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ESTIMATING THE DEGREE OF ACTIVITY OF
JUMPS IN HIGH FREQUENCY DATA

BY YACINE AÏT-SAHALIA1 AND JEAN JACOD

Princeton University and UPMC (Université Paris-6)

We define a generalized index of jump activity, propose estimators of that
index for a discretely sampled process and derive the estimators’ properties.
These estimators are applicable despite the presence of Brownian volatility
in the process, which makes it more challenging to infer the characteristics
of the small, infinite activity jumps. When the method is applied to high fre-
quency stock returns, we find evidence of infinitely active jumps in the data
and estimate their index of activity.

1. Introduction. Using high frequency financial data, which are now widely
available, we can hope to answer a number of questions regarding the characteris-
tics of the process that drives asset returns. Let us model the log-price X of some
asset as a 1-dimensional process, which we will observe over a fixed time interval
[0, T ] at discrete times 0,�n,2�n, . . . with a time interval �n between succes-
sive observations that is small. This is the essence of high frequency data. Let us
further assume that this process is an Itô semimartingale, meaning that its char-
acteristics are absolutely continuous with respect to Lebesgue measure. So, it has
a drift, a continuous martingale part that is the integral of a possibly stochastic
process with respect to a Brownian motion, and we will also let it have jumps with
a possibly stochastic Lévy measure.

For modeling purposes, one would like to infer the characteristics of X from the
observations; that is, its drift, volatility and Lévy measure. When the time interval
�n goes to 0, it is well known that one can consistently infer the volatility under
very weak assumptions. However, such consistent inference is impossible for the
drift or the Lévy measure, if the overall time interval [0, T ] is kept fixed.

In fact, even in the unrealistic case where the whole path of X is observed over
[0, T ], one can infer neither the drift nor the Lévy measure. One can, however,
hope to be able to characterize the behavior of the Lévy measure near 0: first,
whether it does not explode near 0, meaning that the number of jumps is finite; and
second, when this number is infinite, we would like to be able to say something
about the concentration of small jumps. Our objective in doing so is to provide
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specification tools for financial models, where the presence or at least possibility
of large jumps is generally accepted. There is much less consensus in the literature
regarding the nature or even the need for small jumps.

For this purpose, let us define, for a generic semimartingale X,

B(r)t = ∑
s≤t

|�Xs |r , It = {r ≥ 0 :B(r)t < ∞}, βt = inf(It ),(1)

where �Xs = Xs − Xs− is the size of the jump at time s, and r ≥ 0, with the
convention 00 = 0. Necessarily, the (random) set It contains the interval (βt ,∞),
whereas it may contain βt itself or not. Moreover, 2 ∈ It always, and, of course,
t �→ βt is nondecreasing. Hence, if we observe the whole path of X over [0, T ],
we know the sets It (ω) and the numbers βt(ω) for all t ≤ T .

We call βT (ω) the jump activity index for the path t �→ Xt(ω) at time T (or,
more precisely, up to time T ). We define this index in analogy with the special
case where X is a Lévy process. In this case, It and βt are no longer random.
Further, they do not depend on the time t , and It is also the set of all r ≥ 0 such
that

∫
{|x|≤1} |x|rF (dx) < ∞, where F is the Lévy measure. This property shows

that, for a Lévy process, the jump activity index coincides with the Blumenthal–
Getoor index of the process [see Blumenthal and Getoor (1961)]. In the further
special case where X is a stable process, β is also the stable index of the process.

When X is a Lévy process, the interval I and the index β are, of course, only
tiny elements of the whole Lévy measure F , which convey approximately the same
information (I gives slightly more information than β). However, the value of β is
probably the most informative knowledge one can draw about F from the obser-
vation of the path t �→ Xt for all t ≤ T when T is finite. Things are very different
when T → ∞, though, since observing X over [0,∞) completely specifies F .
But, when the time horizon T is kept fixed, and with the whole path observed over
[0, T ], we can infer only the behavior of the Lévy measure F near 0 (because
we need a potentially infinite number of observations for consistent estimation).
Then, β captures an essential qualitative feature of F , which is its level of activity,
which is that when β increases, the (small) jumps tend to become more and more
frequent.

β is related to the “degree of activity” of jumps. All Lévy measures put finite
mass on the set (−∞,−ε] ∪ [ε,+∞) for any arbitrary ε > 0; therefore, if the
process has infinite jump activity, then it must be because of the “small” jumps,
which are defined as those smaller than ε. If F([−ε, ε]) < ∞, then the process
has finite activity and 0 ∈ I , or, equivalently, β = 0. But, if F([−ε, ε]) = ∞, then
the process has infinite activity, and, in addition, β > 0 as long as the Lévy mea-
sure F([−ε, ε]) diverges near 0 at a rate larger than a power ε−a for some a > 0.
The higher β gets (up to 2), the more active the small jumps become. The same re-
marks also apply for general semimartingales. These properties are what motivate
our calling β a jump activity index and our interest in estimating it.
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In the more realistic situation where the semimartingale X is only observed at
times i�n over [0, T ], the estimation problem is made more challenging by the
presence in X of a continuous martingale part. By its very nature, βT characterizes
the behavior of F near 0. Hence, it is natural to expect that the small increments of
the process are going to be the ones that are most informative about βT . But, those
small increments are precisely the ones where the contribution from the continuous
martingale part of the process is inexorably mixed with the contribution from the
small jumps. Being able to “see through” the continuous part of the semimartingale
in order to say something about the number and concentration of small jumps is
going to be the challenge we face as we attempt to estimate βT .

Related to this paper are Woerner (2006), who proposes an estimator of the
jump activity index and of the Hurst exponent, but in the absence of a continuous
Brownian part to the semimartingale, and Cont and Mancini (2007), who propose
a test for the finiteness of the variation of the jump part. Also, Belomestny (2008)
estimates the same index when there is no Brownian part and when, together with
the prices, some option prices also are recorded. Another related problem is the
estimation of the index β of a stable process [see, e.g., DuMouchel (1983)]. How-
ever, our situation here is fundamentally different from those, in that we also have
a continuous part in the semimartingale. The situation is also different from that in
Aït-Sahalia and Jacod (2008), where we studied Fisher’s information for the para-
meters of a Brownian plus stable pure jump process, but the jump process was the
dominant component in that paper. Here, the continuous part of the semimartin-
gale dominates the small increments, and we estimate the activity index of a pure
jump process where the dominant component is a Brownian motion.

The aim of this paper is to construct estimators β̂n(T ) for βT , which are consis-
tent when �n → 0, and to provide rates of convergence and asymptotic distribu-
tions. Ideally, we would also like to have estimators that are, as much as possible,
model-free, in the sense that they behave well without too strong assumptions on
the form of the drift, the volatility or the Lévy measure.

As it turns out, a fully model-free behavior of the estimators may be too much
to ask. The assumptions we make below on the drift and the volatility process are
quite unrestrictive, but obtaining rates of convergence will require more specific
assumptions on the Lévy measure. In particular, we will assume that the main part
of the Lévy measure near 0 behaves locally like the Lévy measure of a stable
process, and we will provide estimators and their properties when the index is
β > 0. This assumption seems to be unavoidable, since, as we shall also see, even
when X is a Lévy process, strong assumptions on the Lévy measure are necessary.
At this juncture, it may be worth noting that considering semimartingales rather
than simply Lévy processes, or exponentials of such, does not change or weaken
the results.

The paper is organized as follows. In Section 2, we formally define the index
of jump activity, construct estimators for it and present the main properties of the
estimators in the general case where the process is a semimartingale. Section 3 is
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devoted to the special and simpler case of a symmetric stable process, and Sec-
tion 4 is about more general Lévy processes. We propose a small sample bias
correction in Section 5. We present the results of Monte Carlo simulations in Sec-
tion 6, and we compute our estimators over all 2006 transactions of the Dow Jones
stocks in Section 7, focusing in particular on Intel and Microsoft. Section 8 is de-
voted to technical results and to the proof of the main theorems, which apply to Itô
semimartingales, under suitable assumptions on the Lévy measure.

2. The model and main results.

2.1. Defining an index of jump activity. Our structural assumption is that X

is a 1-dimensional Itô semimartingale on some filtered space (�,F , (Ft )t≥0,P),
which means that its characteristics (B,C, ν) are absolutely continuous with re-
spect to Lebesgue measure [see Jacod and Shiryaev (2003) for all notions not ex-
plained here]. In other words, the characteristics of X have the form

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
σ 2

s ds, ν(dt, dx) = dt Ft (dx).(2)

Here, b = (bt ) and σ = (σt ) are real-valued optional processes, and Ft =
Ft(ω, dx) is a predictable random measure, meaning that for all Borel sets A in R

the process (Ft (A)) is predictable (possibly taking the value +∞). This model is
quite general. For instance, the drift, volatility and jump measures can be stochastic
and jump themselves.

There are other ways of expressing this assumption, for example through
a Wiener process W and a Poisson random measure μ with compensator
ν(dt, dx) = dt ⊗ dx (up to a possible enlargement of the space), as

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs

+
∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|≤1}(μ − ν)(ds, dx)(3)

+
∫ t

0

∫
R

δ(s, x)1{|δ(s,x)|>1}μ(ds, dx).

In this formulation, b and σ are the same as in (2), δ = δ(ω, t, x) is a predictable
function and the connection with Ft is that Ft(ω, dx) is the restriction to R \ {0}
of the image of the Lebesgue measure by the map x �→ δ(ω, t, x). However, it is
easier for the problem at hand to express the assumptions on Ft rather than on δ,
which, moreover, is not unique (whereas Ft is uniquely defined, up to null sets).

Below, for any measure H on R we denote by H its (symmetrical) tail function

x > 0 �→ H(x) = H([−x, x]c).(4)

Observe that B(r)t < ∞ if and only if B ′(r)t < ∞, where B ′(r)t =∑
s≤t |�Xs |r ∧ 1, and the process B ′(r) is finite-valued if and only if it is lo-

cally integrable. In other words, divergence, when it occurs, is caused by the small
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jumps. Moreover, for any stopping time T , we have

E(B ′(r)T ) = E

(∫ T

0
ds

∫
R

(|x|r ∧ 1)Fs(dx)

)
.

We call instantaneous jump activity index at time t the (random) number

βi
t = inf

{
r > 0 :

∫
R

(|x|r ∧ 1)Fs(dx) < ∞
}
.(5)

In light of (5), this is a natural generalization of the notion of Blumenthal–Getoor
index for Lévy processes [see Blumenthal and Getoor (1961)]. βi is a predictable
process taking its values in [0,2]. This process is also characterized by the property
that, for any ε > 0, we have

lim
x→0

xβi
t +εF t (x) = 0, lim sup

x→0
xβi

t −εF t (x) = ∞.(6)

The “lim sup” above is usually not a limit.
Note, finally, that βi

t = 0 does not necessarily imply that the process has finite
jump activity, since it is possible for the Lévy measure to diverge slowly near 0,

at a subgeometric speed. An example of this would be the Gamma process, which
has F(dx) = (η exp(−κx)1{x>0}/x) dx, so that the Lévy measure F t(ε) diverges
at a logarithmic rate in ε. Finite activity processes (compound Poisson) will have
βi

t = 0 a.s., however.

2.2. Assumptions. We make two assumptions. The first one, on the drift b and
volatility σ , is quite mild.

ASSUMPTION 1. The processes b and σ are locally bounded.

The second assumption, on the Lévy measures Ft , is more specific. Essentially,
we split Ft as Ft = F ′

t + F ′′
t , where:

• F ′
t is very close to the Lévy measure of a β-stable process, restricted to a random

interval (−z
(−)
t , z

(+)
t ) around 0 with some β that is not random; the random

interval may be empty for some (ω, t), but not for all;
• F ′′

t is another Lévy measure with jump activity index less than some β ′ < β .

The precise statement of the assumption is as follows.

