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Abstract

Realistic models for financial asset prices used in portfolio choice, option pricing or risk

management include both a continuous Brownian and a jump components. This paper studies

our ability to distinguish one from the other. I find that, surprisingly, it is possible to perfectly

disentangle Brownian noise from jumps. This is true even if, unlike the usual Poisson jumps,

the jump process exhibits an infinite number of small jumps in any finite time interval, which

ought to be harder to distinguish from Brownian noise, itself made up of many small moves.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

From an asset pricing perspective, being able to decompose the total amount of
noise into a continuous Brownian part and a discontinuous jump part is useful in a
number of contexts. For instance, in option pricing, the two types of noise have
different hedging requirements and possibilities; in portfolio allocation, the demand
for assets subject to both types of risk can be optimized further if a decomposition of
the total risk into a Brownian and a jump part is available; in risk management, such
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a decomposition makes it possible over short horizons to manage the Brownian risk
using Gaussian tools while assessing value-at-risk (VaR) and other tail statistics
based on the identified jump component. In fact, the ability to disentangle jumps
from volatility is the essence of risk management, which should focus on controlling
large risks leaving aside the day-to-day Brownian fluctuations. This paper shows that
likelihood-based statistical methods can be used to distinguish volatility from jumps
with (asymptotically) perfect accuracy, thereby focusing on the part of the overall
risk that should be the object of concern in risk management or asset allocation.
The fact that jumps play an important role in many variables in finance, such as

asset returns, interest rates, or currencies, as well as a sense of diminishing marginal
returns in studies of the simpler diffusive case, has led to a flurry of recent activity
dealing with jump processes. This activity has developed in three broad directions:
estimating ever more complex and realistic financial models incorporating jumps
(see, e.g., Schaumburg, 2001, using maximum likelihood; Eraker et al., 2003, using
Markov chain Monte Carlos; Chernov et al., 2003, using the efficient method of
moments; and the references therein), testing from discrete data whether jumps are
present (see A.ıt-Sahalia, 2002b, using a characterization of the transition function of
a diffusion and Carr and Wu, 2003, using short dated options) and studying the
behavior of interesting statistics, such as the quadratic variation and related
quantities, in the presence of jumps (see Barndorff-Nielsen and Shephard, 2002).
This paper asks a different yet basic question, which, despite its importance and

apparent simplicity, appears to have been overlooked in the literature: how does the
presence of jumps impact one’s ability to estimate the diffusion parameter s2; solely
using time series in the absence of additional information (such as option prices for
instance)? I start by presenting some intuition that seems to suggest that the
identification of s2 is hampered by the presence of the jumps, before showing that
maximum likelihood can perfectly disentangle Brownian noise from jumps provided
one samples frequently enough. I first show this result in the context of a compound
Poisson process; i.e., a jump-diffusion model as in Merton (1976).
But while the early use of jumps in finance has focused exclusively on Poisson

jumps (see for the early examples Press, 1967; Merton, 1976; Beckers, 1981; Ball and
Torous, 1983), the literature is rapidly moving towards incorporating other types of
L!evy pure jump processes. This is the case either for theoretical option pricing (see,
e.g., Madan et al., 1998; Chan, 1999; Carr and Wu, 2004), risk management (see,
e.g., Eberlein et al., 1998), or as a means of providing more accurate description of
asset returns data (see, e.g., Carr et al., 2002, who have found that for many financial
assets the diffusive coefficient is statistically insignificant once non-Poisson jumps are
included, raising the question of whether a Brownian component is even needed to
accurately model asset returns). In term structure modeling, different central bank
policies can give rise to different types of jumps and recent models do also allow for
L!evy jumps other than Poisson (see, e.g., Eberlein and Raible, 1999).
In light of this literature, one may wonder whether the result of this paper is

specific to Poisson jumps. In other words, is it driven by the fact that Poisson jumps
share the dual characteristic of being large and infrequent? Is it possible to perturb
the Brownian noise by a L!evy pure jump process other than Poisson and still recover
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the parameter s2 as if no jumps were present? The reason one might expect this not
to be possible is the fact that, among L!evy pure jump processes, the compound
Poisson process is the only one with a finite number of jumps in a finite time interval.
All other pure jump processes exhibit an infinite number of small jumps in any finite
time interval. Intuitively, these tiny jumps ought to be harder to distinguish from
Brownian noise, which is itself made up of many small moves. Perhaps more
surprisingly, then, I find that maximum likelihood can still perfectly discriminate
between Brownian noise and a Cauchy process, a tractable example of such
processes.
In fact, every L!evy process can be uniquely expressed as the sum of three

independent canonical L!evy processes: a continuous component in the form of a
linear transform of a Brownian motion (with drift), a ‘‘big jumps’’ component in the
form of a compound Poisson process having only jumps of size greater than one, and
a ‘‘small jumps’’ component in the form of a pure jump martingale having only
jumps of size smaller than one. So the two examples considered in this paper
represent the prototypical cases of distinguishing the Brownian component from the
‘‘big jumps’’ component and distinguishing the Brownian component from an
example of the class of ‘‘small jumps’ components (up to the truncation below and
above one in the two respective cases). The Cauchy example treated here is a first
step toward providing statistical support for the use of non-Poisson jump processes:
in the various contexts that matter in finance, suggesting that it is possible to mix
such jump processes with the usual Brownian volatility and still distinguish one from
the other.
The paper is organized as follows. In Section 2, I briefly present the basic Poisson

jump diffusion model, before giving in Section 3 different types of intuition
suggesting that it would be difficult to distinguish the volatility from the jumps. In
Section 4, I show that the intuition is somewhat misleading, at least in the Poisson
case. I then look in Section 5 at the extent to which generalized method of moments
(GMM) estimators using absolute moments of various noninteger orders can recover
the efficiency of the maximum likelihood estimator (MLE): the answer is no, but
they do better than traditional moments such as the variance and kurtosis. The next
question is whether any of this is specific to Poisson jumps. I show that this is not the
case by studying an example of infinite activity L!evy pure jump processes in Section
6. Finally, I present in Section 7 Monte Carlo evidence to show that the asymptotic
results in the theorems of the previous sections provide a close approximation to the
behaviors that are likely to be encountered in daily data. Section 8 concludes. All
proofs are in the appendices.

2. The model and setup

Most of the points made in this paper are already apparent in a Poisson-based
jump-diffusion model. So, for clarity, I will start with the simple Merton (1976)
model, in which the jump term is Poisson-driven. In this section, I collect a number
of useful results about this basic model. Later, I will turn to the more complex
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situation in which the jump term is Cauchy-driven. Consider for now the jump-
diffusion specification

dXt ¼ m dt þ s dWt þ Jt dNt; ð1Þ

where Xt denotes the log-return derived from an asset. Wt denotes a standard
Brownian motion and Nt a Poisson process with arrival rate l: The log-jump size Jt

is a Gaussian random variable with mean b and variance Z: By It #o’s Lemma, the
corresponding model for the asset price St ¼ S0 expðXtÞ is

dSt

St�
¼ ðmþ s2=2Þ dt þ s dWt þ ðexpðJtÞ � 1Þ dNt: ð2Þ

For further simplicity, assume that Wt; Nt; and Jt are independent. Extensions to
dependent drift, diffusion, and jump arrival intensity functions, as well as to other
distributions of the jump size Jt; pose no conceptual difficulties but are notationally
more cumbersome, with little associated gain. The parameter vector is y ¼
ðm;s2; l;b; ZÞ0; where m is the drift of the Brownian process, s the volatility of the
Brownian process, l the arrival rate of the Poisson process, b the average size of the
jumps, and Z their variance. y is an unknown parameter in a bounded set YCR5: I
focus in particular on one’s ability to distinguish information about the diffusive part
ðs2Þ from information about the jump part ðl; ZÞ; the respective means ðm;bÞ being
largely inconsequential for purposes of statistical inference. Of course, they are
important parameters for investors taking directional positions in the assets, say, but
not in the specific context of this paper.

2.1. The transition density

The transition density for the model under consideration has a known form that I
briefly review. The solution of the stochastic differential equation (1) is

ZD ¼ XD � X0 ¼ mDþ sWD þ
Z D

0

Js dNs; ð3Þ

which implies in particular that, for this simple model, the log-returns are
independent and identically distributed (i.i.d.). This is a consequence of the
assumptions made that the parameters and distribution of the jump term are
state-independent. The distribution of the Poisson process is discrete, and

PrðND ¼ n; yÞ ¼
expð�lDÞðlDÞn

n!
: ð4Þ

Conditioning on the number of possible jumps between 0 and D and applying Bayes’
Rule yields

PrðXDpxjX0 ¼ x0;D; yÞ ¼
XþN

n¼0

PrðXDpx j X0 ¼ x0;D;ND ¼ n; yÞ

� PrðND ¼ n; yÞ: ð5Þ
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Conditioned upon the event ND ¼ n; there must have been exactly n times, say
ti; i ¼ 1;y; n; between 0 and D such that dNti

¼ 1: ThusZ D

0

Js dNs ¼
Xn

i¼1

Jti
ð6Þ

is the sum of n independent jump terms. Under the assumption that each one has the
distribution JBNðb; ZÞ; it follows that the transition density of XD given X0 is given
by

pðxjx0;D; yÞ ¼
XþN

n¼0

pðxjx0;D;ND ¼ n; yÞ PrðND ¼ n; yÞ

¼
XþN

n¼0

expð�lDÞðlDÞnffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nZþ Ds2

p
n!
exp �

ðx � x0 � mD� nbÞ2

2ðnZþ Ds2Þ

� �
: ð7Þ

As expected in the presence of jumps, the density exhibits excess kurtosis; see
Figs. 1 and 2 (at D ¼ 1=12 with parameters m ¼ b ¼ 0; s ¼ 0:3; l ¼ 0:2; and Z1=2 ¼
0:6Þ: Early examples of the use of this or similar formulae for maximum likelihood in
finance are contained in Press (1967), Beckers (1981) and Ball and Torous (1983). A
nonzero value of the mean jump size b would add skewness. For purposes of
maximum likelihood estimation, care must be taken to ensure that the mixture of
normals remains bounded by properly restricting the admissible parameters.
Otherwise, setting the mean of one of the elements to be exactly equal to the
observations, the variance parameter of that element can be driven to zero thereby
increasing the likelihood to arbitrarily high levels (see Kiefer, 1978; Honor!e, 1998,
for further discussion).
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Fig. 1. The transition density. This plot shows the density of the process with and without jumps.
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2.2. Moments of the process

