1−+(+2)(1+))

(1+)(+2)


Since   1
2
and  ∈ {0 1}, we have 05  4 and 06 ≥ 3 and 08  07 = 1. The

result follows.

Lemma 8. Under the same condition on  and  as in Lemma 7, we have

(A.32) E
µ
sup
≤

|( ∆) −( )|
¶
≤  − ()

Proof. With the notation (A.10), we see that ( )−(1  ) is increasing and

admits the compensator
R 
0

R
{||≤1+ } || (). Therefore (A.5) yields

E−1 (|∆
 ( )−∆

 (1  )|) ≤ ∆ 
(−)(1+)
 

This allows to deduce from (A.11) and (A.28) that

E−1 (|( ) )−∆
 ( )|) ≤ ∆

−
 ()

which immediately yields (A.32).

Lemma 9. Let   2.

a) Assume  = 0 and (30) with   1(). There is 0( )  0 such that, for

any  ∈ (00( )], we have 
−
 () → 0 for a suitable choice of  and   0.

b) Assume   0 and (30) with   1(). There is ( ) ∈ (0 12) such that for
all  ∈ [0 2] we have () ≤ 

()
 for a suitable choice of  and   0.

c) Assume   12 and (30) with   2(). Then for all  ∈ [0 2] we have

−2
 () → 0 for a suitable choice of  and   0.

Proof. The proof is based on the form (A.29) of ().

a) When  = 0, we have 0() = () → 0. Then, with   1() and 

arbitrary in
¡
0 2
3
− 2
3

¢
, it is enough to show that if  is smaller that some number

0( )  0, then    for all . If  → 0 we observe that  tends to a limit

bigger than 1 for all  = 1 2 3 4, so the result is obvious.

b) Since  
0() =  when   0, the result will follow with ( ) =  ∧ 0

if, when  = 1(), we can find 
0 = 0() such that  ≥ 0 for all  and  ∈ (0 2]

and a suitable choice of . We then have 4 = , whereas  ≥ 0 for  = 1 2 3
is implied by 2 + 2 + 20 ≤ 1 and 4 + 6 + 20 ≤ 2 and  ≥ 20 + 2. Since
  2, we can choose   0 and 0  0 small enough for these to hold, hence the

result.

c) We assume   12, so again  
0() =  . Hence, taking  = 2(), it

suffices to show that for any  ∈ (0 2] we can find  such that  ≥ 2 for all

. We take  = (2 − 2), and checking  ≥ 2 for  = 1 2 3 4 is a simple

matter.
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3. Limiting results for ( ∆) We denote by
u.c.p.−→ the convergence in

probability, locally uniformly in time. We set

(A.33) () = 

Z 

0

|| 

Proposition 1. Under Assumption 1, and if (30) holds with some   12, we have

(A.34) (2 ∆)
u.c.p.−→ (2)

and for any   2,

(A.35) ∆1−2 ( ∆)
P−→ () on the set Ω


 

If moreover we have Assumption 2 and if  ≥ 2 is an integer and  ≥ 2, the

2-dimensional variables

∆−12

³
∆1−2 ( ∆) −() ∆

1−2
 (  ∆) − 2−1()

´


stably converge in law, in restriction to the set Ω

 , to a limit which is defined on an

extension of (ΩF  (F)≥0P) and which, conditionally on F , is a centered Gaussian
variable with variance-covariance matrix

(A.36)
1

2

µ
(2 −2

)(2) ( − 22
)(2)

( − 22
)(2) −1(2 −2

)(2)

¶


Proof. 1) We first prove (A.34) and the last claim. We set Γ = {( ) : (R) 
∞}. By localization we may suppose that the processes ,  and

R
{||≤1} ||()

restricted to the set Γ are bounded. Since  7→  can be modified on a -null set,

we can replace  by the null measure for all  ≤  = inf( : (0) =∞) (notation
(A.1)) such that (R) = ∞, and so 0 =  − 1{≤}