ASSUMPTION 2. There are three (nonrandom) numbers β ∈ (0,2), β ′ ∈ [0, β)

and γ > 0, and a locally bounded process Lt ≥ 1, such that we have, for all (ω, t),

Ft = F ′
t + F ′′

t ,(7)

where:
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(a) F ′
t has the form

F ′
t (dx) = 1 + |x|γ f (t, x)

|x|1+β

(
a

(+)
t 1{0<x≤z

(+)
t } + a

(−)
t 1{−z

(−)
t ≤x<0}

)
dx(8)

for some predictable nonnegative processes a
(+)
t , a

(−)
t , z

(+)
t and z

(−)
t and some

predictable function f (ω, t, x) satisfying⎧⎨⎩
1

Lt

≤ z
(+)
t ≤ 1,

1

Lt

≤ z
(−)
t ≤ 1, a

(+)
t + a

(−)
t ≤ Lt,

1 + |x|f (t, x) ≥ 0, |f (t, x)| ≤ Lt ;
(9)

(b) F ′′
t is a measure that is singular with respect to F ′

t and satisfies∫
R

(|x|β ′ ∧ 1)F ′′
t (dx) ≤ Lt .(10)

We will also need the increasing and locally bounded process

Āt =
∫ t

0
As ds, where At = a

(+)
t + a

(−)
t

β
.(11)

REMARK 1. In view of (6), the instantaneous index at time t “due to” part F ′
t

of the Lévy measure is β on the set {At > 0}, and 0, otherwise; whereas, the one
due to F ′′

t is everywhere smaller than β ′. Hence, outside a null set, we have βt = β

on the set {Āt > 0} and βt ≤ β ′, otherwise.

REMARK 2. One could formulate Assumption 2 slightly differently by writ-
ing Ft = F 1

t + F 2
t , where F 1

t is given by (8) with f (t, x) = 0 and F 2
t satisfying

(10) with some β ′′, and, further, the restriction of F 2
t to [−z(−), z(+)] has an ab-

solutely continuous part with a density of the form f (t, x)|x|γ−1−β with (9). The
two formulations are equivalent, provided that we take β ′ = β ′′ ∨ (β − γ ).

REMARK 3. Take any process of the form

dXt = bt dt + σt dWt + δt− dYt + δ′
t− dY ′

t ,(12)

where δ and δ′ are càdlàg adapted processes, Y is β-stable or tempered β-stable
and Y ′ is any other Lévy process whose Lévy measure integrates |x|β ′

near the ori-
gin and has an absolutely continuous part whose density is smaller than K|x|γ−1−β

on [−1,1] for some γ > 0 (e.g., a stable process with index strictly smaller
than β ′). Then, X will satisfy Assumption 2. For instance, when further Y is sym-
metrical with Lévy density D/|x|1+β , it is satisfied with the two numbers β and
β ′, γ (as above), f (t, x) = 0, z

(−)
t = z

(+)
t = 1 and a

(−)
t = a

(+)
t = Dδ

β
t−.
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REMARK 4. When X is a Lévy process, so that Ft(ω, dx) = F(dx) does not
depend on t and ω, Assumption 2 is related with the property that X is a “regu-
lar Lévy process of exponential type,” as introduced in Boyarchenko and Leven-
dorskiı̆ (2002), with β = ν and β ′ ∧ (β − γ ) = ν′ in the notation of that paper.
These two assumptions are not exactly comparable. The one in Boyarchenko and
Levendorskiı̆ (2002) is more stringent about the behavior of “big” jumps, whereas
ours is slightly more demanding for “small” jumps.

2.3. The estimators. Recall that we observe Xi�n for i = 0,1, . . . , [T/�n].
While the processes B(r) are defined from the jumps �Xs = Xs − Xs− of X, we
do not observe these jumps directly. Rather, all that we observe are the discrete
increments

�n
i X = Xi�n − X(i−1)�n.(13)

From these increments, we could try to evaluate B(r)T and then infer β . Finding
consistent estimators for B(r)T is easy, but deducing from them an estimator for
β is almost impossible, because we need to decide whether B(r)T is infinite or not
based on a finite sample.

So, we propose the following idea. For fixed  > 0 and α > 0, we write

U(,α)nt =
[t/�n]∑
i=1

1{|�n
i X|>α�

n }(14)

for the number of increments whose magnitude is greater than α�
n . In all cases

below, we will set  < 1/2.

To better understand our rationale for doing this, consider the special case
X = σW + Y , where Y is a β-stable process, so βt(ω) = β . Any increment
�n

i X = Xi�n − X(i−1)�n satisfies �n
i X = σ�

1/2
n W1 + �

1/β
n Y1 (equality in law).

Then, recalling that β < 2 and �n → 0, with a large probability �n
i X is close to

σ�
1/2
n W1 in law. Those increments give essentially no information on Y and are

of order of magnitude �
1/2
n . However if Y has a “big” jump at time s, the corre-

sponding increment is close to �Ys . Hence, one has to throw away all the “small”
increments. However, β is related to the behavior of F near 0 and, hence, to the
“very small” jumps of Y . This is why we will use only increments bigger than
a cutoff level α�

n for some  ∈ (0,1/2). Asymptotically, those increments are
big, because, since �

1/2
n  �

n , the main contribution is due to Y . Those incre-
ments mostly contain a single “big” jump of size of order at least �

n , and we still
get some information on small jumps, because �

n → 0.
So, by using the statistic U , which simply counts the number of large incre-

ments, defined as those greater than α�
n , we are retaining only those increments

of X that are not predominantly made of contributions from its continuous semi-
martingale part, which are Op(�

1/2
n ), and instead are predominantly made of con-

tributions due to a jump. The same heuristics work for more general Itô semi-
martingales.
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As we will see later, the key property of the functionals U(,α,�n) is their
convergence in probability

�β
n U(,α)nt

P−→ Āt

αβ
,(15)

which we will show holds under Assumption 2. This property leads us to propose
an estimator of β at each stage n. Fix 0 < α < α′ and define

β̂n(t,,α,α′) = log(U(,α)nt /U(,α′)nt )
log(α′/α)

,(16)

which is at least consistent for estimating β on the set {Āt > 0}. If either value of
U in (16)–(17) is 0, then, by convention, we set the estimator to be 0.

β̂n is constructed from a suitably scaled ratio of two U ’s evaluated on the same
time scale �n at two different fixed levels of truncation of the increments α and α′.
In a way, this construction is in the same spirit as the classical estimator of Hill
(1975), who conducts inference about the tails of a distribution based on ratios of
various extremes.

We can also propose a second estimator defined as

β̂ ′
n(t,,α) = log(U(,α)nt /U2(,α)nt )

 log 2
,(17)

where U2(,α)nt is defined analogously to U(,α)nt in (14), except that sampling
at �n is replaced by sampling at 2�n. That is, β̂ ′

n is constructed from a suitably
scaled ratio of two U ’s evaluated at the same level of truncation α on two separate
time scales �n and 2�n.

One could also look at a third estimator β̂ ′′
n obtained from two U ’s evaluated at

two different rates of truncation  and  ′. One could further consider estimators
based not just on counting the increments that exceed a certain cutoff but also on
the magnitude of these increments, as in the case of power variations truncated to
use only the large increments.

In the rest of the paper, we will focus mainly on the properties of the estima-
tor β̂n, noting that a similar type of analysis yields the consistency and asymptotic
distribution of the other two estimators. In general, the asymptotic variance of β̂n

is smaller than that of β̂ ′
n and β̂ ′′

n .

Before studying the properties of the estimator β̂n, let us make a few remarks.

REMARK 5. Asymptotically, as n → ∞, the above estimators behave well.
However, for any given n, it may happen that they are not informative, be-
cause too few increments are retained, up to the extreme case where U(,α)nt =
U(,α′)nt = 0. If this is the case, one should take smaller values of α and α′.
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REMARK 6. Even when the estimators are well defined, they may take a value
bigger than or equal to 2. In this case, the estimation is not reliable, and it may be
an indication that Assumption 2 is simply not satisfied, which would be the case
for example if there is no jump at all in the observed path. So it would make sense
to convince oneself that jumps are present [see, e.g., Aït-Sahalia and Jacod (2009)]
before attempting to estimate β .

REMARK 7. As we will see below, asymptotic considerations lead to the se-
lection of  = 1/5 as a universal choice valid for all possible values of β. The cut-
off for large increments is α�

n . When implementing the estimator in practice, in
any given sample the value of �n is fixed, so  and α are not independent pa-
rameters. The level of truncation α may be set in relation to the volatility of the
continuous part of the semimartingale [i.e., (t−1 ∫ t

0 σ 2
s ds)1/2] since the objective is

to eliminate the increments that are mainly due to the continuous part. The trunca-
tion level can be selected in a data-driven manner. Despite the presence of jumps,
that volatility can be estimated using the small increments of the process, since

[t/�n]∑
i=1

|�n
i X|21{|�n

i X|≤α�
n }

P−→
∫ t

0
σ 2

s ds(18)

for any α > 0 and  ∈ (0,1/2). We can then set the cutoff level α to yield a num-
ber of (estimated) standard deviations of the continuous part of the semimartin-
gale. For the estimator β̂n, α′ can then be set as a multiple of α. These data-driven
choices determine a range of reasonable values for (α,α′). One possibility is then
to simply average the estimators β̂n obtained for the values of (α,α′) over that
range. The parameters (α,α′) effectively play a role similar to that of bandwidth
parameters in a nonparametric analysis.

REMARK 8. The construction of the estimators relies on the property (15),
which holds under (slightly) weaker assumptions than Assumption 2, provided
that the definition of Āt and the rate of convergence are suitably amended. As a re-
sult, the estimators given in (16) remain consistent under weaker assumptions. For
example, when X has only finitely many jumps, the index is β = 0, and U(,α)nt
converges to the number of jumps between 0 and t , irrespective of the value of α,
so β̂n is equal to 0 for all n large enough (obviously, this rules out the possibility
of a central limit theorem).

REMARK 9. Our estimator is based on the count of “big” increments, although
we are interested in the properties of the “small” jumps of X, which are those
governing the index β . This is because the behavior of sums of the squares of the
small increments behave as described in (18), and other powers smaller than 2 are
also driven by the “Wiener part” of X and do not provide insight on the small
jumps. Perhaps considering sums of powers bigger than 2 for “small” increments
would provide an alternative means of constructing estimators of β , but we did not
consider this possibility here.
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2.4. Properties of the estimators. Our first result states that our estimators es-
timate β on the (random) set {Āt > 0}, where the jump activity index is β , and we
can state the following rate of convergence.

THEOREM 1. Let 0 < α < α′, 0 <  < 1/2 and t > 0. Under Assumptions 1

and 2, we have β̂ ′
n(t,,α,α′) P−→ β on the set {Āt > 0}. Moreover, if

χ = χ(β, γ,β ′,)
(19)

= (γ ) ∧ 1 − β

3
∧ (β − β ′)

1 + β ′ ∧ 1 − 2

2
∧ β

2
,

then the estimators β̂n(t,,α,α′) are �
χ−ε
n -rate consistent for any ε > 0 on the

set {Āt > 0}, in the sense that the sequence of variables ( 1
�

χ−ε
n

(β̂ ′
n(t,,α,α′) −

β))n≥1 is bounded in probability (or, “tight”) in restriction to this set.

The number χ is positive, but it may also be very small. If we want an associated
distributional result, we need stronger assumptions, which essentially implies that
χ = β/2 above, and this requires that the activity indices β ′ and β − γ of the
“nonstable-like” part of the Lévy measure be sufficiently apart from the leading
activity index β , as follows.

THEOREM 2. Let 0 < α < α′ and t > 0. Assume Assumptions 1 and 2 with
β ′ ∈ [0, β/(2 + β)) and γ > β/2. Then, if  < 1/(2 + β) ∧ 2/(5β), and in re-
striction to the set {Āt > 0}, we have the following stable convergence in law to a
centered normal variable independent of X:

1

�
β/2
n

(
β̂n(t,,α,α′) − β

) L−(s)−→ N

(
0,

α′β − αβ

Āt (log(α′/α))2

)
.(20)

The qualifier “in restriction to the set {Āt > 0}” is essential in this statement.
Recall that, unlike the usual convergence in law, stable convergence in law makes
it possible to restrict the convergence to a subset of � exactly as convergence in
probability does. On the complement set {Āt = 0}, anything can happen. On that
set, the number β has no meaning as a jump activity index for X on [0, t].

Moreover, the stable convergence in law allows for the convergence of standard-
ized statistics.

THEOREM 3. Under the assumptions of Theorem 2, the variables

log(α′/α)√
1/U(,α′,�n)t − 1/U(,α,�n)t

(
β̂n(t,,α,α′) − β

)
(21)

converge stably in law, in restriction to the set {Āt > 0}, to a standard normal
variable N (0,1) independent of X.
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These results are model-free in a sense, because the drift and the volatility
processes are totally unspecified apart from Assumption 1, and the Lévy measures
Ft are unspecified, other than the requirements specified in Assumption 2. These
three theorems will be proved in Section 8 below.