The first four moments of the process X were calculated by Press (1967) using the
transition density. They are E½YD
 ¼ Dðmþ blÞ; and

MðD; y; 2Þ ¼ Dðs2 þ ðb2 þ ZÞlÞ

MðD; y; 3Þ ¼ Dlbðb2 þ 3ZÞ

MðD; y; 4Þ ¼ Dðb4lþ 6b2Zlþ 3Z2lÞ þ 3D2ðs2 þ ðb2 þ ZÞlÞ2; ð8Þ

where

MðD; y; rÞ � E½ðYD � Dðmþ blÞÞr
: ð9Þ

More generally, to evaluate moments of the process, for Eq. (1) and more complex
stochastic differential equations, let A denote the infinitesimal generator of the
process X ; defined by its action on functions f ðd;x; x0Þ in its domain:

A � f ðD;x; x0Þ ¼
qf ðD; x;x0Þ

qD
þ m

qf ðD;x;x0Þ
qx

þ
1

2
s2

q2f ðD;x;x0Þ
qx2

þ lEJ ½f ðD; x þ J;x0Þ � f ðD;x;x0Þ
: ð10Þ

To evaluate a conditional expectation, I use the Taylor expansion

E½f ðD;XD;X0ÞjX0 ¼ x0
 ¼
XK

k¼0

Dk

k!
Ak � f ðd;x; x0Þjx¼x0;d¼0 þOðD

Kþ1Þ: ð11Þ
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Fig. 2. Tail of the transition density. This plot emphasizes the larger tail of the density in the presence of

jumps.
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In all cases, this expression is a proper Taylor series (as in A.ıt-Sahalia, 2002a);
whether the series is analytic at D ¼ 0 is not guaranteed. In the present case, the
moments of the process of integer order all lead to a finite series, which is therefore
exact: applying Eq. (11) to f ðd;x;x0Þ ¼ ðx � x0Þ

i; i ¼ 1;y; 4; yields exact expres-
sions.

2.3. Absolute moments of noninteger order

It turns out that the absolute value of the log returns is less sensitive than the
quadratic variation to large deviations, which makes them suitable in the context of
high frequency data with the possibility of jumps. This has been noted by, e.g., Ding
et al. (1993). Consider the quadratic variation of the X process

½X ;X 
t ¼ plim
n-N

Xn

i¼1

ðXti
� Xti�1 Þ

2 ð12Þ

for any increasing sequence 0 ¼ t0;y; tn ¼ t: Then

½X ;X 
t ¼ ½X ;X 
ct þ
X
0pspt

ðXs � Xs�Þ
2

¼ s2t þ
X
0pspt

J2s ðNs � Ns�Þ
2

¼ s2t þ
XNt

i¼1

J2si
; ð13Þ

where si; i ¼ 1;y;Nt denote the jump dates of the process, with the continuous part
of the quadratic variation given by ½X ;X 
ct ¼ s2t and Xs � Xs� ¼ JsðNs � Ns�Þ (i.e.,
X only jumps when N jumps; when N jumps, it jumps by one unit).
Not surprisingly, the quadratic variation in this case no longer estimates

s2: However, Lepingle (1976) studied the behavior of the power variation of the
process

r½X ;X 
t ¼ plim
n-N

Xn

i¼1

jXti
� Xti�1 j

r; ð14Þ

and showed that the contribution of the jump part to r½X ;X 
t is, after normalization,
zero when rAð0; 2Þ;

PNt

i¼1J
2
si
when r ¼ 2; and infinity when r > 2: Barndorff-Nielsen

and Shephard (2002) use this result to show that the full r½X ;X 
t depends only on the
diffusive component when rAð0; 2Þ: They also compute the asymptotic distribution
of the sample analog of r½X ;X 
t constructed from discrete approximations to the
continuous-time process.
I will use these insights when forming GMM moment conditions to estimate the

parameters in the presence of jumps, with the objective of studying their ability to
reproduce the efficiency of MLE. I will consider in particular absolute moments of
order r (i.e., the plims of the power variations). To form unbiased moment
conditions, I will need an exact expression for these moments, which is given in the
following result.
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Proposition 1. For any rX0; the centered absolute moment of order r is

MaðD; y; rÞ �E½jYD � Dðmþ blÞjr


¼
XN
n¼0

2r=2G 1þr
2

� 	
F 1þr

2
; 1
2
; b

2ðn�DlÞ2

2ðnZþs2DÞ


 �
ðnZþ s2DÞr=2ðlDÞn

p1=2n!

� e
�lD�

ðnb�DblÞ2

2ðDs2þnZÞ; ð15Þ

where G denote the gamma function and F denotes the Kummer confluent

hypergeometric function 1F1ða; b;oÞ:
1 In particular, when b ¼ 0; F 1þr

2
; 1
2
; 0

� 	
¼ 1: The

expansion of MaðD;X0; rÞ in D is, at the leading order,

MaðD; y; rÞ ¼

p�1=22r=2G 1þr
2

� 	
srDr=2 þ oðDr=2Þ if ro2;

ðs2 þ ðb2 þ ZÞlÞD if r ¼ 2;

p�1=22r=2Zr=2lG 1þr
2

� 	
H 1þr

2
; 1
2
; b

2

2Z


 �
e
�
b2

2ZDþ oðDÞ if r > 2:

8>>><
>>>:

ð16Þ

3. Intuition for the difficulty in identifying the parameters

Before turning to the formal study of estimators in the context of this model, I
describe intuitively in this section why distinguishing the volatility parameter from
the jump component could be expected to be difficult.

3.1. Isonoise curves

The first intuition I provide is based on the traditional method of moments,
combined with nonlinear least squares. In the nonlinear least squares context, the
asymptotic variance of the estimator is proportional to the inverse of the partial
derivative of the moment function (or conditional mean) with respect to the
parameter. In other words, if small changes in the parameter value result in large
changes in the moment function, then the parameter will be estimated precisely.
However, if large changes in the parameter result in small changes in the moment
function, then the parameter will not be estimated precisely.
I plot in Fig. 3 what can be called isonoise curves. These are combinations of

parameters of the process that result in the same observable conditional variance of
the log returns; excess kurtosis is also included. These are the curves E½ðXD �
X0Þ

2jX0
 ¼ constant and E½ðXD � X0Þ
4jX0
 ¼ constant; with the other parameters

fixed: Intuitively, any two combinations of parameters on the same isonoise curve
cannot be distinguished by the method of moments using these moments.
(An additional issue is that in practice kurtosis is estimated with little precision.)
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The top row of the figure looks at distinguishing s2 from l; the bottom one at
distinguishing l from Z (in the figure, D ¼ 1=12 and the other parameters are m ¼
b ¼ 0; Z1=2 ¼ 0:6 in the top row and s ¼ 0:3 in the bottom one). Combinations of the
two parameters ðl; ZÞ that are on the same isonoise curve result in the same amount
of ‘‘jumpiness’’ from the perspective of these two moments. This analysis provides
further arguments for including moments other than the variance and kurtosis in a
GMM-type setting (see Section 5).

3.2. Inferring jumps from large realized returns

In discretely sampled data, every change in the value of the variable is by nature a
discrete jump, yet one wishes to estimate jointly from these data the underlying

ARTICLE IN PRESS

0.1 0.15 0.2 0.25 0.3 0.35 0.4
λ

0.2

0.3

0.4

0.5

0.6

0.7

η

Equi−variance curves in (λ,η)

0.1 0.15 0.2 0.25 0.3 0.35 0.4
λ

0.2

0.3

0.4

0.5

0.6

0.7

η

Equi−kurtosis curves in (λ,η)

0.06 0.08 0.1 0.12 0.14 0.16 0.18
σ2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

λ

Equi−variance curves in (σ2,λ)

0.06 0.08 0.1 0.12 0.14 0.16 0.18
σ2

0.1

0.15

0.2

0.25

0.3

0.35

0.4

λ

Equi−kurtosis curves in (σ2,λ)

Fig. 3. Isonoise curves. These plots show various combinations of parameters of the model yielding

identical variance (left side) and kurtosis (right side).
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continuous-time parameters driving the Brownian and jump terms. So the next
question I examine, still with the objective of providing some intuition, is the
following: given that an asset return of a given magnitude z or larger is observed in
discrete data, what does that reveal about the likelihood that such a change involved
a jump (as opposed to just a large realization of the Brownian noise)?
To investigate that question, use Bayes’ rule to calculate

PrðND ¼ 1 j ZDXz; yÞ ¼
PrðZDXz;ND ¼ 1; yÞ

PrðZDXz; yÞ

¼Pr ðZDXz j ND ¼ 1; yÞ
PrðND ¼ 1; yÞ
PrðZDXz; yÞ

¼
expð�lDÞlD 1� F z�mD�b

2ðZþDs2Þ1=2


 �
 �
PþN

n¼0
expð�lDÞðlDÞn

n! 1� F z�mD�nb
2ðnZþDs2Þ1=2


 �
 �; ð17Þ

given that PrðND ¼ 1; yÞ ¼ expð�lDÞlD;

PrðZDXz; yÞ ¼
Z þN

z

qðz;D; yÞ dz ¼
XþN

n¼0

expð�lDÞðlDÞn

n!