R
{||≤1} () is a bounded

process. Therefore the process  =  0 +  where

(A.37)  0
 = 0 +

Z 

0

0+
Z 

0

  =
X

≤∧
∆

is well defined. Moreover, the following is obvious:

(A.38)  ≤  ⇒  = 

We associate with  0 the processes 0(∆) =
P[∆]

=1 |∆
 

0|. Since  0 is con-
tinuous and satisfies Assumption 1, we know (see for example (11) and Theorem

2 of Aït-Sahalia and Jacod (2009a)) that (A.35) and under Assumption 2 the sta-

ble convergence in the last claim hold true, if we substitute (  
0∆) with

0( 0∆) (where 
0 = 1 or 0 = ). Assumption 2 is slightly weaker than in Aït-

Sahalia and Jacod (2009a), but the extension to the present case is straightforward.

Hence the desired results will hold if we prove that

(A.39) P(Ω ∩ {(  0∆) 6= 0( 0∆) ) → 0
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To see this we observe that there are integers 1() and 2() with the following

properties:  ≥ 1 implies |∆
 

0| ≤  for all  ≤ [∆] (by the boundedness

of 0 and  and in view of Lévy’s modulus of continuity and of the assumption

(30) for some   12); and, when  ≥ 2, the (finitely many) jumps of  have a

modulus bigger than 2 and the time separating any two of them is bigger than

0∆. Furthermore on Ω

 we have  ≥  , so  =  for all  ≤  by (A.38).

Hence on the set Ω

 and if  ≥ 1 ∨ 2 we have ∆

 1{|∆
 |≤} = ∆


 

0 for all
 ≤ [∆]: this readily implies (A.39). 2) Now we turn to (A.34). It is enough to

prove that (2 ∆)
P−→ (2) for each fixed . For any   0, and if  is large

enough for having 2
√
∆     (recall (30) with   12) we have

(A.40) ∆

[∆]X
=1

(∆

 

p
∆) ≤ (2 ∆) ≤

[∆]X
=1

(∆

 )

where () = 2() and () = 2() and () = (1− ||2)+ ∧ 1. Now by
Theorems 2.2 and 2.4 of Jacod (2008), we have

(A.41)

P[∆]
=1 (∆


 )

P−→ (2) +
R 
0

R
()()

∆

P[∆]
=1 (∆


 
√
∆)

P−→ R 
0
()

where  denotes the normal law N (0 2). Then the two right sides of (A.41) con-
verge to (2) as → 0, and the result readily follows from (A.40).

Now we turn to the behavior of the processes ( ∆) on the set Ω

 , under

Assumption 5. First, we consider the processes

(A.42) e( ) = Z 

0



Z
{||≤}

||()

Proposition 2. Under Assumptions 1 and 5, and if   2 and (30) holds with

  1(), there is an   0 such that for all   0,

(A.43) Γ (1−)− sup
≤

|( ∆) − e( )| P−→ 0 on {Γ  0}

Proof. We take  arbitrary in (0 ), where  = ( ) is defined in Lemma 9, with

 as in Assumption 5. We pick  in the (non-empty) interval (1−
1−  1), and also an

integer   (2) ∨ (1), and we set 1 = 2− 1 and  = 2
−1 for  ≥ 2. The

intervals  = (+1  ] for  ≥ 1 form a partition of [0 2− 1], and since Γ  2

and  is arbitrarily large, for getting (A.43) on {Γ  0} it is enough to prove it
separately on each set Ω


 = {Γ ∈ }. Below,  ≥ 1 is fixed. The process Γ is

optional and increasing (not necessarily càdlàg, though). Recalling (3), we can thus

set

 0
 = 0 +

Z 

0

+

Z 

0

 +

Z 

0

1{Γ−≤}

Z
1{||≤1}(− )( )