The restriction on  given in the statement of Theorem 2 restricts admissible
values of  in a manner that depends on β. Since β is unknown at this point, we
must select a “universal” value of  that is admissible for all values of β . Not
surprisingly, the most stringent value of  is obtained in the limit where β

<→ 2,
yielding  = 1/5, and this is the value we suggest for empirical applications.

We note (without proof) that a similar set of properties hold for the second
estimator β̂ ′

n based on the ratio of U ′s estimated at two different frequencies �n

and 2�n, with (21) replaced by the standardized statistic

 log 2√
1/U(,α,2�n)t − 1/U(,α,�n)t

(
β̂ ′

n(t,,α) − β
)
.(22)

3. Stable processes. Here, we specialize the general results in an important
special case discussing, in particular, the efficiency of the estimators of β we pro-
pose. In the special case of stable processes, the model is fully specified paramet-
rically, and we can compare the properties of efficient parametric estimators of β

to those of the general estimators β̂n.
Denote, by Y , a symmetric stable process with index β ∈ (0,1/2). We study

the two situations where Xt = Yt (the simplest of all since there is no continuous
part) and Xt = bt + σWt + Yt , where σ > 0, b ∈ R and W is a Brownian motion.
The Lévy measure depends on a scale parameter A > 0 and the index β . It has the
form

F(dx) = Aβ

2|x|1+β
dx, hence

(23)

F(x) := F([−x, x]c) = A

xβ
for x > 0.

The law of Y1 has an even density g and a tail function G(x) = P(|Y1| > x) satis-
fying, as x → ∞ [see Zolotarev (1986), Theorems 2.4.2 and Corollary 2 of Theo-
rem 2.5.1],

g(x) = Aβ

2|x|1+β
+ O

(
1

x1+2β

)
, G(x) = A

xβ
+ O

(
1

x2β

)
.(24)

In both cases X = Y and Xt = bt + σWt + Yt , we obviously have Assump-
tions 1 and 2, with Ft = F ′

t = F not depending on (ω, t), and with F ′′
t = F ′′′

t = 0,
� = � × (0,∞), β ′ = 0, and ft (x) = 0 and, finally, At(ω) = A, which is the con-
stant in (23). Then, we can apply the previous results, which further hold on the
whole set � [because here Āt = tA > 0 for all (t,ω)]. The results are much eas-
ier to prove in this special case, and also the requirements on  are significantly
weaker, thus allowing for faster rates of convergence (the larger  , the faster the
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convergence in Theorem 1). But these improved results are no longer model-free,
since the structure of jumps is completely specified in this stable model up to the
unknown parameters A and β .

3.1. The case X = Y . Consider first the case where X has no continuous part.
Then, the general results on β̂n can be improved to yield the following.

THEOREM 4. Assume that X = Y . Let 0 < α < α′ and  > 0 and t > 0.
Then:

(a) If  < 1/β , the estimators β̂n(t,,α,α′) converge in probability to β;
(b) If further  < 2/(3β), we have stable convergence in law, over the whole

set �, as described in Theorems 1 (with Āt = tA) and 3.

Note that in part (a) of the theorem, the closer β is to 2, the stronger the con-
straint on the truncation rate .

These estimators are not, however, rate-efficient. To see this, one can recall from
Aït-Sahalia and Jacod (2008) that the parametric model in which one observes the
values Xi�n for i�n ≤ t is regular, and its Fisher information for estimating β is
asymptotically of the form

In ∼ log(1/�n)

�n

Cβt(25)

for some constant Cβ . We can thus hope for estimators that, after centering by β

and normalization by
√

log(1/�n)/
√

�n are N (0,1/Cβ), and, in fact, the MLE
does this.

Where is the loss of efficiency coming from? In order to compute our general
estimators β̂n, we are forced by the presence of a continuous part in X to discard a
very sizeable portion of the data, which is the effect of truncating away the small
increments of X. However, in this case, if somehow we knew from the start that
there is no continuous part in X, then there would no longer be a need to do that.
It is clear that better estimators of β could then be constructed.

And if, further, the law of Y has a fully-specified parametric form, as is the case
here, then it would be possible to improve the estimators even more. In this exam-
ple, we would simultaneously estimate β and A, but the rates would be unchanged
and it would be even more model-dependent. So this is the kind of estimator that
we do not want to use, since we have no hope of extending such an estimator to the
general semimartingale situation (or, in fact, even to more general Lévy processes
than the stable ones).

3.2. The case Xt = bt + σWt + Yt . We now study the situation where Y is a
stable process, but X now also contains a continuous part. The distributional prop-
erties of the estimators follow directly in this special case. Indeed, for this model,
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U(,α)nt is essentially the same as, or close to, the number V (,α)nt of jumps
of Y that are bigger than α�

n in the interval [0, t]. But V (,α)nt is a Poisson
random variable with parameter Ct/αβ�

β
n where C is a constant. Hence,

�β
n V (,α)nt

P−→ C/αβ,(26)

1

�
β/2
n

(
�β

n V (,α)nt − C/αβ) L→ N (0,C/αβ).(27)

These properties carry over to U(,α)nt , and this leads to the following improve-
ment to Theorem 1.

THEOREM 5. Assume that Xt = bt + σWt + Yt . Let 0 < α < α′ and  > 0
and t > 0. Then:

(a) If  < 1/2, the estimators β̂n(t,,α,α′) converge in probability to β;
(b) If  < 1/(2 + β), we have the stable convergences in law, over the whole

set �, as described in Theorems 1 (with Āt = tA) and 3.

The estimators β̂n are again not rate-efficient, although they do come close. In
fact, using the methods of Aït-Sahalia and Jacod (2008), we can show that Fisher’s
information for estimating β at stage n satisfies

In ∼ A(log(1/�n))
2−β/2

σβ�
β/2
n

C′
βt(28)

for another constant C′
β . Furthermore, in the (partial) statistical model where we

observe the increments provided, they are bigger than α�
n and discard all others

(here α > 0 and 0 <  < 1/2), Fisher’s information now satisfies

In ∼ A(1 − )2(log(1/�n))
2

αβ�
β
n

C′′
βt.(29)

So, our general estimators are almost [up to a log(1/�n) factor] rate-efficient for
the partial parametric statistical model. As for the “complete” model, the rate ap-
proaches the true rate by taking  close to 1/2, but we cannot take  bigger than
1/(2 +β), and since, in practice, β is unknown other than being less than 2, a uni-
versal choice may be  = 1/4, which is less stringent than the choice  = 1/5
required in the general case.

4. General Lévy processes. Let us now consider the case where X is a gen-
eral Lévy process. Its characteristics are of the form (2) with bt = b, σt = σ and
Ft = F deterministic and not depending on t . Then, Assumption 1 holds. As to
Assumption 2, it may or may not hold, but if it does it takes a slightly simpler form
because then everything is independent of (ω, t). In particular, Āt = At for some
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constant A > 0. The two Theorems 1 and 3 hold without modification, except that
either {Āt > 0} = � for all t > 0, or {Āt > 0} = ∅ for all t , in which case those
theorems are void of content.

What is important here, though, is that those results fail when the assumptions
we made are not satisfied, even with such a simple probabilistic structure for X.

In order to see why Assumption 2 is needed, let us consider a simpler but closely
related statistical model. More precisely, suppose that we observe all “big” jumps
of X up to time t ; that is, �Xs with |�Xs | > α�

n for all s ≤ t . A priori, this
should give us more information on the Lévy measure than the original observation
scheme where only increments (as opposed to jumps) are observed and only those
bigger than α�

n are taken into consideration.
In this statistical setting, the estimators (16) have no meaning, but we can re-

place β̂n with

βn(t,,α,α′) = log(U(,α)nt /U(,α′)nt )
log(α′/α)

,(30)

where we have set

U(,α)nt = ∑
s≤t

1{|�Xs |>α�
n }.(31)

The estimators βn are of course only virtual since there is no hope of actually
observing the exact jumps of the process. But, in the rest of this section, we study
the behavior of the estimators βn in order to gain some insight on the necessity of
making a restrictive assumption on the Lévy measure Ft if one is to estimate β .
We will see that such an assumption is needed even under these idealized circum-
stances. Set

γn(,α) = F(α�
n ).(32)

LEMMA 1. Let

M(,α)nt = 1√
γn(,α)

(
U(,α)nt − γn(,α)t

)
.(33)

Then:

(a) Each sequence of processes M(,α)n converges stably in law to a stan-
dard Wiener process, independent of X;

(b) If α < α′, all limit points of the sequence γn(,α′)/γn(,α) are in [0,1].
Further, if this sequence converges to γ , then the pair (M(,α)n,M(,α′)n)
of processes converges stably in law to a process (W,W

′
), which is independent

of X and a 2-dimensional Wiener process with unit variances 1 and unit covari-
ance

√
γ .
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PROOF. The processes Mn = M(,α)n and M ′n = M(,α′)n are Lévy
processes and martingales, with jumps going uniformly to 0, and with predictable
brackets

〈Mn,Mn〉t = 〈M ′n,M ′n〉t = t, 〈Mn,M ′n〉t =
√

γn(,α′)√
γn(,α)

t.

Observe, also, that α′�
n ≥ α�

n ; hence, γn(,α′) ≤ γn(,α). The remaining
results then follow [see Jacod and Shiryaev (2003), Chapter VII]. �

THEOREM 6. If α′ > α and γn(,α′)
γn(,α)

→ γ ∈ [0,1], then the sequence√
γn(,α′)

(
βn(t,,α,α′) − log(γn(,α)/γn(,α′))

log(α′/α)

)
(34)

converges stably in law to an N (0,
1−γ

t (log(α′/α))2 ) variable, independent of X.

This result is a simple consequence of the previous lemma, and its proof is
the same as the proof of Theorem 1 once the CLT for the processes U(,α)n is
established, which we will do later.

So, the situation seems generally hopeless. These estimators are not even con-
sistent for estimating the activity index β of F because of bias, and to remove the
bias we have to know the ratio γn(,α′)/γn(,α) (or at least its asymptotic be-
havior in a precise way), and, further, there is no CLT if this ratio does not converge
(a fact which we do not know a priori, of course).

The major difficulty comes from the possible erratic behavior of F near 0. In-
deed, we have (6) with β instead of βi

t , but there are Lévy measures F satisfying
this, and such that for any r ∈ (0, β) we have xr

nF (xn) → 0 for a sequence xn → 0
(depending on r , of course). If F is such, the sequence γn(,α′)/γn(,α)

may have the whole of [0,1] as limit points, depending on the parameter values
,α,α′, and in a completely uncontrolled way for the observer.

So, we need some additional assumption on F . Let us consider two assumptions
(the second one is stronger than the first one).

ASSUMPTION 3. F is regularly varying at 0, with index β ∈ (0,2).

ASSUMPTION 4. We have

F(x) = A

xβ
+ o

(
1

xβ/2

)
(35)

as x → 0, for some A > 0.

THEOREM 7. (a) Under Assumption 3, we have βn(t,,α,α′) P−→ β .
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(b) Under Assumption 4, the variables �
−β
n (βn(t,,α,α′) − β) converge

stably in law to a N (0, α′β−αβ

tA2(log(α′/α))2 ) variable, independent of X.

PROOF. Assumption 3 implies that γn(,α) → ∞ and γn(,α)/γn(,α′) →
(α′/α)β , so the previous theorem yields (a). Assumption 4 clearly implies√

γn(,α)
log(γn(,α)/γn(

′, α′))
log(α′/α)

→ β,

and also γn(,α) ∼ A/αβ�
β
n , so (b) follows again from the previous theo-

rem. �

It may of course happen that Assumption 3 or 4 fail and nevertheless the con-
clusions of the previous theorem hold for a particular choice of the parameters
(,α,α′) or for a particular choice of the sequence �n. But, in view of Theo-
rem 6 and of the previous proof, these assumptions are necessary if we want those
conclusions to hold for all choices of (,α,α′).