� 1� F
z � mD� nb

2ðnZþ Ds2Þ1=2

 ! !
ð18Þ

and

Pr ðZDXz j ND ¼ 1; yÞ ¼ 1� F
z � mD� b

2ðZþ Ds2Þ1=2

 !
; ð19Þ

where F denotes the Normal cdf and

qðy;D; yÞ � pðx0 þ yjx0;D; yÞ: ð20Þ

The probability of seeing more than one jump is:

PrðNDX1 j ZDXz; yÞ ¼PrðZDXz j NDX1; yÞ
PrðNDX1; yÞ
PrðZDXz; yÞ

¼

PþN

n¼1
expð�lDÞðlDÞn

n! 1� F z�mD�nb
2ðnZþDs2Þ1=2


 �
 �
PþN

n¼0
expð�lDÞðlDÞn

n! 1� F z�mD�nb
2ðnZþDs2Þ1=2


 �
 � ð21Þ

because

PrðZDXz j NDX1; yÞ ¼
PrðZDXz;NDX1; yÞ

PrðNDX1; yÞ

¼
PþN

n¼1PrðZDXz;ND ¼ n; yÞ
PrðNDX1; yÞ

¼
XþN

n¼1

PrðZDXz j ND ¼ n; yÞ
PrðND ¼ n; yÞ
PrðNDX1; yÞ

: ð22Þ
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Then

PrðND ¼ 0 j ZDXz; yÞ ¼ 1� PrðNDX1 j ZDXz; yÞ: ð23Þ

Looking at jumps of a given size, irrespective of the direction, then

PrðND ¼ 1 j jZDjXz; yÞ

¼
PrðjZDjXz;ND ¼ 1; yÞ

PrðjZDjXz; yÞ

¼
PrðZDXz;ND ¼ 1; yÞ þ PrðZDp� z;ND ¼ 1; yÞ

PrðZDXz; yÞ þ PrðZDp� z; yÞ

¼
ðPrðZDXz j ND ¼ 1; yÞ þ PrðZDp� z j ND ¼ 1; yÞÞPrðND ¼ 1; yÞ

PrðZDXz; yÞ þ PrðZDp� z; yÞ

¼
1� F z�mD�b

2ðZþDs2Þ1=2


 �
þ F �z�mD�b

2ðZþDs2Þ1=2


 �
 �
expð�lDÞlDPþN

n¼0
expð�lDÞðlDÞn

n! 1� F z�mD�nb
2ðnZþDs2Þ1=2


 �
þ F �z�mD�nb

2ðnZþDs2Þ1=2


 �
 �: ð24Þ

If the process is symmetric ðm ¼ b ¼ 0Þ; then

F
�z

2ðnZþ Ds2Þ1=2

 !
¼ 1� F

z

2ðnZþ Ds2Þ1=2

 !
; ð25Þ

and it makes no difference whether one conditions on jZDjXz or ZDXz; in which
case

PrðND ¼ 1 j jZDjXz; yÞ ¼
2 1� F z

2ðZþDs2Þ1=2


 �
 �
expð�lDÞlDPþN

n¼0
expð�lDÞðlDÞn

n! 2 1� F z

2ðnZþDs2Þ1=2


 �
 �

¼
1� F z

2ðZþDs2Þ1=2


 �
 �
expð�lDÞlDPþN

n¼0
expð�lDÞðlDÞn

n! 1� F z

2ðnZþDs2Þ1=2


 �
 � ð26Þ

and similarly for PrðNDX1 j jZDjXz; yÞ:
Fig. 4 plots the functions PrðND ¼ 1 j ZDXz; yÞ (as well as the matching

probabilities of zero and two jumps) evaluated at z ¼ uD1=2ðs2 þ ðb2 þ ZÞlÞ1=2; so u

measures the size of the log-return observed in terms of number of standard
deviations away from the mean, at the same parameter values as above. The figure
shows that, as far into the tail as about 3.5 standard deviations, it is still more likely
that a large observed log-return was produced by Brownian noise only (because the
probability of zero jump is higher than that of one jump). Since 3.5 standard
deviation moves are unlikely to begin with, and hence few of them will be observed in
any given series of finite length, this underscores the difficulty of relying on large
observed returns as a means of identifying jumps. Implicit in these calculations is
also the interaction between the unconditional arrival rate of the jumps and one’s
ability to properly identify a large move as having been generated by a jump: if the
unconditional jump probability is low, then it takes an even bigger observed log-
return before its origin can be assigned to a jump.
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This said, it is intuitively clear that one’s ability to visually pick out the jumps from
the sample path increases when the time interval D between successive observations
on the path decreases. Fig. 5 shows this effect by plotting the dependence of PrðND ¼
1 j jZDjXz; yÞ; evaluated at z ¼ 10%; as a function of the sampling interval D: The
smaller is D; the higher is the probability that an observed log-return of magnitude
10% or greater was caused by a jump. Note however from the figure that one’s
ability to infer the provenance of the large move tails off very quickly when moving
from D equal to one minute to one hour to one day. At some point, enough time has
elapsed that the 10% move could very well have come from the sum over the time
interval ð0;DÞ of all the tiny Brownian motion moves.

3.3. The time-smoothing effect

The final intuition for the difficulty in telling Brownian noise apart from jumps lies
in the effect of time aggregation, which in the present case takes the form of time
smoothing. Just like a moving average is smoother than the original series, log
returns observed over longer time periods are smoother than those observed over
shorter horizons. In particular, jumps get averaged out.
This effect can be severe enough to make jumps visually disappear from the

observed time series of log returns. As an example, albeit extreme but real world, of
this phenomenon, consider the effect of the 1987 crash on the Dow Jones Industrials
Average. As Fig. 6 shows, there was no 1987 crash as far as the annual data were
concerned. Of course, the crash is quite visible at higher frequencies, the more so the
higher the frequency.
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4. Disentangling the diffusion from the jumps using the likelihood

Armed with these various intuitions, I now turn to the question of determining
formally what is the effect of the presence of the jumps on one’s ability to estimate
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the value of s2: The ability to pick out jumps from the sample path as well as the
time-smoothing effect suggest that the best chance of disentangling the Brownian
noise from the jumps lies in high frequency data. I will show that it is actually
possible to recover the value of s2 with the same degree of precision as if there were
no jumps and the only source of noise were the Brownian motion. In other words,
the various intuitions suggesting otherwise are misleading, at least in the limit of
infinitely frequent sampling.

4.1. Asymptotics

Because I will consider both likelihood and non-likelihood types of estimators
below, I embed both types into the GMM framework. Let YnD ¼ XnD � Xðn�1ÞD

denote the first differences of the process X : They are i.i.d. under this simple model.
To estimate the d-dimensional parameter vector y; consider a vector of m moment
conditions hðy; d; yÞ; mXd; continuously differentiable in y ( ’h denotes the gradient of
h with respect to y). Then form the sample average

mT ðyÞ � N�1
XN

n¼1

hðYnD;D; yÞ ð27Þ

and obtain #y by minimizing the quadratic form

QT ðyÞ � mT ðyÞ
0GT mT ðyÞ ð28Þ

where GT is an m � m positive definite weight matrix assumed to converge in
probability to a positive definite limit G: If the system is exactly identified, m ¼ d; the
choice of GT is irrelevant and minimizing Eq. (28) amounts to setting mT ðyÞ to zero.
To ensure consistency of #y; h is assumed to satisfy

E½hðYDD; y0Þ
 ¼ 0: ð29Þ

It follows from standard arguments, subject to regularity conditions (see Hansen,
1982) that

ffiffiffiffi
T

p
ð#y� y0Þ converges in law to Nð0;OÞ; with

O�1 ¼ D�1D0GDðD0GSGDÞ�1D0GD; ð30Þ

where

D � E½ ’hðYD;D; y0Þ
 ð31Þ

is m � d and

S � E½hðYD;D; y0ÞhðYD;D; y0Þ
0
 ð32Þ

is m � m: The weight matrix GT can be chosen optimally to minimize the asymptotic
variance O; by taking it to be any consistent estimator of S�1: A consistent first-step
estimator of y; needed to compute the optimal weight matrix, can be obtained by
minimizing Eq. (28) with GT ¼ Id:When GT is then chosen optimally, G ¼ S�1 and
as a result Eq. (30) reduces to

O�1 ¼ D�1D0S�1D: ð33Þ
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In particular, Eq. (33) applies when the system is exactly identified ðr ¼ dÞ; because
the choice of the weight matrix is irrelevant in that case.

4.2. Fisher’s Information in the presence of jumps

By choosing h to be the score vector, this class of estimator encompasses
maximum likelihood. Letting

lðy; d; yÞ � ln pðx0 þ yjx0; d; yÞ ð34Þ

denote the log-likelihood function, this corresponds to hðy; d; yÞ ¼ �’lðy; d; yÞ: Then
S ¼ E½’l’l0
; D ¼ �E½.l
 and

S ¼ D ð35Þ

is Fisher’s Information matrix. The asymptotic variance of #yMLE takes the form

AVARMLEðyÞ ¼ DðDS�1DÞ�1 ¼ DD�1: ð36Þ

The following theorem shows that, despite the difficulties described earlier, it is
still possible, using maximum likelihood, to identify s2; estimated alone, with the
same degree of precision as if there were no jumps.

Theorem 1. When the Brownian motion is contaminated by Poisson jumps, it remains

the case that

AVARMLEðs2Þ ¼ 2s4Dþ oðDÞ; ð37Þ

so that in the limit where sampling occurs infinitely often ðD-0Þ; the MLE estimator of

s2 has the same asymptotic distribution as if no jumps were present.

Theorem 1 says that maximum likelihood can theoretically perfectly disentangle
s2 from the presence of the jumps, when using high frequency data. I will present in
Section 7 Monte Carlo evidence that suggests that this holds true in practice, too.
Furthermore, the result of Theorem 1 states that the presence of the jumps

imposes no cost on the ability to estimate s2: the variance that is squared in the
leading term is only the diffusive variance s2; not the total variance s2 þ ðb2 þ ZÞl:
This can be contrasted with what would happen if, say, the Brownian motion were
contaminated with another independent Brownian motion with known variance s2:
In that case, s2 could also be estimated, but the asymptotic variance of the MLE
would be 2ðs2 þ s2Þ2D:
What is happening here is that, as D gets smaller, the ability to identify price

discontinuities improves (recall Fig. 5). This is because these Poisson discontinuities
are, by construction, discrete, and there are few of them relative to the diffusive
moves. Then if they can be seen, it is possible to exclude them, and do as if they did
not happen in the first place. More challenging therefore will be the case in which the
jumps are both infinitely frequent and infinitely small (see Section 6).
But before examining that question, I will investigate the ability of a large class of

GMM estimators to approach the efficiency of MLE. Indeed, in light of the Cramer
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Rao lower bound, Theorem 1 establishes 2s4D as the benchmark for alternative
methods that attempt to estimate s2 (based on the quadratic variation, absolute
variation, absolute power variation, etc.), and it is interesting to know how closely
GMM using such moment functions can approximate MLE.