+

Z 

0

1{Γ−≤}

Z
1{||1}( )(A.44)
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This process obviously satisfies Assumption 5 with the same constant  and function

 and  as , and with a global BG index  ∧ Γ instead of Γ. Moreover, on the
set Ω


 we have 

0
 =  for all  ≤  . Hence it is enough to prove the result for  0

instead of . Or, in other words, we can assume that  itself satisfies Assumption

5 with Γ ≤  for all . Next we pick  ∈ (1  1−
1−), and we set  =  when

  ∞ and  =  when  = ∞. Then by Assumption 5 we see that the first two
properties in (16) hold, if Γ +  is substituted with , with a locally bounded

process  instead of (). Hence, by a standard localization argument, it suffices

to prove the result when the process satisfies Assumption 7, with  as before and

  0 as in Assumption 5. For any    the compensator of ( ) is e( ),
which is bounded by (A.5) for any . The quadratic variation of the square-integrable

martingale ( )− e( ) is (2 ). Therefore (A.5) again yields, together
with Doob’s inequality:

(A.45) E
³
sup
≤

|( ) − e( )|2´ ≤ 4E( e(2 ) ) ≤ 2− 

Combining this with (A.32) and using Cauchy-Schwarz inequality yield

(A.46) E
³
sup
≤

|( ∆) − e( )|´ ≤  

³
()

−
 + −2



´


Our choice of  implies by Lemma 9 that we can choose the number  in such a

way that () ≤ 

 . Then, recalling +1 ≥ 1 and   12, we deduce

from our choices of  and  that, if +1  Γ ≤  , both −2 and  − are

bigger than −Γ (1−). Then (A.43) in restriction to the set Ω readily follows from
(A.46).

Proposition 3. Under Assumptions 1 and 5, and if   2 and (30) holds with

  1(), for all   0 we have

(A.47)
1




sup
≤

|( ∆) −( )| P−→ 0 on {Γ = 0}

Moreover, if (0) =∞ we have

(A.48)
1



 ()

sup
≤

|( ∆) − e( )| P−→ 0 on {Γ = 0}

Proof. The scheme of the proof is essentially the same as in the previous proposition.

We define a new process  0 by (A.44), in which we take  = 0. This process has a
global BG index identically 0, and it satisfies Assumption 5 with the same functions 

and  and, say,  = 1 ( is indeed irrelevant in this case). Moreover, on the set {Γ =
0} we have  0

 =  for all  ≤  . Hence it is enough to prove the two convergences

(A.47) and (A.48) on the whole set Ω, when the process  satisfies Assumptions 1

and 5 and Γ = 0 identically. By a standard localization argument, it suffices to prove

the results when satisfies Assumption 7, with = ( ) (see Lemma 9) and  =
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0, and also when the processes ( ) =
1



 ()

R
{||≤} || () are bounded

by the same constant  for  =  and  = 2 when  ∈ (0 1]. Then by Lemma 9-(a)
we can choose the number  in such a way that − () → 0, and (A.47) then

readily follows from Lemma 8. In view of (A.47), (A.48) will hold as stated, as soon

as it holds with ( ∆) substituted with ( ). To see that this is true, we

use the estimate (2 ) ≤ , so (A.45) holds with the right side substituted with

4
2
 (). Thus the sequence

1





√
()

sup≤ |( ) − e( )| is tight,
and (A.48) follows.

The asymptotic behavior of ( ∆) is of course not completely specified by

these two propositions, but they will be enough for our purposes, in restriction to

the set {Γ  0}, and also on {Γ = 0} when (0) =∞. When (0) = 1, however,

we need more. The next result holds as soon as  → 0.