Now, coming back to the original realistic problem, for which only increments
of X are observed. Assumption 2, when Ft(ω, dx) = F(dx) for all (ω, t), is ob-
viously stronger than Assumption 4, but not much more. The need of stronger
assumptions for the original problem comes from the fact that although when we
observe a “large” increment �n

i X it is with a high probability almost equal to a
“large” jump. Nevertheless, the observation of this jump is blurred by the Brown-
ian component and also by a sum of very small jumps. This fact is also the reason
why we need some restriction on  for the original problem, whereas, here,  can
be arbitrarily large.

5. Small sample bias correction. By construction, we are forced by the pres-
ence of a continuous semimartingale to rely on a small fraction of the sample (i.e.,
those increments larger than α�

n ) for the purpose of estimating β. As a result,
the effective sample size utilized by the estimator β̂n is small, even if we sample at
a relatively high frequency. This situation calls for an analysis of the small sample
behavior of the estimator.

Such a small sample analysis is out of reach in general but it can be carried
out explicitly for the model Xt = σWt + θYt studied in Section 3, where Y is a
symmetric β-stable process and W is a Wiener process. Let g denote the density
of Y1. Here, the process Y is standardized by E(eiuYt ) = e−t |u|β/2, so the limit
β → 2 corresponds to the standard normal density φ.

One additional step in the expansion (24) yields, as x → +∞,

g(x) = cβ

xβ+1 + dβ

x2β+1 + O

(
1

x3β+1

)
(36)
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and, for the tail of the distribution,

G(x) = P(|Y1| > x) = 2
∫ +∞
x

g(v) dv = 2cβ

βxβ
+ dβ

βx2β
+ O

(
1

x3β

)
,(37)

where the coefficients of the expansion are

cβ = �(β + 1)

2π
sin

(
πβ

2

)
and dβ = −�(2β + 1)

8π
sin(πβ).(38)

This parametrization corresponds in terms of the general notation of the paper to

At = A = 2θβcβ/β.(39)

Now, consider the tail probability Pn at the cutoff level α�
n . The probability

Pn determines the limiting behavior of the U s, since U(,α)nt ∼ (t/�n)Pn. We
have

Pn = 2
∫ +∞
−∞

∫ +∞
α�

n

1

θ�
1/β
n

g

(
x − y

θ�
1/β
n

)
dx

1

σ�
1/2
n

φ

(
y

σ�
1/2
n

)
dy

= 2
∫ +∞
−∞

∫ +∞
(α/θ)�

−1/β
n (1−(σ/α)�

1/2−
n u)

g(v) dv φ(u)du

=
∫ +∞
−∞

G

(
α

θ
�−1/β

n

(
1 − σ

α
�1/2−

n u

))
φ(u)du.

So, with(
1 − σ

α
�1/2−

n u

)−β

(40)

= 1 + uβσ�
1/2−
n

α
+ u2β(β + 1)σ 2�1−2

n

2α2 + O(�3/2−3
n )

and
∫ +∞
−∞ uφ(u)du = 0 and

∫ +∞
−∞ u2φ(u)du = 1, we see, from (37), that

Pn = 2cβθβ

βαβ
�1−β

n

(
1 + β(β + 1)σ 2

2α2 �1−2
n + dβθβ

2cβαβ
�1−β

n

)
(41)

+ smaller terms.

The behavior of Pn suggested by the leading term in the expression (2cβθβ/

(βαβ))�
1−β
n is the one we have used to define the estimator β̂n in (16) by

exploiting the dependence of that leading term on α. The first correction term
(β(β + 1)σ 2/(2α2))�1−2

n in (41) is due to the interaction between the Wiener

and the stable processes, while the second (dβθβ/(2cβαβ))�
1−β
n is due to the

more accurate approximation of the tail of the stable process in (36) compared to
the leading order term in (24).
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To understand intuitively the need for the first term, suppose that the cutoff level
corresponds to seven standard deviations of the continuous part of the semimartin-
gale. There is very little probability that the Wiener process alone will generate
an increment that large. On the other hand, when we count the increments due to
the jump process alone, we are missing increments of the sum of the continuous
and discontinuous parts where, say, the Wiener process is responsible for a one
standard deviation move, and the jump process for a six standard deviation move,
of the same sign. We are also missing increments where the jump process gives
an eight standard deviation move and the Wiener process a one standard deviation
move, of the opposite sign. The two effects partly compensate each other and in-
deed the term in u in (40) leads to an integral whose value is zero. But the next
effect, in u2, leads to a net increase in the total number of increments that are
larger than the cutoff when the interaction between the Wiener and jump processes
is accounted for.

Asymptotically, the first of the two correcting terms in (41) is the largest, since
1 � �1−2

n � �
1−β
n , but in small samples a large value of the scaling parameter

θ relative to σ can make their magnitudes comparable. Using (41) at two different
values α and α′, we obtain

β̂n ∼ β + 1

log(α′/α)

{
β(β + 1)σ 2

2

(
1

α2 − 1

α′2
)
�1−2

n

(42)

+ dβθβ

2cβ

(
1

αβ
− 1

α′β
)
�1−β

n

}
.

This suggests a small sample bias correction for the estimator β̂n obtained by sub-
tracting an estimator of the two correction terms on the right hand side of (42)
from β̂n. As we will see in simulations below, the two correction terms are quite
effective in practice.

Further, we note that the two correction terms in (42), of respective orders
�1−2

n and �
1−β
n , are asymptotically negligible at the rate �

−β/2
n at which

the central limit occurs. This is due to the restrictions on the choice of  imposed
by Theorem 2. Consequently, the bias-corrected estimator has the same asymptotic
distribution as the original estimator.

More generally, we have

β̂n ∼ β + 1

log(α′/α)

{∫ t
0 Asσ

2
s ds

Āt

β(β + 1)

2

(
1

α2 − 1

α′2
)
�1−2

n

(43)

+
∫ t

0 A2
s ds

Āt

βdβ

4c2
β

(
1

αβ
− 1

α′β
)
�1−β

n

}
.

To implement the bias correction in practice, we need to estimate the terms
(1/Āt )

∫ t
0 Asσ

2
s ds and (1/Āt )

∫ t
0 A2

s ds. In the case of a stable symmetric process,
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As = A and so (1/Āt )
∫ t

0 A2
s ds = A = 2θβcβ/β . We can then replace

(1/Āt )
∫ t

0 Asσ
2
s ds by (1/t)

∫ t
0 σ 2

s ds and use any standard estimator of the inte-
grated volatility. In general, we have

U(,α)nt ∼ 1

αβ
�−β

n

(
Ā + 1

α2 Aσ 2G1(β)�1−2
n

(44)

+ 1

αβ
A2G2(β)�1−β

n

)
,

�β
n U(,α)nt ∼ a0

1

αβ
+ a1

1

α2+β
+ a2

1

α2β
,(45)

where Ā = ∫ t
0 Asσ

2
s ds, Aσ 2 = ∫ t

0 Asσ
2
s ds and A2 = ∫ t

0 A2
s ds. We can estimate

the unknown coefficients a0, a1 and a2 in expression (45) by a straightforward
linear regression of �

β
n U(,α)nt on 1/αβ, 1/α2+β and 1/α2β . For the purpose

of running that regression, we use different cutoff levels α and compute the corre-
sponding number of increments exceeding that level, U(,α)nt and the first-stage
estimate of β . Given estimates of the regression coefficients, we have a general-
ized bias correction procedure based on subtracting, from β̂n, the terms on the
right-hand side of

β̂n − β ∼ 1

log(α′/α)

{
a1

a0

(
1

α2 − 1

α′2
)

+ a2

a0

(
1

αβ
− 1

α′β
)}

(46)

evaluated at the regression estimates of a0, a1 and a2.

6. Monte Carlo simulations. We now report simulation results documenting
the finite sample performance of the estimator β̂n in finite samples. We calibrate
the values to be realistic for a very liquid stock. We use an observation length of
T = 1 day, consisting of 6.5 hours of trading (i.e., n = 23,400 seconds).

The averages and standard deviations of the estimator β̂n, which is based on two
different levels of truncation α and α′, are reported in Table 1 for various values of
β up to 1.5 and include a continuous (Brownian) part. The table reports the results
of 5000 simulations. The data generating process is the stochastic volatility model
dXt = σt dWt + θ dYt , with σt = v

1/2
t , dvt = κ(η − vt ) dt + γ v

1/2
t dBt + dJt ,

E[dWt dBt ] = ρ dt , η1/2 = 0.25, γ = 0.5, κ = 5, ρ = −0.5. J is a compound
Poisson jump process with jumps that are uniformly distributed on [−30%,30%]
and X0 = 1. The jump process Y is either a β-stable process with β = 1.5, 1.25,

1.0, 0.75, 0.5 and 0.25, or a compound Poisson process (which has finite activity
and is marked β = 0 in the table) with fixed jump size 0.10. The estimator is
implemented with α = 5η, α′ = 10η and  = 0.20. Given η and α, the scale
parameter θ (or equivalently A) of the stable process in simulations is calibrated
to deliver the various values of the tail probability P(|�Yt | ≥ α�

n ) reported in
the columns of the table; for the Poisson process, it is the value of the arrival rate
parameter λ that is set to generate the desired level of jump tail probability.
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TABLE 1
Monte Carlo simulations of the estimator β̂n based on two levels of truncation for β-stable

processes and a compound Poisson process (β = 0)

Sampling �n 1 sec 1 sec 1 sec 1 sec 5 sec
tail probability 0.25% 0.5% 1.0% 2.5% 1.0%

β = 1.5 Sample mean 1.52 1.51 1.50 1.52 1.53
Sample stdev (0.26) (0.18) (0.13) (0.08) (0.25)

Asymp stdev (0.26) (0.18) (0.13) (0.08) (0.24)

β = 1.25 Sample mean 1.27 1.26 1.25 1.26 1.27
Sample stdev (0.23) (0.16) (0.11) (0.07) (0.19)

Asymp stdev (0.23) (0.16) (0.11) (0.07) (0.19)

β = 1.0 Sample mean 1.01 1.01 1.00 1.00 1.01
Sample stdev (0.19) (0.14) (0.10) (0.06) (0.14)

Asymp stdev (0.19) (0.14) (0.10) (0.06) (0.14)

β = 0.75 Sample mean 0.76 0.76 0.75 0.75 0.76
Sample stdev (0.16) (0.11) (0.08) (0.05) (0.11)

Asymp stdev (0.16) (0.11) (0.08) (0.05) (0.11)

β = 0.5 Sample mean 0.51 0.50 0.50 0.50 0.50
Sample stdev (0.13) (0.09) (0.06) (0.04) (0.08)

Asymp stdev (0.13) (0.09) (0.06) (0.04) (0.08)

β = 0.25 Sample mean 0.25 0.25 0.25 0.25 0.25
Sample stdev (0.09) (0.06) (0.04) (0.04) (0.05)

Asymp stdev (0.09) (0.06) (0.04) (0.04) (0.05)

β = 0 Sample mean 0.01 0.01 0.01 0.01 0.02
Sample stdev (0.02) (0.01) (0.007) (0.005) (0.01)

In each row, the top number is the average value of the estimator β̂n across the
simulations, after inclusion of the bias correction discussed in Section 5, while
the number below, in parentheses, is the standard deviation of the estimator across
the same simulations. The third number in parentheses is the estimated asymp-
totic standard error based on the limiting distribution given in the sections above.
A higher tail probability in the columns has the effect of generating more incre-
ments from the jump process that exceed the cutoff level, which makes more ob-
servations available and correspondingly reduces the standard deviation of the es-
timates.

As the results show, β̂n picks up on average fairly accurately the true value
of β . As β gets too close to 2, the β-stable jump process starts to approximate too
closely the behavior of the Brownian motion and the performance of the estimator
deteriorates.

Further simulations (not reported to save space) suggest that the estimator is not
overly sensitive to the selection of the truncation levels (α,α′) within a reasonable
range. Histograms of the distribution of the estimator β̂n are shown in Figure 1 for
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FIG. 1. Monte Carlo distributions of the estimator β̂n based on two levels of truncation for β-stable
processes (0 < β < 2).

the same values of β; the figures are based on the 1% level of jump tail proba-
bility. The histogram reports the raw, unstandardized, values of β̂n, which are not
expected to be asymptotically normal unlike the standardized versions.