5. Using moments: how close does GMM come to MLE?

The first question I now address is whether the identification of s2 achieved by the
likelihood, despite the presence of jumps, can be reproduced by conditional moments
of the process of integer or noninteger type, and which moments or combinations of
moments come closest to achieving maximum likelihood efficiency. While MLE is
clearly the preferred method, and as discussed above has been used extensively in
that context, it is nevertheless instructive to determine which specific choices of
moment functions do best in terms of approximating its efficiency. So, in GMM
estimation, I form moment functions of the type hðy; d; yÞ ¼ yr � Mðd; y; rÞ or
hðy; d; yÞ ¼ jyjr � Maðd; y; rÞ; or both, for various values of r: By construction, these
moment functions are unbiased and all the GMM estimators considered will be
consistent. The question becomes one of comparing their asymptotic variances
among themselves, and with that of MLE.
I will refer to different GMM estimators of y by listing the moments MðD; y; rÞ or

MaðD; y; rÞ; or both, that are used for that particular estimator. For example, the
estimator of s2 obtained by using the single moment MðD; y; 2Þ corresponds to the
discrete approximation to the quadratic variation of the process. Estimators based
on the single moment Maðd; y; rÞ correspond to the power variation, etc. By using
Taylor expansions in D; I characterize in closed form the properties of these different
GMM estimators.

5.1. Estimating s2 alone

I start with the case in which only s2 is to be estimated. The jump term, while
present, has known parameters, or one could think of it as being a nuisance process
that is of no interest. For simplicity, I will assume here and in the rest of the paper
that the drift and mean jump are centered at zero (m ¼ b ¼ 0). This assumption is
largely inconsequential, except that it greatly simplifies the expressions below. It also
makes the standard moments of odd order zero.
The technique I use to obtain tractable closed form expressions for the asymptotic

variances of the different estimators under consideration is to Taylor-expand them in
D around D ¼ 0 (see A.ıt-Sahalia and Mykland, 2003, for another use of this
technique in a different context). Computing AVARGMM requires the separate
computation of the matrices D and S in Eqs. (31)–(32). These matrices are expected
values of functionals of the moment vector h; taken with respect to the law of the
observed process YD: In the present example, this law has the density given in Eq. (7).
With polynomial moment functions in h (including possibly absolute values and
noninteger powers), the functionals ’h and hh0 retain the polynomial form. Thus D
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and S can be computed explicitly using the moments calculated in Proposition 1. If
nonpolynomial moment functions were to be used, the corresponding calculations
would involve Taylor-expanding using the infinitesimal generator of the process, as
described in Eq. (11). The results for D and S can then be combined to form the
matrix O in Eq. (33), which in turn has a natural expansion in powers of D (again,
possibly noninteger when noninteger moments are used).
With this method, it becomes possible to compare different estimators by looking

at the Taylor expansions of their respective asymptotic variances. I find that,
although it does not restore full maximum likelihood efficiency, using absolute
moments in GMM helps greatly. In particular, the next proposition shows that when
s2 is estimated using exclusively moments of the form MðD; y; rÞ; then
AVARGMMðs2Þ ¼ Oð1Þ; a full order of magnitude bigger than achieved by MLE.
When moments of the form MaðD; y; rÞ with rAð0; 1Þ are used, however,
AVARGMMðs2Þ ¼ OðDÞ; i.e., the same order as achieved by MLE, although the
constant of proportionality is always greater than 2s4 as should be the case in light
of the Cramer-Rao lower bound. When s2 is estimated based on the moment
MaðD; y; rÞ with rAð1; 2
 are used, AVARGMMðs2Þ ¼ OðD2�rÞ: Specifically, the result
is as follows.

Proposition 2. The following table gives the asymptotic variance of the GMM

estimator of s2 using different combinations of moment functions.

Moment(s) AVARGMMðs2Þ with jumps AVARGMMðs2Þ no jumps

MðD; y; 2Þ 3Z2lþ 2Dðs2 þ ZlÞ2 2Ds4

MðD; y; 2Þ
MðD; y; 4Þ

� �
6Z2l
7

þ Dð2s4 þ 44Z2l2

7
þ 100Zls2

49
Þ þ

oðDÞ

2Ds4

MaðD; y; rÞ; rAð0; 1Þ D 4s4
r2

p1=2G 1
2þr
� 	

G 1þr
2

� 	2 � 1

 !
þ oðDÞ D 4s4

r2
p1=2G 1

2þr
� 	

G 1þr
2

� 	2 � 1

 !
þ

oðDÞ
MaðD; y; 1Þ 2Ds2ððp� 2Þs2 þ pZlÞ 2ðp� 2ÞDs4

MaðD; y; rÞ; rAð1; 2
 D2�r4p
1=2Zrls2ð2�rÞG 1

2
þr

� 	
r2G 1þr

2

� 	2 þ oðD2�rÞ D4s
4

r2
p1=2G 1

2
þr

� 	
G 1þr

2

� 	2 � 1

 !
þ

oðDÞ
MðD; y; 2Þ
MaðD; y; 1Þ

� �
2Ds2 ðp� 2Þs2 þ ð3p�8Þ

3
Zl


 �
þ

oðDÞ

2Ds4

When the moments ðMaðD; y; rÞ; MaðD; y; qÞÞ
0 are used jointly, AVARGMMðs2Þ is

given in the no jumps case by

AVARGMMðs2Þ ¼ 2Ds4
2p1=2Aðr; qÞ

Bðr; qÞ
þ oðDÞ; ð38Þ
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where

Aðr; qÞ ¼G
1

2
þ q

� �
p1=2G

1

2
þ r

� �
� G

1þ r

2

� �2 !

þ 2G
1þ q

2

� �
G
1þ r

2

� �
G
1þ q þ r

2

� �

� p1=2G
1þ q þ r

2

� �2
�G

1þ q

2

� �2
G
1

2
þ r

� �
; ð39Þ

and

Bðr; qÞ ¼ p1=2r2G
1

2
þ q

� �
G
1þ r

2

� �2
þG

1þ q

2

� �2

� p1=2q2G
1

2
þ r

� �
� ðq � rÞ2G

1þ r

2

� �2 !

� 2p1=2qrG
1þ q

2

� �
G
1þ r

2

� �
G
1þ q þ r

2

� �
: ð40Þ

Fig. 7 plots the efficiency of the GMM estimator of s2 using MaðD; y; rÞ; relative to
MLE, as a function of r: In light of the table in Proposition 2, this is given by the
function

r/
2

r2
p1=2G 1

2
þ r

� 	
G 1þr

2

� 	2 � 1

 !
: ð41Þ
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In the absence of jumps, the minimum is achieved by selecting r ¼ 2; which
reproduces the MLE’s asymptotic variance of 2Ds4: This is not surprising because
the MLE for s2 in the absence of jumps is simply the quadratic variation of the
process (at frequency D�1). When jumps are present, however, absolute moments
taken individually (even though they do better than regular moments) are no longer
capable of attaining the efficiency of MLE. Fig. 8 plots the corresponding picture, at
the weekly frequency and the same parameters as above.
However, taking such absolute moments of different orders in combination

improves upon any single one. Fig. 9 plots the relative efficiency, as a function of
ðr; qÞ that results from estimating s2 using the overidentified GMM system based on
the vector of moment conditions ðMaðD; y; rÞ; MaðD; y; qÞÞ

0: Given Proposition 2, this
is the surface:

ðr; qÞ/
2p1=2Aðr; qÞ

Bðr; qÞ
: ð42Þ

In the no jumps case, using two functions improves upon one when ra2 and
achieves MLE efficiency provided one of the two is the quadratic variation. When
jumps are present, however, it is only asymptotically, as the number of these absolute
moment functions increases, that GMM can reproduce MLE.
Finally, at the leading order in D;GMMmakes little use of the quadratic variation

MðD; y; 2Þ when an absolute moment of the type MaðD; y; rÞ is also part of the h

vector. Comparing the asymptotic variance in the case in which ðMðD; y; 2Þ;
MaðD; y; 1ÞÞ

0 are both used together with that in which MaðD; y; 1Þ is used alone, the
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decrease in variance is only

2Ds2ððp� 2Þs2 þ pZlÞ � 2Ds2 ðp� 2Þs2 þ
ð3p� 8Þ
3

Zl
� �

¼
16

3
Ds2Zl: ð43Þ

5.2. Estimating s2 and l together

I now turn to the case in which both s2 and l are to be jointly estimated.

Proposition 3. When ðs2; lÞ are estimated using the moments ðMðD; y; 2Þ;MðD; y; 4ÞÞ0;
the resulting AVARGMMðs2; lÞ is

14Z2l
3

þ 2Dð70Z2l2þ22Zls2þ3s4Þ
3

þOðD2Þ �20Zl
3

� 2Dlð79Zlþ28s2Þ
3

þOðD2Þ


 35l
3
þ 2Dlð91Zlþ40s2Þ

3Z þOðD2Þ

0
@

1
A: ð44Þ

When the moments ðMðD; y; 2Þ;MaðD; y; 1=2ÞÞ
0 are used, the resulting

AVARGMMðs2; lÞ is

2Ds2ðs2 þ ZlÞðp� 2Þ þOðD3=2Þ �2D1=2Z1=2ls� 2Ds2ððp�2ÞZlþðp�3Þs2Þ
Z þOðD3=2Þ


 3lþ 4D1=2ls
Z1=2 þ Dð2l2 þ 2pls2

Z þ 2ðp�3Þs4

Z2 Þ þOðD2Þ

0
@

1
A:

ð45Þ
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As in the s2 alone situation, the introduction of an absolute moment of the type
MaðD; y; rÞ reduces the asymptotic variance of the GMM estimator of s2 by an order
of magnitude, from O(1) in Eq. (44) to OðDÞ in Eq. (45), which is the same rate as
MLE but with a higher constant.

5.3. Estimating s2; l and Z together

The following result gives the asymptotic variance of the GMM estimator of
ðs2; l; ZÞ; estimated jointly.