Proposition 4. Under Assumption 5 with (0) = 1, the variables 
−
 ( )

are bounded away from 0 in probability, in restriction to the set Ω
Γ=0
 , that is

(A.49) lim
→0

lim sup


P
³
{− ( ) ≤ } ∩ ΩΓ=0

´
= 0

Proof. If (A.49) fails we can extract a subsequence of , which we still denote with

the same index , such that for some sequence  → 0 and some   0 we have

P
³
{− ( ) ≤ } ∩ ΩΓ=0

´
≥ 

Now, let


 =

X
≤
1{1 |∆|≤}

whose compensator is

e
 =

Z 

0

( (
1
 )−  ())

Observe that if 
−
 ( ) ≤  then 

 = 0. Therefore it suffices to prove that

the next property brings forth a contradiction:

(A.50) P
³
{

 = 0} ∩ΩΓ=0

´
≥ 

Fix  and  for a moment, and suppose that  ≤ ( ) ≤ 0 for two constants
0    0 and all  ∈ (0 1]. Since  ≡ 1, and for 0    ≤ 1, we deduce

 ()− () ≥ 1



Z
{||≤}

|| () = ( )−( ) ≥  := −0

and   0 if we take  small enough. Now, the interval (
1
  ] contains exactly

1

[log() log()] disjoint intervals of the form ( ], and the previous minoration
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yields  (
1
 )−  ()) ≥ 


[log() log()], hence  ()−  ())→∞.

Therefore, in view of (20) and the last part of (16), and applying Fatou’s Lemma,

we deduce

(A.51) e
 → ∞ on the set Ω

Γ=0
 

Now, set  = inf( : 
  0). We have 


≤ 1, so E( e


) = E(


) ≤ 1 and

thus P( e


 ) ≤ 1. Therefore
P({ ≥ } ∩ ΩΓ=0 ) ≤ P( e


 ) + P(ΩΓ=0 ∩ { e

 ≤ })

≤ 1


+ P(ΩΓ=0 ∩ { e

 ≤ })

So, by choosing first  large and second  large, and taking advantage of (A.51),

we deduce that P({ ≥ } ∩ ΩΓ=0 )→ 0. Since 
 = 0 when    we see that

this contradicts (A.50), and we are done.

Finally, we prove much more precise limiting results under Assumption 6. As seen

before, the behavior of ( ) is key, and we start by studying these processes.

We need a law of large numbers and a central limit theorem, and a 4-dimensional

one for the latter. Taking 0   and   1 and writing 0 = , we introduce

4-dimensional processes , e,  and  with respective components

(A.52)

1 = 
−
 ( ) e1 = 

−


e( ) 1 = 
−
 ( ∆)

2 = 
−0
 (0 ) e2 = 

−0


e(0 ) 2 = 
−0
 (0 ∆)

3 = 0−( 0) e3 = 0− e( 0) 3 = 0−( 0∆)

4 = 0−
0
(0 0) e4 = 0−

0 e(0 0) 4 = 0−
0
(0 0∆)

(A.53) 
1
= 

2
=



− 
 

3
= 

4
=



0 − 


Proposition 5. Assume Assumption 6, and suppose   .

a) We have  u.c.p.−→ .

b) If further 0  2, the 4-dimensional processes 
−2
 ( − ) stably con-

verge in law to a limit which is a continuous process, defined on an extension of

(ΩF  (F)≥0P), and which conditionally on F is a centered Gaussian martingale

with covariance (or quadratic variation) process

(A.54) e =

⎛⎜⎜⎜⎜⎜⎜⎜⎝


2−

−
2−


+0−

−
0


+0−
−
2−


2−

−
+0−


+0−


+0−

−
+0−


20−

−
0


20−
−

0


+0−

+0−

−
0


20−

20−

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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Proof. a) We easily deduce from (22) that if   0 and   ,

(A.55)

¯̄̄̄
¯
Z
{||≤}

||()−
−

− 

¯̄̄̄
¯ ≤ 

−0 

which, together with the definition (A.42) and 0  , gives us

(A.56)     → 0 ⇒ −
e( ) u.c.p.−→ 

 − 


Observe that   = 
−
 (( )− e( )) is a martingale with predictable bracket


2−2


e(2 ), which goes to 0 by (A.56), hence another application of (A.56)
yields

(A.57)     → 0 ⇒ − ( )
u.c.p.−→ 

 − 


This implies (a).

b) Observe that sup≤ k−2 ( e
 − k → 0 by (A.55), as soon as 0  2.