A special mention should be made about the compound Poisson case, which cor-
responds to β = 0 and does not satisfy Assumption 2. As discussed in Remark 8,
there is no central limit theorem in this case, and β̂n should be equal to 0 for n

large enough. Intuitively, when there is a small number or large jumps, the same
large increments remain in the sample at the two truncation levels α and α′, and
the ratio of U evaluated at α to U evaluated at α′ in (16) is equal to 1. This is what
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FIG. 2. Monte Carlo distribution of the estimator β̂n based on two levels of truncation for a com-
pound Poisson process (β = 0).

happens in simulations in the vast majority of cases, as shown by the histogram for
β = 0 reported in Figure 2.

The asymptotic distribution is an accurate guide for the small samples as shown
in the standardized distributions in Figure 3. The estimator in the histograms is
standardized according to the asymptotic distribution given in Theorem 3, and the
solid curve in the figures is the limiting N (0,1) density. As the figures show, the
asymptotic distribution is a fairly accurate guide for the small samples. This is in
spite of the relatively small number of (large) increments that are effectively used
by the estimator, combined with the facts that some large increments are kept,
even though they may not have contained a large jump, or, conversely, smaller in-
crements may have contained two or more large, cancelling, jumps, or the Wiener
process may have combined with the pure jump process to produce a larger in-
crement. Asymptotically, these effects do not show up at the leading order in �n

but are present in small samples and appear to be effectively captured by the bias
correcting term.

Finally, we compare in simulations the performance of the two estimators β̂n

(based on two truncation levels) and β̂ ′
n (based on two sampling frequencies) with

the same experiment design as above. The sampling frequency is �n = 1 sec-
ond, the length of observation T = 1 day or 23,400 seconds. The tail probability
is 1.0%, the middle value in Table 1. The results are shown in Table 2. The esti-
mator β̂ ′

n tends to have a larger standard deviation than β̂n and is slightly biased.
For these reasons, we have focused on the estimator β̂n and emphasize its use in
the empirical application that follows.

7. Empirical application. We now implement the estimator β̂n for the two
most actively traded stocks in the Dow Jones Industrial Average index, Intel
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FIG. 3. Standardized Monte Carlo and asymptotic distributions of the estimator β̂n based on two
levels of truncation for β-stable processes (0 < β < 2).

(INTC) and Microsoft (MSFT), and each trading day in 2006. The data source
is the TAQ database. Each day, we collect all transactions on the NYSE or NAS-
DAQ, from 9:30 am until 4:00 pm, for each one of these stocks. We sample in
calendar time every 5 and 15 seconds. We use filters to eliminate clear data er-
rors (price set to zero, etc.) and all transactions in the original record that are later
corrected, cancelled or otherwise invalidated, as is standard in the empirical high
frequency literature.

The two time series are plotted in Figure 4. Figure 5 contains a histogram of the
tails of the unconditional densities of the log-returns from the two stocks. Compar-
ing the two figures, we see that it is quite possible to have a standard time series
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TABLE 2
Comparison of the two estimators of β in Monte Carlo simulations for β-stable processes and a

compound Poisson process (β = 0)

Two truncation levels Two sampling frequencies
β̂n β̂′

n

β = 1.0 Sample mean 1.00 1.00
Sample stdev (0.10) (0.13)

β = 0.5 Sample mean 0.50 0.51
Sample stdev (0.06) (0.09)

β = 0 Sample mean 0.01 0.03
Sample stdev (0.007) (0.02)

plot display little evidence of large moves (Figure 5), while the tails of the distribu-
tion look substantially fatter than normal (Figure 5) as confirmed by the descriptive
statistics in Table 3 for the two log-returns series. All together, this evidence points
in the direction of many small, active jumps of the type that we seek to uncover
using our estimator of β.

More formally, we compute the statistic Ŝn of Aït-Sahalia and Jacod (2009) to
test for the presence of jumps in the data. Over the different sampling frequencies
considered (ranging from 2 seconds to 1 minute), the largest value of the statistic
Ŝn we obtain for the different quarters and the two stocks is 1.19. Since the asymp-
totic value of Ŝn is 1 (resp. 2) when jumps are present (resp. absent), this provides
further evidence for the presence of jumps.

Table 4 reports the estimates produced by β̂n for the two stocks, for the full
year. For each stock and sampling intervals �n of 5 and 15 seconds, respectively,
the left columns in the table use a level of truncation α, which is set to 7 estimated
standard deviations of the continuous part of the process, a second level α′ = 2α

and a truncation rate  = 0.20. In light of the different possible choices of α

and α′, a simple variance-reducing procedure consists in averaging the estimators

FIG. 4. Time series of INTC and MSFT stock prices, all trading days in 2006.
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FIG. 5. Tails of the marginal density of INTC and MSFT log-returns, all trading days in 2006
sampled at 5 second intervals. The dashed curve is the leading part of the Lévy measure, that is
F ′

t (dx) given in (8), with jump activity index β , estimated for each stock by β̂n.

obtained over the different (α,α′). The columns marked AVG report the results
of averaging the estimates over values of α ranging from 7 to 9 estimated stan-
dard deviations of the continuous part of the process and over values of α′ ranging
from 1.5 to 4 times α, as discussed above in Remark 7. β̂n is the estimator defined
in (16). The estimator β̃n in the table denotes the estimator obtained by applying
to β̂n the regression-based bias-correction procedure described in Section 5 imple-
mented using the same range of truncation levels as for the average AVG. Standard
errors of the estimators are in parentheses.

We find evidence of infinitely active jumps. The estimated values of β are about
1.5 for INTC and 1.6 for MSFT. These correspond also to the average values β̂n

that we obtain if we average the four quarterly estimates, and also average them

TABLE 3
Descriptive statistics for Intel and Microsoft transactions in 2006

Mean Stdev Skew Kurt Min Max

INTC
Qtr 1 −2 × 10−6 0.00069 −33 5195 −0.109 0.019
Qtr 2 −3 × 10−7 0.00070 −0.1 136 −0.027 0.027
Qtr 3 6 × 10−7 0.00071 −0.4 93 −0.027 0.022
Qtr 4 −1 × 10−7 0.00065 −0.5 110 −0.021 0.030
All year −5 × 10−7 0.00069 −8.5 1430 −0.109 0.030

MSFT
Qtr 1 3 × 10−7 0.00050 0.1 190 −0.025 0.028
Qtr 2 −1 × 10−6 0.00065 −49 8927 −0.119 0.021
Qtr 3 1 × 10−6 0.00053 7.3 749 −0.017 0.051
Qtr 4 7 × 10−7 0.00051 −0.2 388 −0.031 0.031
All year 2 × 10−7 0.00055 −19 4715 −0.119 0.051
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TABLE 4
Estimates of β from all Intel and Microsoft transactions in 2006

INTC MSFT

�n 5 sec 15 sec 5 sec 15 sec

α 7 AVG 7 AVG 7 AVG 7 AVG
α′/α 2 AVG 2 AVG 2 AVG 2 AVG

β̂n 1.43 1.56 1.76 1.72 1.69 1.62 1.60 1.61
β̃n 1.52 1.69 1.60 1.59

(0.04) (0.003) (0.05) (0.006) (0.05) (0.004) (0.05) (0.005)

over different values of α and α′/α. Clearly, the nature of these infinitely active
jumps cannot be assessed by mere visual inspection of the time series in Figure 4,
as would have been the case if only large, infrequent jumps, were present.

Figure 6 shows the values of the estimates computed over the full year for var-
ious values of α (the four curves on each plot correspond, resp., to 6, 7, 8 and
9 estimated standard deviations of the continuous part of the process) and values
of α′ ranging from 1.5 to 3 times α (the horizontal axis represents the ratio α′/α).

FIG. 6. Estimates of β obtained from β̂n at 5 and 15 seconds for Intel and Microsoft, all 2006
transactions.
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FIG. 7. Time series of the estimated β for Intel and Microsoft, all 2006 transactions, computed at
the 5 second frequency on a bi-weekly basis.

The continuous standard deviations are computed from the small increments of
the process and updated each quarter. The figure shows that, for each stock, we
obtain comparable values for β when varying α and α′. The top panel of the plot
shows the estimates at �n = 5 seconds, the bottom one at �n = 15 seconds. As
expected, the lower frequency estimates are more variable, since they rely on a
smaller number of large increments in total, and the variance of β̂n is proportional
to the difference between one over the number of increments retained at the two
cutoff levels.

Figure 7 plots the time series of the estimated β for Intel and Microsoft com-
puted using a time interval T of two weeks during year 2006 at the 5 second fre-
quency. The estimates are the AVG estimates (averages over the values obtained
for a range of α and α′) discussed in Table 4. The figure shows that the bi-weekly
estimates, while variable over the course of the year, tend to be clustered around
the same value of 1.5 as the full-year estimates. Shorter lengths of observation than
two weeks tend to produce substantially more variable estimates, due to the small
number of large increments available.

Allow us one last comment regarding the high sampling frequency and its inter-
action with market microstructure noise in the data. There is no doubt that market
microstructure noise is a concern at sampling intervals of a few seconds. How-
ever, in the present context, we are only using the large increments of the process,
namely those greater than α� . Such increments are more likely to represent a
true price movement rather than noise, especially after the standard data clean-
ing consisting of removing price errors have been applied, whereas the noise most
likely mainly corrupts the observations by a relatively small amount. Similarly, the
cutoff points are beyond the level of bid/ask bounces, or the tick size of 1 cent.

Furthermore, all we are doing is counting those increments, not exploiting their
magnitude. So, provided that the noise does not substantially affect the likelihood
that an increment is above or below the cutoff, these estimates are unlikely to be
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seriously affected by the noise. But this paper represents only a first attempt at
measuring the degree of jump activity. We leave to future work the development
of estimators that are fully robust to market microstructure noise.

8. Technical results and proofs. Our basic semimartingale X satisfies (2)
and Assumptions 1 and 2. Note that all three Theorems 1, 2 and 3 are “local”
in time, so by a standard localization procedure [see, e.g., Aït-Sahalia and Jacod
(2009)] we can indeed assume a strengthened version of our assumptions, which
follow.

ASSUMPTION 5. The processes b and σ are bounded by some constant L.

ASSUMPTION 6. We have Assumption 2 with Lt(ω) = L being constant.

In all the sequels, the letter K denotes a constant that changes from line to line
and may depend on X and its characteristics and also on the parameters ,α,α′,
and we write Kp if we want to emphasize its dependency on some other parame-
ter p. We use the shorthand notation E

n
i−1 and P

n
i−1, respectively, Et and Pt or the

conditional expectation and probability with respect to F(i−1)�n , respectively Ft .
Before proceeding, we mention a number of elementary consequences of As-

sumption 6, to be used many times. For all u ∈ (0,1] and v ∈ (0,2] and x, y ∈
(0,1], we have [recall the notation (4)]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F
′′
t (x) ≤ K

xβ ′ ,
∣∣∣∣F t(x) − At

xβ

∣∣∣∣ ≤ K

x(β−γ )∨β ′ , F t (x) ≤ K

xβ
,∫

{|x|≤u}
x2Ft(dx) ≤ Ku2−β,

∫
{|x|>u}

(|x|v ∧ 1)Ft (dx) ≤
⎧⎪⎨⎪⎩

Kv, if v > β,
Kv log(1/u), if v = β,
Kvu

v−β, if v < β,

F t(x) − F t(x + y) ≤ K

xβ

(
1 ∧ y

x
+ xγ∧(β−β ′)

)
.

(47)

8.1. Estimates for stable processes. In this subsection, we consider a symmet-
ric stable process Y with Lévy measure (23). For each δ ∈ (0,1], we set

Y(δ)′t = Yt − ∑
s≤t

�Ys1{|�Ys |>δ)}.(48)

LEMMA 2. There is a constant K , depending on (A,β), such that, for all
s > 0,

P
(|Y(δ)′s | > δ/2

) ≤ K s4/3/δ4β/3.(49)
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PROOF. We use the notation (23) and (24). We set θ = sF (δ/2) = sA(2/δ)β

and consider the processes Y ′ = Y(δ)′, Y ′′ = Y(δ/2)′ and Zt = ∑
r≤t 1{|�Yr |>δ/2}.

Introduce, also, the sets

D = {|Ys | > δ/2}, D′ = {|Y ′
s | > δ/2},

B = {Zs = 1}, B ′ = {Zs = 0}.
It is of course enough to prove the result for s/δβ small, so, below, we assume
θ ≤ 1/2.