Proposition 4. When ðs2; l; ZÞ are estimated using the moments

ðMðD; y; 2Þ;MðD; y; 4Þ;MaðD; y; 1=2ÞÞ
0; the resulting matrix AVARGMMðs2; l; ZÞ has

the following elements:

ðs2;s2Þ :
2Ds2ð3ðp� 2Þs2 þ ð3p� 7ÞZlÞ

3
þOðD3=2Þ ð46Þ

ðs2; lÞ : � 2D1=2Z1=2ls�
2Ds2ðð6p� 13ÞZlþ 6ðp� 3Þs2Þ

3Z
þOðD3=2Þ ð47Þ

ðs2; ZÞ : 2D1=2Z3=2sþ
2Ds2ððp� 2ÞZlþ ðp� 3Þs2Þ

l
þOðD3=2Þ ð48Þ

ðl; lÞ :
11l
3

þ
8D1=2ls
Z1=2

þ D
ð110l2 � 16ls2

Z þ 24pls2
Z � 24ð3�pÞs4

Z2 Þ

3
þOðD3=2Þ ð49Þ

ðl; ZÞ:�
8Z
3
� 6D1=2Z1=2sþ D

4ð3� pÞs4

Zl
�
122Zl
3

�
10s2

3
� 4ps2

� �
þOðD3=2Þ

ð50Þ

ðZ; ZÞ :
14Z2

3l
þ
4D1=2Z3=2s

l
þ
2Dð70Z2l2 þ 17Zls2 þ 3pZls2 þ 3ðp� 3Þs4Þ

3l2

þ OðD3=2Þ: ð51Þ

Comparing the asymptotic variance of s2 in the case where only l is estimated
along with s2 [the upper left element of Eq. (45)] with that obtained in Proposition 4
measures the cost associated with not knowing Z; given the moment functions used.
That cost is given here by

2Ds2ð3ðp� 2Þs2 þ ð3p� 7ÞZlÞ
3

� 2Ds2ðs2 þ ZlÞðp� 2Þ ¼
4

3
Ds2Zl: ð52Þ
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6. Disentangling the diffusion from other jump processes: the Cauchy case

Theorem 1 demonstrated the ability of maximum likelihood to fully distinguish
the diffusive component from the jump component on the basis of the full sample
path. I then showed under what circumstances (i.e., choices of moment functions)
GMMwas able to approach this result, although not fully reproduce the efficiency of
MLE. I now examine whether the perfect distinction afforded by MLE is specific to
the fact that the jump process considered so far was a compound Poisson process or
whether it extends to other types of jump processes. Among the class of continuous-
time Markov processes, it is natural to look at L!evy processes. Poisson jumps are a
unique case in the L!evy universe. Yet, the same result continues to hold for other
pure jump processes, a fact which cannot be explained away as easily as in the
Poisson case.

6.1. L !evy processes

I start by briefly reviewing the main properties of L!evy processes that I will use in
the rest of the paper (see, e.g., Bertoin, 1998, for further details). A process,
initialized at X0 ¼ 0; is a L!evy process if it has stationary and independent
increments and is continuous in probability. The characteristic function of a L!evy
process is given by the L!evy-Khintchine formula, which states that there exist
constants gcAR; sX0 and a positive sigma-finite measure nð�Þ on R\f0g (extended to
R by setting vðf0gÞ ¼ 0) satisfyingZ þN

�N

minð1; z2ÞnðdzÞoN; ð53Þ

such that the log-characteristic function cðuÞ; defined by

E½eiuXD jX0 ¼ 0
 ¼ ecðuÞD; ð54Þ

has the form for uAR:

cðuÞ ¼ igcu �
s2

2
u2 þ

Z þN

�N

ðeiuz � 1� iuzcðzÞÞnðdzÞ: ð55Þ

The three quantities ðgc;s; nð�ÞÞ; called the characteristics of the L!evy process,
completely describe the probabilistic behavior of the process. gc is the drift rate of the
process, s is its volatility from the Brownian component and the measure nð�Þ
describes the pure jump component. It is known as the L!evy measure and has the
interpretation that nðEÞ for any subset ECR is the rate at which the process takes
jumps of size xAE; i.e., the number of jumps of size falling in E per unit of time.
Sample paths of the process are continuous if and only if n � 0: Note that nð�Þ is not
necessarily a probability measure, in that nðRÞ may be finite or infinite.
The function cðzÞ is a weighting function whose role is to make the integrand in

Eq. (55) integrable. When jzjnðdzÞ is integrable near zero, it is enough to have

eiuz � 1� iuzcðzÞ ¼ OðjzjÞ as z-0; ð56Þ
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and this can be achieved simply by setting c ¼ 0 near z ¼ 0: But if jzjvðdzÞ is not
integrable near zero [and only z2vðdzÞ is, as required by Eq. (53)], then one needs a
nonzero cðzÞ function, which must ensure in light of Eq. (53) that

eiuz � 1� iuzcðzÞ ¼ Oðz2Þ as z-0; ð57Þ

that is, cðzÞB1 near z ¼ 0: When jzjnðdzÞ is integrable near N; it is enough to have

eiuz � 1� iuzcðzÞ ¼ OðjzjÞ as z-7N ð58Þ

and this can be achieved simply by setting c ¼ Oð1Þ near z ¼ N: But if jzjvðdzÞ is not
integrable near N [and only vðdzÞ is, as required by Eq. (53)], then one needs

eiuz � 1� iuzcðzÞ ¼ Oð1Þ as z-7N; ð59Þ

that is, cðzÞ ¼ Oð1=jzjÞ near z ¼ 7N: Typical examples include cðzÞ ¼ 1=ð1þ z2Þ;
cðzÞ ¼ 1ðjzjoeÞ for some e > 0; etc.
The function cðzÞ can be replaced by another one. Any change in the weighting

function from cðzÞ to c0ðzÞ is absorbed by a matching change in gc; which is replaced
by g0c in such a way that

gc �
Z þN

�N

zcðzÞnðdzÞ ¼ g0c �
Z þN

�N

zc0ðzÞnðdzÞ: ð60Þ

The infinitesimal generator of the process is given by

A � f ðD;x; x0Þ ¼
qf ðD; x;x0Þ

qD
þ gc �

Z þN

�N

zcðzÞnðdzÞ
� �

qf ðD;x; x0Þ
qx

þ
1

2
s2

q2f ðD; x;x0Þ
qx2

þ
Z þN

�N

ff ðD;x þ z;x0Þ

� f ðD;x;x0ÞgnðdxÞ: ð61Þ

Examples of L!evy processes include the Brownian motion ðc ¼ 0; gc ¼ 0; s ¼
1; n ¼ 0Þ; the compound Poisson process ½c ¼ 0; gc ¼ 0; s ¼ 0; nðdxÞ ¼ ld1ðdxÞ
where d1 is a Dirac point mass at x ¼ 1] and the Poisson jump diffusion I considered
above in (1), corresponding to c ¼ 0; gc ¼ m; s > 0; nðdxÞ ¼ lnðx; b; ZÞ dx; where
nðx; b; ZÞ is the Normal density with mean b and variance Z:
The question I now address is whether it is possible to perturb the Brownian noise

by a L!evy pure jump process other than Poisson and still recover the parameter s2 as
if no jumps were present. The reason one might expect this not to be possible is the
fact that, among L!evy pure jump processes, the compound Poisson process is the
only one with a finite nðRÞ; i.e., a finite number of jumps in a finite time interval (and
the sample paths are piecewise constant). In that case, define l ¼ nðRÞ and the
distribution of the jumps has measure nðdxÞ ¼ vðdxÞ=l: All other pure jump
processes are such that nð½�e;þe
Þ ¼ N for any e > 0; so that the process exhibits an
infinite number of small jumps in any finite time interval.2 Intuitively, these tiny
jumps ought to be harder to distinguish from Brownian noise, which is itself made up
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of many small moves. Can the likelihood still tell them perfectly apart from
Brownian noise?
I will consider as an example the Cauchy process, which is the pure jump process

(s ¼ 0) with L!evy measure

nðdxÞ ¼
x
x2
dx ð62Þ

and, with weight function cðzÞ ¼ 1=ð1þ z2Þ; gc ¼ 0: This is an example of a
symmetric stable distribution of index 0oao2 and rate x > 0; with log characteristic
function proportional to cðuÞ ¼ �ðxjujÞa; and L!evy measure

nðdxÞ ¼
xaa

jxj1þa dx: ð63Þ

The Cauchy process corresponds to a ¼ 1; while the limit a-2 (from below)
produces a Gaussian distribution.
While, as a result of Eq. (53), all L!evy processes have finite quadratic variation

almost surely, the absolute variation of the process will be finite only if s ¼ 0 and if
jzjnðdzÞ is integrable near 0, a condition that fails for the Cauchy process but is
satisfied by the compound Poisson process (and gamma, beta, and simple
homogeneous examples). More generally, for r > 0;

Pr
X
0pspt

jXs � Xs�j
roN

 !
¼ 13

Z þN

�N

minð1; jzjrÞ nðdzÞoN; ð64Þ

which in the case of Eq. (63) is equivalent to r > a:

6.2. Mixing Cauchy jumps with Brownian noise

So I now look at the situation in which

dXt ¼ m dt þ s dWt þ dCt; ð65Þ

where Ct is a Cauchy process independent of the Brownian motion Wt: Within the
class of L!evy pure jump processes, the use of a Cauchy process is mainly for reasons
of analytical tractability in the calculations that follow. This is not meant to suggest
that this process is a particularly desirable choice to model asset returns (the absence
of a mean is not a desirable property for instance).
Focusing on the ability to disentangle s2 from the jumps, consider again the case

in which m ¼ 0: The solution of the stochastic differential equation (65) is

XD � X0 ¼ sWD þ CD

¼ s
ffiffiffiffi
D

p
ZD þ CD; ð66Þ

where ZDBNð0; 1Þ: Eq. (66) implies again that the log-returns YnD ¼ XnD � Xðn�1ÞD

are i.i.d.

ARTICLE IN PRESS
Y. A.ıt-Sahalia / Journal of Financial Economics 74 (2004) 487–528510



By independence of C and W ; the transition density of the process X is given by
the convolution of their respective densities:

fXDðyÞ ¼ f
s
ffiffiffi
D

p
ZDþCD

ðyÞ ¼
Z þN

�N

f
s
ffiffiffi
D

p
ZD
ðy � zÞfCD ðzÞ dz: ð67Þ

To obtain the density fCD ðzÞ; recall that the log-characteristic function of C is given
by Eq. (55),

cCðuÞ ¼
Z þN

�N

eiuz � 1�
izu

1þ z2

� �
x
z2
dz ¼ �pxjuj; ð68Þ

with the density following by Fourier inversion because the characteristic function
expðcCðuÞÞ is integrable:

fCDðzÞ ¼
1

2p

Z þN

�N

expð�iuz þ cCðuÞDÞ du

¼
Dx

D2x2p2 þ z2
: ð69Þ

Finally, for this process the density qðyjD; yÞ ¼ pðx þ yjx0;D; yÞ is given by the
convolution

fXDðyÞ ¼
Z þN

�N

1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffi
Ds2

p exp �
ðy � zÞ2

2Ds2

� �
Dx

D2x2p2 þ z2
dz ð70Þ

which is known as the Voigt function.
The question now becomes whether it is still possible, using maximum likelihood,

to identify s2; estimated alone, with the same degree of precision as if there
were no jumps, despite the fact that the Cauchy process contaminates the
Brownian motion with infinitely many infinitesimal jumps. The answer is,
surprisingly, yes.