Hence for (b) it remains to prove that  = 
−2
 ( − e) stably converges in

law to a continuous process  , defined on an extension of (Ω  ()≥0  ), and
which conditionally on  is a centered Gaussian martingale with covariance process

(A.54).

Now,  is a 4-dimensional martingale, whose quadratic covariation process 

is

11 = 
−2
 (2 ) 22 = 0−2(2 0)

33 = 
−20
 (20 ) 44 = 0−2

0
(20 0)

12 = −−2 (2 ) 13 = 
−−0
 (+ 0 )

14 = −
0

−−0
 (+ 0 ) 23 = −−−

0
 (+ 0 )

24 = 0−−
0
(+ 0 0) 34 = −

0

−20
 (20 )

Then 


P−→ e for all  by (A.57). This implies that the sequence (
) converges

in law to a continuous limit which a local martingale having quadratic covariation

process e.
At this stage, we are left to show that

(A.58) h i P−→ 0

for any bounded martingale  in a set  which generates all martingales (in the

sense of stochastic integrals). A choice of  consists in all  that are orthogonal to

−, and those which are of the form Ψ∗(−) for Ψ predictable and vanishing on
the set {(  ) : || ≤ } for some   0. Now h i vanishes if  in the first

class above, and also for those in the second class as soon as 0  : then (A.58)

obtains.
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We now apply this to derive results on the processes ( ∆); recalling the

notation (A.52) and (A.53), the following result is an obvious consequence of Lemmas

8 and 9 and Proposition 5.

Proposition 6. Assume Assumptions 1 and 6, and let 0    2.

a) If (30) holds with  ≤ 1(), we have 
 u.c.p.−→ .

b) If (30) holds with  ≤ 2(), and 0  2, the 4-dimensional processes


−2
 ( −) stably converge in law to a limit which is a continuous process, de-

fined on an extension of (ΩF  (F)≥0P), and which conditionally on F is a centered
Gaussian martingale with covariance given by (A.54).

4. Consistency results. In this section we prove Theorems 1 and 4, and we

give a description of the asymptotic behavior of the variance estimates  and  0
given by (37) and (44).

Proof of Theorem 1. By virtue of Lemma 2, we can assume Assumptions 1, and also

5 for (b). Take   2. We have (A.35) and also (upon substituting ∆ with ∆):

∆1−2 (  ∆)
P−→ 2−1()

on the set Ω

 . Since further ()  0 on the set Ω , (34) follows from (33).

The proof of (35) is more involved. Let   0 be such that (A.43) holds, and let

0 ∈ (1−  1). Recall that

(A.59)

Z
{||≤}

||() = 

Z 

0

−1 () 

Therefore if 
 = inf∈(0] 

0Γ (), and in view of (A.42), we get

e( ) ≥ −
0Γ





− 0Γ

Z 

0


 

(note that   0Γ because 0Γ  2). Now, (19) implies that on the set Ω
Γ0


the sequence 
 , which increases in , goes to +∞ on a subset of [0  ] with pos-

itive -measure. Then
R 
0

  increases to +∞, and we deduce from the previous

minoration that for  large enough (depending on ), we have

(A.60) e( ) ≥ −
0Γ

 on Ω
Γ0
 

By our choice of 0 we have Γ (1− )  0 Γ . Then (A.43) and (A.60) imply that
for all  large enough,

(A.61) ( ∆) = e( ) (1 + ) where 
P−→ 0 on Ω

Γ0
 

and in exactly the same way we obtain, again for  large enough,

(A.62) (  ∆) = e( ) (1 +  0) where  0
P−→ 0 on Ω

Γ0
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At this stage, (35) restricted to Ω
Γ0
 readily follows. Second, recalling e( ) =



()

R 
0
( ), we deduce from (20) that

(A.63) lim inf


1



 ()

e( )  0 on Ω
Γ=0
 

Hence when (0) =∞, we can apply (A.48) to obtain (A.61), and (A.62) as well, on
the set Ω

Γ=0
 instead of Ω

Γ0
 , and (35) restricted to Ω

Γ=0
 follows when (0) =∞.