By scaling, P(D) = G(δs−1/β/2), so (24) yields

|P(D) − θ | ≤ Kθ2.(50)

Next, Zs is a Poison variable with parameter θ ≤ 1/2. Hence,

|P(B) − θ | ≤ Kθ2.(51)

Since Y ′′ is a purely discontinuous Lévy process without drift and whose Lévy
measure is the restriction of F to [−δ′, δ′], we have

E((Y ′′
s )2) = s

∫
{|x|≤δ/2}

x2F(dx) ≤ Kθδ2.(52)

The two processes Y ′′ and Z are independent, and conditionally on B the law
of the variable Zs is F restricted to {|x| > δ/2} and normalized by θ . Hence,

P(B ∩ Dc) = e−θ s

∫
{|x|> δ

2 }
F(dx)P

(
|Y ′′

s + x| ≤ δ

2

)

≤ e−θ s

∫
{|x|>δ/2}

F(dx)P

(
|Y ′′

s | ≥ |x| − δ

2

)

≤ s

(
F

({
δ

2
< |x| ≤ δ

2
(1 + θ1/3)

})
(53)

+F

({
|x| > δ

2

})
P

(
|Y ′′

s | > δ

2
θ1/3

))
≤ Kθ

(
θ1/3 + 1

δ2θ2/3 E((Y ′′
s )2)

)
≤ K θ4/3,

where we have used (23) and (52) for the last two inequalities.
Now, we have

P(D ∩ Bc) = P(D) − P(B) + P(B ∩ Dc).

Observe, also, that D ∩ B ′ = D′ ∩ B ′, and D′ and B ′ are independent. Hence,

P(D′) = P(D′ ∩ B ′)
P(B ′)

= P(D ∩ B ′)
P(B ′)

≤ P(D ∩ Bc)

P(B ′)
≤ KP(D ∩ Bc)

because P(B ′) = e−θ ≥ e−1/2. The last two displays, plus (50) and (51) and (53)
give us P(D′) ≤ Kθ4/3. Hence, (49). �
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8.2. Estimates for semimartingales. Below, we assume Assumptions 5 and 6
without special mention. The semimartingale X can be written as

X = X0 + B + Xc + (
x1{|x|≤1}

)
� (μ − ν) + (

x1{|x|>1}
)
� μ,

where Xc is the continuous martingale part and μ is the jump measure, B and ν

are as in (2), and the “�” stands for the stochastic integral with respect to random
measures [see Jacod and Shiryaev (2003)]. For any δ ∈ (0,1] we set⎧⎨⎩X(δ)′′t = ∑

s≤t

�Xs1{|�Xs |>δ},

X(δ)′ = X − X(δ)′′ = X0 + B + Xc + (
x1{|x|≤δ}

)
� (μ − ν) − B(δ),

(54)

where

B(δ)t =
∫ t

0
b(δ)s ds, b(δ)s =

∫
{δ<|x|≤1}

xFs(dx).(55)

By Assumption 6, F ′
t and F ′′

t are mutually singular. Hence, there exists a pre-
dictable subset � of � × (0,∞) × R such that{

F ′
t (ω, ·) is supported by the set {x : (ω, t, x) /∈ �},

F ′′
t (ω, ·) is supported by the set {x : (ω, t, x) ∈ �}.(56)

Observe, also, that if β ′ ≤ 1, we can set

B(δ)′t =
∫ t

0
b(δ)′s ds, b(δ)′s =

∫
{δ<|x|≤1}

xF ′′
s (dx)(57)

and |b(δ)′s | ≤ K . In this case, B(δ)′ = (x1{|x|≤δ}1�) � ν is of finite variation, and
so is (x1{|x|≤δ}1�) � μ. Therefore, we have the decomposition⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X(δ)′ = X0 + X̂ + X(δ)a + X(δ)b − B(δ), where

X(δ)a =
{(

x1{|x|≤δ}1�

)
� μ, if β ′ ≤ 1,(

x1{|x|≤δ}1�

)
� (μ − ν), if β ′ > 1,

X(δ)b = (
x1{|x|≤δ}1�c

)
� (μ − ν),

X̂ =
{

B + Xc − B(δ)′, if β ′ ≤ 1,
B + Xc if β ′ > 1.

(58)

LEMMA 3. We have for all δ ∈ (0,1], p ≥ 2, s, t ≥ 0:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) |B(δ)t+s − B(δ)t | ≤
⎧⎪⎨⎪⎩

Ks, if β < 1,
Ks log(1/δ), if β = 1,
Ksδ1−β, if β > 1,

(b) Et (|X̂t+s − X̂t |p) ≤ Kpsp/2,

(c) Et

(|X(δ)bt+s − X(δ)bt |2
) ≤ Ksδ2−β,

(d) Et

(|X(δ)at+s − X(δ)at |β ′) ≤ Ks.

(59)
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PROOF. (a) follows from (47), and (b) follows from Burkholder–Davis–
Gundy inequality and Assumption 5. By (47), again, we have

Et

(|X(δ)bt+s − X(δ)bt |2
) = Et

(∫ t+s

t
dr

∫
{|x|≤δ}

|x|2F ′
r (dx)

)
≤ Ksδ2−β,

which is (c). For (d), we single out the two cases β ′ ≤ 1 and β ′ > 1. In the first
case, and since for any sequence (xm) we have |∑m xm|β ′ ≤ ∑

m |xm|β ′
, we get

Et

(|X(δ)at+s − X(δ)at |β
′) ≤ Et

(( ∑
t<r≤t+s

|�X(δ)ar |2
)β ′)

= Et

(∫ t+s

t
dr

∫
{|x|≤δ}

|x|β ′
1�(r, x)F ′′

r (dx)

)
≤ Ks.

In the second case, we apply Burkholder–Davis–Gundy inequality with the expo-
nent 1 < β ′ < 2 to get

E
(|X(δ)at+s − X(δ)at |β

′ | Ft

) ≤ E

(( ∑
t<r≤t+s

|�X(δ)ar |2
)β ′/2∣∣∣Ft

)

≤ E

( ∑
t<r≤t+s

|�X(δ)ar |β
′ ∣∣∣Ft

)
,

which, exactly as before, is smaller than Ks, and (d) is proved. �

Next, we give a general result on counting processes. Let N be a counting
process (i.e., right continuous with N0 = 0, piecewise constant, with jumps equal
to 1) adapted to (Ft ) and with predictable compensator of the form �t = ∫ t

0 λds.

LEMMA 4. With N and � as above, assume further that λt ≤ u for some
constant u > 0. Then, we have

|Pt (Nt+s − Nt = 1) − Et (�t+s − �t)| + Pt (Nt+s − Nt ≥ 2) ≤ (us)2.(60)

PROOF. Let T1, T2, . . . be the successive jump times of N after time (i−1)�n.
We have

Pt (Nt+s − Nt ≥ 1) ≤ Et (Nt+s − Nt) = Et (�t+s − �t) ≤ us,

Pt (Nt+s − Nt = 1) = Et

(
N(t+s)∧T1 − Nt

)
= Et

(
�(t+s)∧T1 − �t

)
,

Et (�t+s − �t) − Pt (Nt+s − Nt = 1) = Et

(
�t+s − �(t+s)∧T1

)
≤ usPt (Nt+s − Nt ≥ 1) ≤ (us)2.
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This gives us the first estimate. Next,

Pt (Nt+s − Nt ≥ 2)

= Pt (T2 ≤ t + s) = Et

(
1{T1<t+s}P(T2 ≤ t + s | FT1)

)
= Et

(
1{T1<t+s}E

(∫ (t+s)∧T2

T1

λr dr
∣∣∣FT1

))
≤ us Pt (Nt+s − Nt ≥ 1) ≤ (us)2,

hence the second estimate. �

LEMMA 5. With the notation N(δ)t = ∑
s≤t 1{|�Xs |>δ}, for all δ ∈ (0,1],

ζ ∈ (0, 1
2) and p ≥ 2 we have

Pt

(
N(δ)t+s − N(δ)t ≥ 1, |X(δ)′t+s − X(δ)′t | > δζ

)
(61)

≤ Kp

sp/2

ζp δp
+ K

s2

ζ 2 δ2β
.

PROOF. (59) and Bienaymé–Tchebycheff inequality yield

Pt

(
|X̂t+s − X̂t | > δζ

3

)
≤ Kp

sp/2

ζpδp
.

Next, (59) yields |B(δ)t+s − B(δ)t | ≤ K0s/δ for some constant K0, so we have
either |B(δ)t+s − B(δ)t | ≤ δζ/3 or Ksp/2/ζpδp ≥ 1 for some constant K in-
dependent of ζ and δ. Then, it remains to prove that, with the notation M(δ) =
(x1{|x|≤δ}) � (μ − ν),

Pt

(
N(δ)t+s − N(δ)t ≥ 1, |M(δ)t+s − M(δ)t | > δζ

3

)
≤ K

s2

ζ 2 δ2β
.(62)

For simplicity, write Ns = N(δ)t+s − N(δ)t and Ms = M(δ)t+s − M(δ)t .
By Bienaymé–Tchebycheff inequality, the left-side of (62) is not bigger than
9Et (NsM

2
s )/δ2ζ 2. Now, N is a counting process and M is a purely discontinuous

square-integrable martingale, and they have no common jumps, so Itô’s formula
yields

NsM
2
s = 2

∫ s

0
Nr−Mr− dMr +

∫ s

0
M2

r− dNr + ∑
r≤s

Nr−(�Mr)
2.

Moreover, the compensator N is as in the previous lemma, with λs ≤ Kδ−β , and
the predictable quadratic variation of M is �′

s = ∫ s
0 λ′

r dr with λ′
r ≤ Kδ2−β by

(47). Then, taking expectations in the above display, and since the first term of the
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right side above is a martingale, we get

Et (Ns M2
s ) = Et

(∫ s

0
M2

r d�r +
∫ s

0
Nr d�′

r

)
≤ Kδ−β

∫ s

0
Et (M

2
r + δ2Nr)dr

= Kδ−β
∫ s

0
Et (�

′
r + δ2�r)dr ≤ Kδ2(1−β)s2.

(62) then follows. �

LEMMA 6. Let α > 0,  ∈ (0, 1
2) and η ∈ (0, 1

2 − ), and set

ρ = η ∧ (
(β − β ′) − β ′η

) ∧ (γ ) ∧ (1 − β − 2η).(63)

There is a constant K depending on (α,,η), and also on the characteristics
of X, such that for all s ∈ (0,�n] and t ≥ 0 we have∣∣∣∣Pt (|Xt+s − Xt | > α�

n ) − Et

(∫ t+s

t
F r(α�

n )dr

)∣∣∣∣ ≤ K�1−β+ρ
n ,(64)

Pt

(
α�

n < |Xt+s − Xt | ≤ α�
n (1 + �η

n)
) ≤ K�1−β+ρ

n ,(65)

Pt

(|Xt+s − Xt | > α�
n

) ≤ K�1−β
n .(66)

PROOF. It is clearly enough to prove the estimates for all �n small enough.
We write δn = α�

n .

(1) Apply (59) and Bienaymé–Tchebycheff inequality to obtain

Pt (|X̂t+s − X̂t | > α�+η
n /3) ≤ Kp�p(1−2−2η)/2

n ,

Pt

(|X(δn)
a
t+s − X(δn)

a
t | > α�+η

n /3
) ≤ K�1−β ′−ηβ ′

n .

Moreover, for all values of β , we have |B(δn)t+s − B(δn)t | ≤ K�
−(β−1)+
n ×

s log(1/s), which is smaller than α�
+η
n /3 as soon as �n is small enough because

η < 1−β . Since 1−2 −2η > 0, by choosing p large enough, we deduce from
the previous estimates that, for all �n small enough,

Pt

(∣∣X(δn)
′
t+s + X(δn)

b
t+s − (

X(δn)
′
t + X(δn)

b
t

)∣∣ > α�+η
n

)
(67)

≤ K�1−β+ρ
n .