Theorem 2. When the Brownian motion is contaminated by Cauchy jumps, it still

remains the case that

AVARMLEðs2Þ ¼ 2s4Dþ oðDÞ: ð71Þ

6.3. Intuition for the result: how big is that infinite number of small jumps?

Theorem 2 has shown that Cauchy jumps do not come close enough to mimicking
the behavior of the Brownian motion to reduce the accuracy of the MLE estimator
of s2: The intuition behind this surprising result is the following: while there is an
infinite number of small jumps in a Cauchy process, this ‘‘infinity’’ remains relatively
small (just like the cardinality of the set of integers is smaller than the cardinality of
the set of reals), and while the jumps are infinitesimally small, they remain relatively
bigger than the increments of a Brownian motion during the same time interval D: In
other words, they are harder to pick up from inspection of the sample path than
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Poisson jumps are, but, with a fine enough microscope, still possible. And the
likelihood is the best microscope there is, per Cramer–Rao.
I now show formally how this works.

Lemma 1. Fix e > 0: If YD is the log-return from a pure Brownian motion, then

PrðjYDj > eÞ ¼
D1=2s
e

ffiffiffi
2

p

r
exp �

e2

2Ds2

� �
ð1þ oð1ÞÞ ð72Þ

is exponentially small as D-0: However, if YD results from a L!evy pure jump process

with jump measure vðdzÞ; then under regularity conditions

PrðjYDj > eÞ ¼ D�
Z
jyj>e

vðdyÞ þ oðDÞ ð73Þ

which decreases only linearly in D:

For example, for a Cauchy process a direct calculation based on the density given
in Eq. (69) yields

PrðjYDj > eÞ ¼
Z
jyj>e

fCDðyÞ dy ¼ D
2x
e
� D3

2x3p2

3e3
þOðD5Þ; ð74Þ

whose leading term coincides with Eq. (73) when v is replaced by its Cauchy
expression in Eq. (62). More generally, a symmetric stable process with order a;
whose L!evy measure is given in Eq. (63), satisfies

PrðjYDj > eÞ ¼ D�
2xa

ea
þ oðDÞ: ð75Þ

The key aspect here is that the order in D of PrðjYDj > eÞ for a pure jump L!evy
process is always OðDÞ: In other words, L!evy pure jump processes will always
produce moves of size greater than e at a rate far greater than the Brownian motion.
Brownian motion will have all but an exponentially small fraction of its increments
of size less than any given e: L!evy pure jump processes with infinite nðRÞ (i.e., all
except the compound Poisson process), despite producing an infinite amount of
small jumps will not produce quite as many small moves as Brownian motion does:
‘‘only’’ a fraction 1�OðDÞ of their increments are smaller than e: It is a question of
two ‘‘infinities’’, one growing linearly, the other exponentially.
In that sense, all of these L!evy pure jump processes produce tiny jumps (those of

size less than e) at the same rate 1�OðDÞ as a compound Poisson process does:

PrðjYDj > eÞ ¼ D� l
Z
jyj>e

nðy; b; ZÞ dy þ oðDÞ; ð76Þ

because in the example considered above the jumps J have density nðx; b; ZÞ: The
probability of seeing a move greater than e is at the first order in D the probability
that one jump occurs; i.e.,

PrðND ¼ 1Þ ¼ DlþOðD2Þ ð77Þ

times the probability that J will be of size at least e:
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Do jumps always have to behave that way? The answer is yes, in light of the
following. Ray (1956) showed that the sample paths of a Markov process are almost
surely continuous if and only if, for every e > 0;

PrðjYDj > eÞ ¼ oðDÞ: ð78Þ

Ray’s condition maps out the continuity of the sample path into a bound on the size
of the probability of leaving a given neighborhood in the amount of time D:
Intuitively, this probability must be small as D goes to zero if the sample paths are to
remain continuous. The condition in Eq. (78) says how small this probability must
be as D gets smaller. But, since that condition is necessary and sufficient, it also
establishes a lower bound for how big the probability of making a move greater than
e must be if the process is not continuous; i.e., can jump. Based on this, it is therefore
natural to have for a L!evy pure jump process PrðjYDj > eÞ ¼ OðDÞ as stated in
Eq. (73), and not oðDÞ: Further, while I wrote Eq. (78) assuming that the process has
independent increments (i.e., be L!evy), this condition is valid also for processes with
dependent increments: replace PrðjYDj > eÞ with PrðjXD � X0j > ejX0 ¼ x0Þ and add
the requirement that it be satisfied uniformly for x0 in a compact.
Since

PrðjYDjpeÞ ¼ 1� PrðjYDj > eÞ ð79Þ

is the probability of making small moves (the ones that look like Brownian motion),
this effectively puts an upper bound on the ability of a jump process to imitate the
behavior of Brownian volatility. So the result is likely not driven by the fact that the
divergence of nðdxÞ near zero is only Oðjxj�2Þ for the Cauchy process, instead of for
instance Oðjxj�ð1þaÞÞ with a greater than 1 but smaller than 2 [a-2 provides the
maximum admissible amount of small jumps per unit of time, while still satisfying
the requirement in Eq. (53)]. These distinct properties of the tails of distributions of
jump versus continuous processes have been noted in option pricing as well, when
computed under the risk neutral probabilities instead. They are the basis for the
results of Carr and Wu (2003), who study the distinctive convergence of option
prices when the underlying is a L!evy process with jumps.

7. Monte Carlo simulations

A legitimate question at this point is whether Theorems 1 and 2, which are
statements about the behavior of the estimators at high frequency, have relevance at
the discrete observation frequencies that are typically encountered in asset pricing.
So, in this section, I report the results of Monte Carlo simulations designed to
examine the empirical adequacy of the theoretical results when asset prices are
observed once a day. The daily frequency is generally considered to be low enough to
be largely unaffected by the market microstructure issues that can substantially
derail the performance of high frequency quantities such as the realized quadratic
variation, etc. (see A.ıt-Sahalia et al., 2003, for an analysis of the effect of market
microstructure noise on high frequency estimates).
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Starting with the jump-diffusion in Eq. (1), I simulate 5,000 sample paths, each of
length n ¼ T=D ¼ 1; 000 at the daily frequency ðD ¼ 1=252Þ: To demonstrate the
ability of the likelihood to disentangle the volatility parameter from the jumps, I
purposefully set the arrival rate of the jumps at a high level, l ¼ 5 in the Poisson
case. Five jumps per year on average is much higher than would be realistic based on
actual estimates for stock index returns (I use l ¼ 0:2 in all figures above). I set the
value of s at a realistic level, s ¼ 0:3: So there is relatively little volatility given the
amount of jumps, which should make it more difficult to distinguish volatility from
jumps among the overall amount of noise. The standard deviation of the jump size is
Z1=2 ¼ 0:6: The process is symmetric (m ¼ b ¼ 0). In the Cauchy case, I set x ¼ 0:2
and s ¼ 0:3: Again, jumps are plentiful.
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Fig. 10. Distinguishing s2 from Poisson jumps: small sample and asymptotic distributions of the MLE of
ðs2; lÞ: The top plot shows that the result of Theorem 1, which is an asymptotic statement for high

observation frequencies, provides a good approximation to the sampling distribution of the estimator of

s2 at the daily frequency. The asymptotic distribution in the lower plot (for the jump parameter l) is based
on the exact asymptotic variance at the daily frequency.
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I then estimate the parameter s2 using MLE. I also repeated the experiment
estimating both ðs2; lÞ in the Poisson case, ðs2; xÞ in the Cauchy case to investigate
the effects of joint estimation on one’s ability to distinguish the volatility parameter
from the jump component. Figs. 10 and 11 report the small sample and asymptotic
distributions for ðs2; lÞ and ðs2; xÞ respectively. The histograms show that despite the
large number of jumps, the estimates of s2 remain in a tight interval around the true
value of 0.09. And the sample variance is close to the values predicted by Theorems 1
and 2 (corresponding to the asymptotic distribution) despite the fact that the data
are sampled only once a day.
These results show that the theoretical asymptotic distribution of the MLE for s2

as derived above provides a good approximation to the small sample behavior of the
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Fig. 11. Distinguishing s2 from Cauchy jumps: small sample and asymptotic distributions of the MLE of
ðs2; xÞ: The top plot shows that the result of Theorem 2, which is an asymptotic statement for high

observation frequencies, provides a good approximation to the sampling distribution of the estimator of

s2 at the daily frequency. The asymptotic distribution in the lower plot (for the jump parameter x) is based
on the exact asymptotic variance at the daily frequency.
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estimators at the daily frequency, despite the two levels of asymptotics involved: first,
asymptotic in T to get AVARMLEðs2Þ; then an asymptotic expansion of
AVARMLEðs2Þ in D; with the theorems stating the leading term of those expansions.
By contrast, the small sample histograms are asymptotic neither in T nor in D (since
D is nonzero and n is finite). For the jump parameters l and a; which are not studied
in the theorems, the bottom plots in Figs. 10 and 11 plot directly the asymptotic
distribution (in T) corresponding to daily sampling, without addressing the issue of
what the limit of the asymptotic variance of the jump parameters would be
asymptotically in small D:

8. Conclusions

I studied the effect of the presence of jumps on one’s ability to identify the
volatility component of the log returns process and found that, somewhat
surprisingly, jumps had no detrimental effect as far as maximum likelihood
estimation was concerned. I also discussed which moment conditions are better than
others in terms of approaching the efficiency of maximum likelihood for this
problem.
Even more surprisingly, the result did not depend on the jumps being large and

infrequent; i.e., Poisson jumps. It remains valid in the case of Cauchy jumps, which
can be infinitely small in magnitude and infinitely frequent. Finally, I provided an
explanation of this phenomenon based on the fact that all jump processes, despite
having an infinite number of small jumps, have distinguishing characteristics relative
to Brownian motion that ultimately can be picked up by the likelihood.
It will be interesting to examine in future work how these results generalize to a

full characterization of the class of L!evy pure jump processes, which can still
perfectly be distinguished from Brownian volatility. In particular, one would like to
characterize the maximal set of laws of the pure jump process for which this
continues to hold. Their laws can be categorized based on the rate a at which the
Levy measure diverges near zero [the right hand side of Eq. (63) is an exact
expression in the case of a stable process, or more generally the rate at which vðdxÞ
diverges]. The conjecture would be that the result continues to hold provided that the
set of laws stays away from the limiting Gaussian case (a ¼ 2 in Section 6), but that if
one allows a to go to two (from below) at the same time as D goes to zero at an
appropriate rate then it would no longer be possible to perfectly distinguish the
Brownian and jump components since in the limit where a tends to two, the pure
jump component approaches Brownian motion.
Furthermore, it would be interesting to study the reverse question–disentangling

the jump parameters from the Brownian noise–as well as the situation where
everything is identified together. But as discussed in the introduction, this paper is a
first step toward suggesting that the recent literature in finance that introduces L!evy
pure jump processes in option pricing, portfolio choice or risk management will not
likely face major obstacles from the econometric side, despite the initial intuition to
the contrary.
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Appendix A. Proof of Proposition 1