Finally, suppose that (0) = 1. We apply (A.47) for ∆ and ∆, to obtain that

(A.64) (  ∆) = ( ) +  

 on {Γ = 9} where  


P−→ 0

for  = 1 and  = . We have |− 1| ≤ (| 1 |+ | 
 |)|+  

 | if − ( )  ,

hence for all    0 we have

lim sup


P({| − 1|  } ∩ ΩΓ=0 ) ≤ lim sup


P({− ( ) ≤ } ∩ΩΓ=0 )

We deduce from (A.49) that (35) holds on the set Ω
Γ=0
 , and in view of (18) this

finishes the proof.

Proof of Theorem 4. In view of (40), and since ()  0 and (0)  0 a.s. on

Ω , (42) is a trivial consequence of (A.35). For (41), it suffices to prove it under

Assumption 6, on the set Ω

 , and this follows from (a) of Proposition 5.

We end this section with the asymptotic behavior of the variances  and  0
defined in (37) and (44). We have two exponents 0    2, and we assume that

(A.15) holds with  = 1(), which is smaller than 1(
0). First, under Assumption

1, we deduce from Proposition 1 that

(A.65)


∆

P−→  := ( )
(2)

(() )2
in restriction to Ω


 ∩ Ω 

 0
∆

P−→ 22
0−2

³
(1− −)

(2)

()2
+ (1− −

0
)
(20)
(0)2

− (2− − − −
0
)
(+ 0)
()(0)

´
in restriction to Ω


 ∩ Ω (A.66)

The behavior of  on the set Ω

 under Assumption 5 is more difficult to establish

and is given in the next proposition:

Proposition 7. Under Assumptions 1 and 5, and if (30) holds with  = 1(), we

have

(A.67) 
P−→ 0 in restriction to the set

(
Ω if (0) =∞
Ω
Γ0
 if (0) = 1
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Proof. Exactly as in the proof of Theorem 1 above, for all  large enough we have

(A.68) ( ∆) = e( ) (1 + ) (2 ∆) = e(2 ) (1 +  0)

and  and  0 go to 0 in probability in restriction to the set Ω
Γ0
 . We also have

(A.60) and e(2 ) ≤ ()
2−Γ−
 for any   0, by (A.59). Then for 

large enough we have on the set Ω
Γ0
 :

 ≤ 
1 + | 00 |
(1 + )2

() 
(20−1)−
 

Since ()  ∞ for all   0 and 20  1, we deduce (A.67) in restriction to

Ω
Γ0
 . Next, we still have (A.68) with  and  0 going to 0 in probability in
restriction to the set Ω

Γ=0
 , when (0) = ∞. Moreover if Γ = 0 we also havee(2 ) ≤ 0(2)
2
 () by (16). Therefore, denoting by  the left side of

(A.63), for all  large enough we have on the set Ω
Γ=0
 :

  0  ≤ 
1 + | 00 |
(1 + )2

1

()
0(2) 

Hence if (0) =∞, we deduce (A.67) in restriction to ΩΓ=0 .

Finally, we deduce from (A.56) and under Assumptions 1 and 6 that, in restriction

to the set Ω

 :

 0




P−→  0 =
2

0−2



³(− )2

2− 
(1 +  − 2−) + (

0 − )2

20 − 
(1 +  − 2−0)

− 2(− )(0 − )

+ 0 − 
(1 +  − − − −

0
)
´
(A.69)

5. Central Limit Theorems and Theorems 3 and 6. In this section, we

prove Theorems 2 and 3, resp. 5 and 6, and the proof is the same for both pairs

of theorems, and for the first pair it essentially reduces to Theorems 5 and 6 of

Aït-Sahalia and Jacod (2009b). Moreover it is enough to prove the results under

Assumptions 5 instead of 3 and 6 instead of 4, according to the case. There are

three steps:

Proof. 1) We need a CLT for  and 0 under the null hypothesis. For this, we
apply Propositions 1 and 6, and after some (elementary) calculations we obtain the

following stable convergence in law, under Assumptions 1, and respectively 2 and 6:

(A.70)
1√
∆

( − 2−1)
L−()−→  in restriction to Ω


 ∩ Ω

where  is  -conditionally centered Gaussian with variance  given by (A.65), and

(A.71)
1


2


(0 − 
0−)

L−()−→  0 in restriction to Ω





20 YACINE AIT-SAHALIA AND JEAN JACOD

where  0 is  -conditionally centered Gaussian with variance  0 given by (A.69).
2) We combine the stable convergence in law in (A.70) and (A.71) with the con-

vergence in probability in (A.65) and (A.69), to deduce Theorems 2 and 5. In turn,

these results immediately yield that in both theorems, the asymptotic level of the

test equals .

3) It remains to prove that in both cases the asymptotic power equals 1. In case

of Theorem 3 we see by (A.67) and also (35) that ( − 2−1)
√
 → −∞ on

the set Ω (when (0) =∞), whereas in case of Theorem 6 we deduce from (A.66)

and also (35) that (0 − 
0−)

p
 0 → −∞ on the set Ω


 . So in both cases the

asymptotic power is obviously 1.

6. In the presence of noise.

Proof of Theorem 7. 1) In view of the definition of  and 
0
, it is clearly enough

to show the following convergence in probability, with  is as in (47):

(A.72)
∆


+1


( ∆)
P−→ 2(0)

+ 1


for the appropriate values of  in (30), in connection with the value of .

2) We start with the behavior of the truncated power variations when there is

only noise. That is, we denote by e( ∆) the process defined by (32), when we

substitute ∆ with ∆ , that is

(A.73) e( ∆) =

[∆]X
=1

| − −1| 1{| −−1|≤}

The aim of this step is to show the following convergence result:

(A.74)
∆


+1


e( ∆)
P−→ 2(0)

+ 1


Let e+( ∆) and e−( ∆) be the variables defined by the right side

of (A.73), except that the sum is extended over all indices  that are even, resp. odd.

It is then sufficient to prove that, suitably normalized, both these variables converge

to half the limit in (A.74), and it suffices to prove the result for, say, e+( ∆).

The summands  = | − −1| 1{| −−1|≤} for  even are i.i.d. for each ,

with a law depending on . Moreover if () = E
¡|1 − 0|1{|1−0|≤}

¢
, we have

E( ) = () and E(( )
2) ≤ 


(). The result then readily follows from stan-

dard properties of i.i.d. triangular arrays, plus ∆ → 0 (because  ≤ 1) and the
convergence ()+1 → 2(0)(+ 1) as → 0, which is a consequence of (47).

3) In view of (A.74), it is enough to prove that

(A.75)
∆


+1


¯̄̄
( ∆) − e( ∆)

¯̄̄
P−→ 0



SUPPLEMENT TO "FINITE OR INFINITE JUMP ACTIVITY" 21

Since Assumption 1 holds, by a standard localization procedure we may in fact

suppose that

(A.76) E(|∆
 |2) ≤ ∆

Observe that if for some reals   we have || ≤ 2 and either |+| ≤   ||
or || ≤   |+ |, then | − | ≤ ||, and thus¯̄
|+ | 1{|+|≤} − || 1{||≤}

¯̄
≤ 

¡

¡
1{||2} + 1{|−|≤||≤}

¢
+ −1 ||¢

≤ 
³
−2 ||2 + 


||12

| − |12
1{||≤2} + −1 ||

´
for any   0. Then, taking (A.76) and (47) into account, the latter implyingR 2
−2

()

|−|12  ≤ 
12
 , we deduce that the expectation of the left side of (A.75)

is smaller than


³∆

3
+
∆
14



12


+
∆
12




´


If   1
3
, the above goes to 0, and the proof is complete.