(2) By Assumption 6, we have F ′
r (dx) ≤ (L′/|x|1+β) dx for some con-

stant L′. We fix n. For each ω ∈ �, we endow the canonical (Skorokhod) space
(�′,F ′, (F ′

t )) of all càdlàg functions on R+ starting from 0 with the (unique)
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probability measure Qn
ω, under which the canonical process X′ is a semimartin-

gale with characteristics (0,0, ν′
δn,ω), where

ν′
δn,ω(dr, dx) = dr 1{|x|≤δn}

(
L′

|x|1+β
dx − F ′

r (ω, dx)

)
.(68)

This measure does not depend on ω′. Hence, under Qn
ω the process X′ has inde-

pendent increments. ν′
δn,ω(dr, dx) depends measurably on ω. Hence, Qn

ω(dω′) is a
transition probability from (�,F ) into (�′,F ′). Then, we extend X, X′ and other
quantities defined on � or �′ in the usual way (without changing the symbols) to
the product �̃ = �×�′ endowed with the product σ -field F̃ , the product filtration
(F̃t ) and the probability measure P̃n(dω,dω′) = P(dω)Qn

ω(dω′).
Because of (68) and (47), and as in Lemma 3, EQn

ω
(|X′

t+s − X′
t |2 | F ′

t ) ≤
Ksδ

2−β
n . Then, we see that, for some constant C depending on α and β but not

on n, i and ω, we have

Qn
ω(|X′

t+s − X′
t | > α�+η

n | F ′
t ) ≤ C�1−β−2η

n .(69)

(3) By well known results on extensions of spaces [see, e.g., Jacod and
Shiryaev (2003), Section II.7; note that the present extension of the original space
is a “very good extension”], X′ is a semimartingale on the extension with char-
acteristics (0,0, ν′

δn
), where ν′

δn
((ω,ω′), dr, dx) = ν′

δn,ω(dr, dx) and any semi-
martingale on the original space is a semimartingale on the extension with the
same characteristics. Moreover, X and X′ have almost surely no common jump, so
the sum Y(δn)

′ = X(δn)
b + X′ is a semimartingale with characteristics (0,0, ν′′

δn
),

where

ν′′
δn

(dr, dx) = dr 1{|x|≤δn}F ′
r (dx) + ν′

δn
(dr, dx) = 1{|x|≤δn}

L′

|x|1+β
dr dx,

where the last equality comes from (68). It follows that Y(δn)
′ is a Lévy process

with Lévy measure given above, or in other words it is a version of the process
Y(δn)

′ of (48) with A = L′. Hence, we deduce from (49) and from the Lévy prop-
erty of Y(δn)

′ that, for any A ∈ Ft ,

P̃n

(
A ∩ {|Y(δn)

′
t+s − Y(δn)

′
t | > α�

n (1 − 2�η
n)}

) ≤ K�4/3−4β/3
n P(A).(70)

Next, for all �n small enough, so that C�
1−β−2η
n ≤ 1/2, we can write

P̃
(
A ∩ {|Y(δn)

′
t+s − Y(δn)

′
t | > α�

n (1 − 2�η
n)}

)
≥ P̃

(
A ∩ {|X(δn)

b
t+s − X(δn)

b
t | > α�

n (1 − �η
n)}

∩ {|X′
t+s − X′

t | ≤ α�+η
n })

= Ẽ
(
1A∩{|X(δn)bt+s−X(δn)bt |>α�

n (1−�
η
n)}Q

n
. (|X′

t+s − X′
t | ≤ α�+η

n )
)

≥ 1
2P

(
A ∩ {|X(δn)

b
t+s − X(δn)

b
t | > α�

n (1 − �η
n)}

)
,
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where the last inequality comes from (69). Then, by (70) and by the fact that A is
arbitrary in F(i−1)�n , we deduce (since necessarily ρ ≤ 1−β

3 ) that

Pt

(|X(δn)
b
t+s − X(δn)

b
t | > α�

n (1 − �η
n)

) ≤ K�4/3−4β/3
n ≤ K�1−β+ρ

n .

In turn, combining this with (67), we readily obtain that, for all �n small enough,

Pt

(|X(δn)
′
t+s − X(δn)

′
t | > α�

n

)
≤ K �1−β

n

(
�1/3−β/3

n + �(β−β ′)−2η
n

)
(71)

≤ K�1−β+ρ
n .

(4) Now, we write δ′
n = α�

n (1 + �
η
n) and also

θt,s = Et

(∫ t+s

t
F r(δn) dr

)
, θ ′

t,s = Et

(∫ t+s

t
F r(δ

′
n) dr

)
,

and the following two counting process

Nn
t = ∑

s≤t

1{|�Xs |>δn}, N ′
t
n = ∑

s≤t

1{|�Xs |>δ′
n}.

Their predictable compensators are
∫ t

0 F r(δn) dr and
∫ t

0 F r(δ
′
n) dr , whereas both

F r(δn) and F r(δ
′
n) are smaller than K/�

β
n . Hence, (60) gives⎧⎨⎩ |Pt (N

n
t+s − Nn

t = 1) − θt,s | + Pt (N
n
t+s − Nn

t ≥ 2) ≤ K�
2(1−β)
n ,

|Pt (N
′n
t+s − N ′

t
n = 1) − θ ′

t,s | ≤ K�
2(1−β)
n .

(72)

Since Nn − N ′n is nondecreasing, we have

Pt (N
n
t+s − Nn

t = 1,N ′n
t+s − N ′

t
n = 0)

= Pt (N
n
t+s − Nt = 1) − Pt (N

′n
t+s − N ′n

t = 1)

+ Pt (N
n
t+s − Nn

t ≥ 2,N ′n
t+s − N ′

t
n = 1).

Then, (72) yields

|Pt (N
n
t+s − Nn

t = 1,N ′n
t+s − N ′

t
n = 0) − (θt,s − θ ′

t,s)| ≤ K�2(1−β)
n .(73)

Moreover, (47) clearly implies θt,s − θ ′
t,s ≤ K�

1−β
n (�

η
n + �

(γ∧(β−β ′))
n ) ≤

K�
1−β+ρ
n . We then deduce from (73) that

Pt (N
n
t+s − Nn

t = 1,N ′n
t+s − N ′n

t = 0) ≤ K�1−β+ρ
n .(74)

(5) If Nn
t+s − Nn

t = N ′n
t+s − N ′n

t = 1 and |Xt+s − Xt | ≤ δn, then, necessarily,
|X(δn)

′
t+s − X(δn)

′
t | > α�

+η
n . Hence,

Pt (N
n
t+s − Nn

t = 1, |Xt+s − Xt | ≤ α�
n )

≤ Pt (N
n
t+s − Nn

t = 1,N ′n
t+s − N ′n

t = 0)

+ Pt

(
Nn

t+s − Nn
t = 1, |X(δn)

′
t+s − X(δn)

′
t | > α�+η)

.
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Then, if we apply (61) with p large enough and δ = δn and ζ = �
n , together with

(74), we deduce that, as soon as �n is small enough,

Pt (N
n
t+s − Nn

t = 1, |Xt+s − Xt | ≤ α�
n ) ≤ K�1−β+ρ

n .(75)

Finally, Xt+s − Xt = X(δn)
′
t+s − X(δn)

′
t on the set {Nn

t+s − Nn
t = 0}, so

Pt (|Xt+s − Xt | > α�
n ) = Pt (N

n
t+s − Nn

t = 1)

− Pt (N
n
t+s − Nn

t = 1, |Xt+s − Xt | ≤ α�
n )

+ Pt

(
Nn

t+s − Nn
t = 0, |X(δn)

′
t+s − X(δn)

′
t | > α�

n

)
+ P

n
i−1(N

n
t+s − Nn

t ≥ 2, |Xt+s − Xt | > α�
n ).

Then, if we combine (71), (72) and (75), we get that for all �n small enough, we
readily obtain (64). We also trivially deduce (66) from (47) and (64).

(6) Finally, a close look at the previous argument shows that (64) also holds
with α�

n (1 + �
η
n) and θt,s i

′ in place of α�
n and θt,s . Therefore, (65) follows

upon using the property θt,s − θ ′
t,s ≤ K�

1−β+ρ
n proved above. �

LEMMA 7. Under the assumption and with the notation of Lemma 6, and if M

is a bounded martingale, we have (with K depending also on M , recall s ≤ �n)∣∣Et

(
(Mt+s − Mt)1{|Xt+s−Xt |>α�

n }
)∣∣

≤ K�1−β+ρ
n + K�1−(+η)β

n Et (|Mt+s − Mt |)(76)

+ K�(1−(+η)β)/2
n

√
Et (|Mt+s − Mt |2).

PROOF. (1) There exist C2 functions fn such that⎧⎪⎨⎪⎩
1{|x|>α�

n (1+2�
η
n/3)} ≤ fn(x) ≤ 1{|x|>α�

n (1+�
η
n/3)}

|f ′
n(x)| ≤ K

�
+η
n

, |f ′′
n (x)| ≤ K

�
2(+η)
n

.
(77)

With X̂′ = X − B − Xc, and since M is bounded, we have∣∣Pt

(
(Mt+s − Mt)1{|Xt+s−Xt |>α�

n }
) − Et

(
(Mt+s − Mt)fn(X̂

′
t+s − X̂′

t )
)∣∣

≤ KPt

(
α�

n < |Xt+s − Xt | ≤ α�
n (1 + �η

n)
)

(78)

+ KEt

(|fn(Xt+s − Xt) − fn(X̂
′
t+s − X̂′

t )|
)
.

Now, we have

|fn(x + y) − fn(x)| ≤ 1{|y|>α�
+η
n /3)} + K

�
+η
n

|y|1{α�
n <|x+y|≤α�

n (1+�
η
n)}.

If we apply this with x = X̂′
t+s − X̂′

t and y = (B + Xc)t+s − (B + Xc)t , plus
(59)(b) for p large enough and Bienaymé–Tchebycheff inequality and 1 − 2 −
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2η > 0, plus (65) and (59)(b) again and Hölder’s inequality, we obtain that the
right side of (78) is smaller than K�

1−β+ρ
n . Therefore, it remains to prove

that ∣∣Et

(
(Mt+s − Mt)fn(X̂

′
t+s − X̂′

t )
)∣∣

≤ K�1−β+ρ
n + K�1−(+η)β

n Et (|Mt+s − Mt |)(79)

+ K�(1−(+η)β)/2
n

√
Et (|Mt+s − Mt |2).

(2) According to Theorem III.4.20 of Jacod and Shiryaev (2003), we can
“project” the martingale M onto the random measure μ, which amounts to de-
composing it as the sum of two martingales M = M ′ + M ′′ with the following
properties:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

• M ′ = δ � (μ − ν) for some predictable function δ,

• ∑
s≤t φ(s,�Xs)�M ′′

s is a martingale as soon as
φ is a predictable function satisfying |φ(ω, s, x)| ≤ K(1 ∧ |x|),

• the difference of the predictable quadratic variations
〈M,M〉 − 〈M ′,M ′〉 is nondecreasing.

(80)

Note that we may even choose δ bounded, because M is bounded [the fact that
all the above processes are martingales and not only local martingales comes from
the boundedness of M and of

∫
(x2 ∧ 1)Ft (dx)]. We will also use the following

consequence of the third property above:

Et

(∫ t+s

t
du

∫
Ft+u(x)δ(t + u,x)2

)
= Et (〈M ′,M ′〉t+s − 〈M ′,M ′〉t )(81)

≤ Et ((Mt+s − Mt)
2).

With t being fixed below, for simplicity, we write Yr = X̂′
t+r − X̂′

t . Since M is a
bounded martingale and Y a semimartingale with vanishing continuous martingale
part, and fn(Y ) is bounded, we deduce, from Itô’s formula and the properties (80),
that the product (Mt+r − Mt)fn(Yr) is the sum of a martingale plus the process∫ r

0 γ n
u du, where

γ n
u =

∫
Ft+u(dx)

(
(Mt+u − Mt)gn(Yu, x) + δ(t + u,x)hn(Yu, x)

)
,

where

hn(y, x) = fn(y + x) − fn(y), gn(y, x) = hn(x, y) − f ′
n(y)x1{|x|≤1}.

An easy computation allows us to deduce of (77) that

|hn(y, x)| ≤ K
|x| ∧ 1

�
+η
n

,
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|gn(y, x)| ≤ 1{|x|>α�
+η
n } + K1{α�

n <|y|≤α�
n (1+�

η
n)}

×
(

x2

�
2+2η
n

1{|x|≤α�
+η
n } + |x| ∧ 1

�
+η
n

1{|x|>α�
+η
n }

)
.