Writing the expected value in terms of the density of the discrete increments
YD ¼ XD � X0; the integral defining the moment can be decomposed as

MaðD; y; rÞ ¼E½jYD � Dðmþ blÞjr


¼
Z þN

�N

jy � Dðmþ blÞjrqðy;D; yÞ dy

¼
Z b

�N

ðb � yÞrqðy;D; yÞ dy þ
Z þN

b

ðy � bÞrqðy;D; yÞ dy ðA:1Þ

where b � Dðmþ blÞ: Then recall from Eq. (7) that

qðy;D; yÞ ¼
XþN

n¼0

expð�lDÞðlDÞnffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nZþ Ds2

p
n!
exp �

ðy � mD� nbÞ2

2ðnZþ Ds2Þ

� �
ðA:2Þ

and compute each of the two integrals term by term.
Each term can be expressed using the fact that

Z b

�N

ðb � yÞr
1ffiffiffiffiffiffiffiffi
2pv

p exp �
ðy � aÞ2

2v

� �
dy

þ
Z þN

b

ðy � bÞr
1ffiffiffiffiffiffiffiffi
2pv

p exp �
ðy � aÞ2

2v

� �
dy

¼ ð2vÞr=2p�1=2 exp �
ðb � aÞ2

2v

� �
G
1þ r

2

� �
F
1þ r

2
;
1

2
;
ðb � aÞ2

2v

� �
ðA:3Þ

(see Section 13.2 in Abramowitz and Stegun, 1972). Summing the terms over n after
replacing the values a and v by their expressions a ¼ mDþ nb and v ¼ Ds2 þ nZ; and
b by its value indicated above, yields the result.

Appendix B. Proof of Theorem 1

Because I focus on estimating s2 alone, treating the other parameters as known,
AVARMLEðs2Þ is, up to scaling, the inverse of Fisher’s Information for s2: If more
than one parameter are estimated together, then AVARMLEðs2Þ becomes the term on
the diagonal of the inverse of the information matrix corresponding to s2’s position
in the parameter vector, and will not in general be the inverse of the univariate
information. There are of course some instances where the matrix is diagonal, in
which case AVARMLEðs2Þ is the same as if s2 were estimated alone, but this is not to
be expected in general.
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Going back to the situation studied here, s2 estimated alone, Fisher’s Information
for s2 is given by

Is2 ¼E
q ln qðyjD; yÞ

qs2

� �2" #

¼E
qqðyjD; yÞ

qs2
1

qðyjD; yÞ

� �2" #

¼
Z þN

�N

qqðyjD; yÞ
qs2

� �2
dy

qðyjD; yÞ
ðB:1Þ

where q is the density in Eq. (7)

qðyj;D; yÞ ¼
XþN

n¼0

expð�lDÞðlDÞnffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nZþ Ds2

p
n!
exp �

y2

2ðnZþ Ds2Þ

� �

�
XþN

n¼0

qnðyj;D; yÞ
expð�lDÞðlDÞn

n!
: ðB:2Þ

Calculating its derivative yields

qqðyjD; yÞ
qs2

¼
XþN

n¼0

expð�lDÞðlDÞnD

2
ffiffiffiffiffiffi
2p

p
ðnZþ Ds2Þ5=2n!

exp �
y2

2ðnZþ Ds2Þ

� �

� ðy2 � ðnZþ Ds2ÞÞ: ðB:3Þ

Because the presence of the jumps cannot increase the available information about
s2 relative to the no-jumps case, it must be that

Is2p
1

2s4
: ðB:4Þ

The idea is now to integrate Eq. (B.1) on a restricted subset of the real line,
ð�aD;þaDÞ; yielding from the positivity of the integrand

Is2 ¼
Z þN

�N

ðqqðyjD; yÞ=qs2Þ2

qðyjD; yÞ
dyX

Z þaD

�aD

ðqqðyjD; yÞ=qs2Þ2

qðyjD; yÞ
dy ðB:5Þ

and then to select aD small enough that qðyjD; yÞ has a simpler expression on
ð�aD;þaDÞ yet with enough of the support of the density included in ð�aD;þaDÞ thatZ þaD

�aD

ðqqðyjD; yÞ=qs2Þ2

qðyjD; yÞ
dy ¼

1

2s4
þ oðDÞ: ðB:6Þ

Combining the upper and lower bounds in Eqs. (B.4)–(B.5) will give the desired
result

Is2 ¼
1

2s4
þ oðDÞ ðB:7Þ

which, in light of Eq. (36), will prove the theorem.
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Set aD to be the positive solution of

q0ðaDj;D; yÞ ¼ q1ðaDj;D; yÞ; ðB:8Þ

that is,

aD ¼D1=2ðZþ Ds2ÞsZ�1=2 ln 1þ
Z

Ds2


 �h i1=2
¼ s½�D lnðDÞ
1=2ð1þ oð1ÞÞ: ðB:9Þ

For all yAð�aD;þaDÞ;

q0ðyj;D; yÞ > q1ðyj;D; yÞ > ? > qnðyj;D; yÞ > ? ðB:10Þ

and so from Eq. (B.2)

1

qðyjD; yÞ
X

1

q0ðyjD; yÞ
: ðB:11Þ

Therefore

Z þaD

�aD

qqðyjD;yÞ
qs2


 �2
qðyjD; yÞ

dy

X

Z þaD

�aD

qqðyjD;yÞ
qs2


 �2
q0ðyjD; yÞ

dy

¼
Z þaD

�aD

PþN

n¼0
expð�lDÞðlDÞnD

2
ffiffiffiffi
2p

p
ðnZþDs2Þ5=2n!

exp � y2

2ðnZþDs2Þ


 �
ðy2 � ðnZþ Ds2ÞÞ

 !2

1ffiffiffiffi
2p

p ffiffiffiffiffiffi
Ds2

p exp � y2

2Ds2


 � dy

¼
Z þaD

�aD

XþN

n¼0

ffiffiffiffiffiffi
2p

p
e�lDðlDÞnDðDs2Þ1=4

2ðnZþ Ds2Þ5=2n!
e
�

y2

2ðnZþDs2Þþ
y2

4Ds2 ðy2 � ðnZþ Ds2ÞÞ

 !2
dy

�
Z þaD

�aD

XþN

n¼0

fnðyj;D; yÞ

 !2
dy

¼
XþN

n¼0

XþN

m¼0

Z þaD

�aD

fnðyj;D; yÞfmðyj;D; yÞ dy: ðB:12Þ

The leading term in that double sum comes from n ¼ m ¼ 0 and is the only one
with a final limit as D-0:

XþN

n¼0

XþN

m¼0

Z þaD

�aD

fnðyj;D; yÞfmðyj;D; yÞ dy ¼
Z þaD

�aD

f 20 ðyj;D; yÞ dy þ oð1Þ; ðB:13Þ
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with

Z þaD

�aD

f 20 ðyj;D; yÞ dy ¼
e�2Dl

2
ffiffiffiffiffiffi
2p

p
Z3=2 1þ Z

Ds2
� 	ZþDs2

2Z ðs2Þ3=2

�
ffiffiffiffiffiffi
2p

p
Z3=2 1þ

Z
Ds2


 �ZþDs2

2Z

 

� 2F Z�1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zþ Ds2

p
ln 1þ Z

Ds2
� 	� �1=2
 �

� 1

 �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Zþ Ds2

p
ln 1þ

Z
Ds2


 �h i1=2
� Zþ ðZþ Ds2Þ ln 1þ

Z
Ds2


 �
 ��
¼
1

2s4
þ oðDÞ: ðB:14Þ

Therefore

Z þaD

�aD

ðqqðyjD; yÞ=qs2Þ2

q0ðyjD; yÞ
dy ¼

1

2s4
þ oðDÞ; ðB:15Þ

which completes the proof.

Appendix C. Proof of Propositions 2, 3, and 4

In all cases, what needs to be computed are the matrices D and S: With
polynomial moment functions in h (including possibly absolute values and
noninteger powers) of the type

hðy; d; yÞ ¼ yr � Mðd; y; rÞ ðC:1Þ

or

hðy; d; yÞ ¼ jyjr � Maðd; y; rÞ; ðC:2Þ

the functionals ’h and hh0 retain the polynomial form in y: Thus D and S can
be computed explicitly using the moments MðD; y; rÞ and MaðD; y; rÞ calculated
in Proposition 1. Indeed, if the single Eq. (C.2) is used as the moment condition,
then

D ¼ E½ ’hðYD;D; yÞ
 ¼ � ’MaðD; y; rÞ; ðC:3Þ
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which can be calculated by differentiating with respect to the parameter of the
expression for MaðD; y; rÞ given in Proposition 1 and

S ¼E½hðYD;D; yÞhðYD;D; yÞ
0


¼E½ðjYDjr � MaðD; y; rÞÞ
2


¼E½jYDj
2r
 � 2E½jYDj

r
MaðD; y; rÞ þ MaðD; y; rÞ
2

¼MaðD; y; 2rÞ � MaðD; y; rÞ
2; ðC:4Þ

which is calculated using again the expressions for the moments in Proposition 1.
Given D and S in Eqs. (C.3)–(C.4), I then calculate a Taylor expansion in D for O

in Eq. (33),

O ¼ DðD0S�1DÞ�1 ¼ D
S2

D2
: ðC:5Þ

The leading terms of the Taylor expansions of the moments are given in Proposition
1. In the vector case, repeat the calculations in Eqs. (C.3)–(C.4) for each element of
the matrices D and S: The leading term of the Taylor expansion of the AVAR matrix
O is reported for each combination of moments and parameters in the three
propositions.