Now, we apply the first estimate of (47) with x = α�+η and the second and
third ones with u = α�+η plus Cauchy–Schwarz inequality, to get, for any ε > 0
(recall that δ is bounded),

|γ n
u | ≤ K�−(+η)β

n |Mt+u − Mt | + K�−(+η)β/2
n

(∫
Ft+u(x)δ(t + u,x)2

)1/2

+ Kε |Mt+u − Mt |�−(β+ε)(+η)
n 1{α�

n <|Yu|≤α�
n (1+�nη)}.

Since η < 1/2 −  , we have β( + η) < 1 and, thus, (β + ε)( + η) = 1 for a
suitable ε > 0. Moreover, Et (|Zu|) ≤ Et (|Zs |) if u ≤ s, because Z is a martingale.
Therefore, since M is bounded and s ≤ �n, we get∣∣Et

(
(Mt+s − Mt)fn(X̂

′
t+s − X̂′

t )
)∣∣

=
∣∣∣∣Et

(∫ s

0
γ n
r dr

)∣∣∣∣ ≤
∫ s

0
Et (|γ n

r |) dr

≤ K�1−(+η)β
n Et (|Mt+s − Mt |)

+ K�(1−(+η)β)/2
n

(
Et

(∫ t+s

t
du

∫
Ft+u(x)δ(t + u,x)2

))1/2

+ K�−1
n

∫ �n

0
Pt

(
α�

n < |Yr | ≤ α�
n (1 + �nη)

)
dr,

where we have used Cauchy–Schwarz inequality. By (65), for the process X̂′ in-
stead of X and by (81), we readily deduce (79). �

8.3. Some auxiliary limit theorems. Below, recall the process A of (11). We
still assume Assumptions 5 and 6 and also  ∈ (0, 1

2) and α > 0.

LEMMA 8. Let ρ′ = 1
2 ∧ ((β − (β − γ ) ∨ β ′)). Then, for all t > 0, the

sequence (
�−ρ′

n

∣∣∣∣∣
[t/�n]∑
i=1

�β
n E

n
i−1

(∫ i�n

(i−1)�n

F t (α�
n )dt

)
− Āt

αβ

∣∣∣∣∣
)

n≥1

(82)

is tight.

PROOF. Let θn
i = ∫ i�n

(i−1)�n
F t (α�

n )dt and ηn
i = ∫ i�n

(i−1)�n
At dt . We deduce

from (47) that ∣∣∣∣�β
n θn

i − 1

αβ
ηn

i

∣∣∣∣ ≤ K�1+(β−(β−γ )∨β ′)
n .
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Then, obviously,

E

(
�−ρ′

n

[t/�n]∑
i=1

E
n
i−1

(∣∣∣∣�β
n θn

i − 1

αβ
ηn

i

∣∣∣∣)
)

≤ Kt,

and, since At is bounded, we have |Āt − ∑[t/�n]
i=1 ηn

i | ≤ Kt�n, whereas ρ′ < 1. It
thus remains to prove that

the sequence

(
�−ρ′

n

∣∣∣∣∣
[t/�n]∑
i=1

(
ηn

i − E
n
i−1(η

n
i )

)∣∣∣∣∣
)

n≥1

is tight.(83)

Since ζ n
i = �

−ρ′
n (ηn

i − E
n
i−1(η

n
i )) is a martingale increment, for (83), it is

enough to check that an(t) = E(
∑[t/�n]

i=1 (ζ n
i )2) is bounded. However, since At

is bounded, we have |ζ n
i |2 ≤ K�

2−2ρ′
n , so an(t) ≤ Kt�

1−2ρ′
n ≤ K because

ρ′ ≤ 1/2. �

LEMMA 9. (a) Let

χ ′ = (γ ) ∧ 1 − β

3
∧ (β − β ′)

1 + β ′ ∧ 1 − 2

2
.(84)

Then, for all ε > 0 and all t > 0 the sequence of variables(
�ε−χ ′

n

∣∣∣∣∣�β
n

[t/�n]∑
i=1

P
n
i−1(|�n

i X| > α�
n ) − At

αβ

∣∣∣∣∣
)

n≥1

(85)

is tight, and, in particular, we have

�β
n

[t/�n]∑
i=1

P
n
i−1(|�n

i X| > α�
n )

P−→ At

αβ
.(86)

(b) If further β ′ < β
2+β

and γ >
β
2 and  < 1

2+β
∧ 2

5β
, and if M is a bounded

continuous martingale, we also have

�−β/2
n

∣∣∣∣∣�β
n

[s/�n]∑
i=1

P
n
i−1(|�n

i X| > α�
n ) − As

αβ

∣∣∣∣∣ P−→ 0,(87)

�β/2
n

[t/�n]∑
i=1

∣∣En
i−1

(
�n

i M1{|�n
i X|>α�

n }
)∣∣ P−→ 0.(88)

PROOF. (a) Let η ∈ (0, 1
2 − ) and ρ given by (63) and ρ′ like in Lemma 8.

From (64) and (82) we deduce the tightness of the sequence (85), provided we sub-
stitute χ ′ − ε with ρ′ ∧ ρ. It is thus enough to show that we can choose η ≤ 1−2

2

such that ρ′ ∧ ρ = χ ′ − ε, and this is achieved by taking η = 1−β
3 ∧ (β−β ′)

1+β ′ ∧
1−2

2 − ε, as a simple computation shows.
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(b) In view of (a), (87) follows from the property χ ′ > β/2, which is an easy
consequence of the assumptions.

It remains to prove (88). By (76), the left-hand side of this expression is smaller
than

Kt�ρ−β/2
n + K�1−ηβ−β/2

n

[t/�n]+1∑
i=1

E
n
i−1(|�n

i M|)

+ K�(1−ηβ)/2
n

[t/�n]+1∑
i=1

√
E

n
i−1(|�n

i M|).

By the Cauchy–Schwarz inequality, this is smaller than

K
(
t + √

t
)(

�ρ−β/2
n + �1/2−ηβ−β/2

n

([t/�n]+1∑
i=1

E
n
i−1(|�n

i M|2)
)1/2)

.

A well known property of martingales yields

E

([t/�n]+1∑
i=1

E
n
i−1(|�n

i M|2)
)

= E
((

M�n([t/�n]+1 − M0
)2)

,

which is bounded (in n). Therefore, we deduce that (88) holds, provided we have
ρ > β/2 and also 1 − 2ηβ > β . The first condition has already been checked,
and the second is satisfied because η ≤ (1 − β)/3. This ends the proof. �

8.4. Law of large numbers and central limit theorems. Here, again, we assume
Assumptions 5 and 6, and we have α > 0 and  ∈ (0,1/2).

PROPOSITION 1. If χ is given by (19), then for each t > 0 and each ε > 0 the
sequence (

�ε−χ
n

∣∣∣∣�β
n U(,α)nt − Āt

αβ

∣∣∣∣)
n≥1

(89)

is tight, and, in particular,

�β
n U(,α)nt

P−→ Āt

αβ
.(90)

PROOF. Set

ζ n
i = �β/2

n

(
1{|�n

i X|>α�
n } − P

n
i−1(|�n

i X| > α�
n )

)
.(91)

By virtue of Lemma 9, and since χ = χ ′ ∧ (β/2), it suffices to prove that the
sequence

∑[t/�n]
i=1 ζ n

i is tight. Since the ζ n
i ’s are martingale increments, it is enough

to show that the sequence an(t) = ∑[t/�n]
i=1 E((ζ n

i )2) is bounded. But (66) yields
E((ζ n

i )2) ≤ K�n, which in turn yields an(t) ≤ Kt . �
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PROPOSITION 2. Let α′ > α. If we have β ′ < β
2+β

and γ >
β
2 and  < 1

2+β
∧

2
5β

, the pair of processes

�−β/2
n

(
�β

n U(,α)nt − Āt

αβ
,�β

n U(,α′)nt − Āt

α′β
)

(92)

converges stably in law to a continuous Gaussian martingale (W,W
′
) independent

of F , with

E(W
2
t ) = Āt

αβ
, E(W

′
t
2) = Āt

α′β , E(W tW
′
t ) = Āt

α′β .(93)

PROOF. Define ζ n
i by (91) and associate ζ ′n

i with α′ in the same way. The vari-

ables ζ n
i and ζ ′

i
n are martingale increments and smaller than K�

β/2
n . So, in view

of (87), it is enough, by using a criterion for stable convergence of triangular arrays
found in Jacod and Shiryaev (2003) (see Theorem IX.7.28) to prove the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[t/�n]∑
i=1

E
n
i−1((ζ

n
i )2)

P−→ Āt

αβ
,

[t/�n]∑
i=1

E
n
i−1((ζ

′
i
n)2)

P−→ Āt

α′β ,

[t/�n]∑
i=1

E
n
i−1(ζ

n
i ζ ′

i
n)

P−→ Āt

α′β ,

(94)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[t/�n]∑
i=1

E
n
i−1(ζ

n
i �n

i M)
P−→ 0,

[t/�n]∑
i=1

E
n
i−1(ζ

′
i
n�n

i M)
P−→ 0,

(95)

where M is any bounded martingale.
Recalling α < α′ and also P

n
i−1(|�n

i X| > α�
n ) ≤ K�

1−β
n by (66), we de-

duce (94) from (86). As for (95), and since E
n
i−1(�

n
i M) = 0, it readily follows

from (88). �

8.5. Proofs of the main theorems.

PROOFS OF THEOREMS 1 AND 2. As said before, we can assume Assump-
tions 5 and 6. We will write η = χ − ε if we want to prove the first theorem, in
which case we choose ε small enough to have η > 0, and η = β/2 if we want to
prove the second one. Then, we set

Vn = �−η
n

(
�β

n U(,α)nt − Āt /α
β)

, V ′
n = �−η

n

(
�β

n U(,α′)nt − Āt /α
′β)

,
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so that on the set {Āt > 0} we have

�−η
n

(
β̂n(t,,α,α′) − β

) = �
−η
n

log(α′/α)
log

1 + αβ�
η
n Vn/Āt

1 + α′β�
η
n V ′

n/Āt

.(96)

In all cases, the two sequences (Vn) and (V ′
n) are tight, so the right-hand side is

equivalent (in probability) to the variable (αβ Vn − α′β V ′
n)/(Āt log(α′/α)) on the

set {Āt > 0}. At this stage, Theorems 1 and 2 readily follow from Lemma 9(a) and
Proposition 2, respectively. �

PROOF OF THEOREM 3. This is a trivial consequence of the properties of the
stable convergence in law and of Theorem 2. �

PROOFS OF THEOREMS 4 AND 5. In the situation of these two theorems, we
have Āt = At > 0, so we can apply Theorems 1 and 3 with {Āt > 0} = �. Indeed,
we have Assumptions 1 and 2 with β ′ = 0 and γ arbitrary large. So, the only
differences are on the conditions on  , namely  < 1/β for the consistency and
 < 2/(3β) for the CLT in the first theorem, and  < 1/(2+β) for the CLT in the
second one, instead of  < 1/2 in Theorem 1 and  < 1

2+β
∧ 2

5β
in Theorem 3.

In fact, the improvement lies in Lemma 6. When X = Y we have the trivial
estimate, coming from (24) and from the scaling property of Y ,

Pt (|Xt+s − Xt | > x) = P(|Xs | > x) = As

xβ
+ O(s2/x2β),(97)

regardless of the value of x > 0. So, we have all claims of Lemma 6 with any
η ∈ (0,1 − β] and with ρ = 1 − β , and, thus, (a) of Lemma 9 holds for some
χ > 0 as soon as  < 1/β , whereas (b) of that lemma holds if further ρ > β/2,
that is, when  < 2/(3β).

When Xt = σWt + Yt , we obtain for any η ∈ (0,1/2 − ) and s ≤ �n

Pt (|Xt+s − Xt | > α�
n ) = P(|Xs | > α�

n ) = A�
1−β
n

αβ
+ O(�1−1β+η

n ),

[by applying the estimate (97) for Y and the fact that E(|Xc
s |p) = Kpsp/2 and

Bienaymé–Tchebycheff inequality]. Then, we have all claims of Lemma 6 with
any η ∈ (0, (1

2 −)∧ (1 −β)) and with ρ = η, and, thus, (b) of Lemma 9 holds

as soon as we can find η as above, with ρ = η >
β

2 . This is possible, provided
 < 1

2+β
∧ 2

3β
. The rest of the proofs of Theorems 1 and 3 goes through, and we

are finished. �
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