Appendix D. Proof of Theorem 2

The essence of the argument is to compute the leading term of Fisher’s
Information by using the convergence of the Cauchy density as D-0 to a
Dirac delta function, using the Brownian density as the test function, after a
change of variable, to get a fixed function. As in Theorem 1, Fisher’s Information
for s2 is

Is2 ¼
Z þN

�N

qqðyjD; yÞ
qs2

� �2
dy

qðyjD; yÞ
: ðD:1Þ

Replace now q; the density of the Brownian plus Cauchy process, by its expression in
Eq. (70), yielding

qqðyjD; yÞ
qs2

¼
Z þN

�N

x

2
ffiffiffiffiffiffi
2p

p
D1=2ðs2Þ5=2

e�
ðy�zÞ2

2Ds2
ððy � zÞ2 � Ds2Þ

D2x2p2 þ z2
dz: ðD:2Þ
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and therefore

Is2 ¼
Z þN

�N

qqðyjD; yÞ
qs2

� �2
dy

qðyjD; yÞ

¼
x

2
ffiffiffiffiffiffi
2p

p
D1=2ðs2Þ5=2

 !2 ffiffiffiffiffiffi
2p

p ffiffiffiffiffi
s2

p
D1=2x

�
Z þN

�N

RþN

�N
exp �ðy�zÞ2

2Ds2


 �
ððy�zÞ2�Ds2Þ
D2x2p2þz2

dz

 �2
RþN

�N
exp �ðy�zÞ2

2Ds2


 �
1

D2x2p2þz2
dz

dy

¼
x

4
ffiffiffiffiffiffi
2p

p
D3=2ðs2Þ9=2

�
Z þN

�N

RþN

�N
exp �ðy�zÞ2

2Ds2


 �
ððy�zÞ2�Ds2Þ
D2x2p2þz2

dz

 �2
RþN

�N
exp �ðy�zÞ2

2Ds2


 �
1

D2x2p2þz2
dz

dy: ðD:3Þ

Concentrating on the numerator inside the integral,

Z þN

�N

e�
ðy�zÞ2

2Ds2
ððy � zÞ2 � Ds2Þ

D2x2p2 þ z2
dz

� �2

¼
Z þN

�N

e�
ðy�zÞ2

2Ds2
ðy � zÞ2

D2x2p2 þ z2
dz

� �2

� 2Ds2
Z þN

�N

e�
ðy�zÞ2

2Ds2
ðy � zÞ2

D2x2p2 þ z2
dz

� �

�
Z þN

�N

e�
ðy�zÞ2

2Ds2
1

D2x2p2 þ z2
dz

� �

þ D2s4
Z þN

�N

e�
ðy�zÞ2

2Ds2
1

D2x2p2 þ z2
dz

� �2
; ðD:4Þ

so that

Z þN

�N

ð
RþN

�N
exp �ðy�zÞ2

2Ds2


 �
ððy�zÞ2�Ds2Þ
D2x2p2þz2

dzÞ2RþN

�N
exp �ðy�zÞ2

2Ds2


 �
1

D2x2p2þz2
dz

dy

¼
Z þN

�N

ð
RþN

�N
exp �ðy�zÞ2

2Ds2


 �
ðy�zÞ2

D2x2p2þz2
dzÞ2RþN

�N
exp �ðy�zÞ2

2Ds2


 �
1

D2x2p2þz2
dz

dy

� 2Ds2
Z þN

�N

Z þN

�N

e�
ðy�zÞ2

2Ds2
ðy � zÞ2

D2x2p2 þ z2
dz dy

þ D2s4
Z þN

�N

Z þN

�N

e�
ðy�zÞ2

2Ds2
1

D2x2p2 þ z2
dz dy

� A þ B þ C: ðD:5Þ
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FromZ þN

�N

qðyjD; yÞ dy ¼ 1; ðD:6Þ

it follows thatZ þN

�N

Z þN

�N

e�
ðy�zÞ2

2Ds2
1

D2x2p2 þ z2
dz dy ¼

ffiffiffiffiffiffi
2p

p
ðs2Þ1=2

D1=2x
ðD:7Þ

and hence

C ¼ D2s4
ffiffiffiffiffiffi
2p

p
ðs2Þ1=2

D1=2x

 !
¼

D3=2
ffiffiffiffiffiffi
2p

p
ðs2Þ5=2

x
: ðD:8Þ

Similarly, from the expected value of the score being zero, namelyZ þN

�N

qqðyjD; yÞ
qs2

dy ¼ 0; ðD:9Þ

it follows thatZ þN

�N

Z þN

�N

e�
ðy�zÞ2

2Ds2
ðy � zÞ2

D2x2p2 þ z2
dz dy

¼ Ds2
Z þN

�N

Z þN

�N

e�
ðy�zÞ2

2Ds2
1

D2x2p2 þ z2
dz dy

¼
D1=2

ffiffiffiffiffiffi
2p

p
ðs2Þ3=2

x
ðD:10Þ

and hence

B ¼ �2Ds2
D1=2

ffiffiffiffiffiffi
2p

p
ðs2Þ3=2

x

 !
¼ �2

D3=2
ffiffiffiffiffiffi
2p

p
ðs2Þ5=2

x

 !
: ðD:11Þ

Thus

Is2 ¼
x

4
ffiffiffiffiffiffi
2p

p
D3=2ðs2Þ9=2

� ðA þ B þ CÞ

¼
x

4
ffiffiffiffiffiffi
2p

p
D3=2ðs2Þ9=2

� A þ
x

4
ffiffiffiffiffiffi
2p

p
D3=2ðs2Þ9=2

� �2
D3=2

ffiffiffiffiffiffi
2p

p
ðs2Þ5=2

x

 !
þ

D3=2
ffiffiffiffiffiffi
2p

p
ðs2Þ5=2

x

 !

¼
x

4
ffiffiffiffiffiffi
2p

p
D3=2ðs2Þ9=2

� A �
1

4s4

� *A �
1

4s4
: ðD:12Þ
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That leaves the computation of

*A �
x

4
ffiffiffiffiffiffi
2p

p
D3=2ðs2Þ9=2

� A

¼
x

4
ffiffiffiffiffiffi
2p

p
D3=2ðs2Þ9=2

�
Z þN

�N

RþN

�N
exp �ðy�zÞ2

2Ds2


 �
ðy�zÞ2

D2x2p2þz2
dz


 �2
RþN

�N
exp �ðy�zÞ2

2Ds2


 �
1

D2x2p2þz2
dz

dy: ðD:13Þ

To handle the integral A; I first do two changes of variable, from z to w ¼ z=ðDs2Þ1=2

in the two inner integrals and from y to x ¼ y=ðDs2Þ1=2 in the outer integral,
yielding

A ¼
Z þN

�N

RþN

�N
exp �ðy�wðDs2Þ1=2Þ2

2Ds2


 �
ðy�wðDs2Þ1=2Þ2

D2x2p2þDs2w2
dwðDs2Þ1=2


 �2
RþN

�N
exp �ðy�wðDs2Þ1=2Þ2

2Ds2


 �
1

D2x2p2þDs2w2
dwðDs2Þ1=2

dy

¼
Z þN

�N

RþN

�N
exp �ðxðDs2Þ1=2�wðDs2Þ1=2Þ2

2Ds2


 �
ðxðDs2Þ1=2�wðDs2Þ1=2Þ2

D2x2p2þDs2w2
dw


 �2
RþN

�N
exp �ðxðDs2Þ1=2�wðDs2Þ1=2Þ2

2Ds2


 �
1

D2x2p2þDs2w2
dw

� ðDs2Þ1=2 dxðDs2Þ1=2

¼ ðDs2Þ3
Z þN

�N

RþN

�N
exp �ðx�wÞ2

2


 �
ðx�wÞ2

D2x2p2þDs2w2
dw


 �2
RþN

�N
exp �ðx�wÞ2

2


 �
1

D2x2p2þDs2w2
dw

dx

¼D2s6
Z þN

�N

RþN

�N
exp �ðx�wÞ2

2


 �
ðx�wÞ2

Dx2p2þs2w2
dw


 �2
RþN

�N
exp �ðx�wÞ2

2


 �
1

Dx2p2þs2w2
dw

dx; ðD:14Þ

so that

*A ¼
D1=2x

4
ffiffiffiffiffiffi
2p

p
ðs2Þ3=2

Z þN

�N

RþN

�N
exp �ðx�wÞ2

2


 �
ðx�wÞ2

Dx2p2þs2w2
dw


 �2
RþN

�N
exp �ðx�wÞ2

2


 �
1

Dx2p2þs2w2
dw

dx

¼
1

4
ffiffiffiffiffiffi
2p

p
s4

Z þN

�N

RþN

�N
exp �ðx�wÞ2

2


 �
ðx � wÞ2oDðwÞ dw


 �2
RþN

�N
exp �ðx�wÞ2

2


 �
oDðwÞ dw

dx ðD:15Þ

where

oDðwÞ �
xD1=2s

Dx2p2 þ s2w2
: ðD:16Þ
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The function oD integrates to one, and as D tends to zero, it converges to a Dirac
point mass at w ¼ 0: ThereforeZ þN

�N

exp �
ðx � wÞ2

2

� �
oDðwÞ dw ¼ exp �

x2

2

� �
þ oð1Þ ðD:17Þ

Z þN

�N

exp �
ðx � wÞ2

2

� �
ðx � wÞ2oDðwÞ dw ¼ exp �

x2

2

� �
x2 þ oð1Þ: ðD:18Þ

Let

hDðxÞ �

RþN

�N
exp �ðx�wÞ2

2


 �
ðx � wÞ2oDðwÞ dw


 �2
RþN

�N
exp �ðx�wÞ2

2


 �
oDðwÞ dw

: ðD:19Þ

From the limits above,

hDðxÞ ¼
exp �x2

2


 �
x2


 �2
exp �x2

2


 � þ oð1Þ ¼ exp �
x2

2

� �
x4 þ oð1Þ � h0ðxÞ þ oð1Þ: ðD:20Þ

To establish thatZ þN

�N

hDðxÞ dx ¼
Z þN

�N

h0ðxÞ dx þ oð1Þ

¼ 3
ffiffiffiffiffiffi
2p

p
þ oð1Þ; ðD:21Þ

I apply Fatou’s Lemma (see, e.g., 6.8.8 in Haaser and Sullivan, 1991) to yieldZ þN

�N

h0ðxÞ dx p lim

Z þN

�N

hDðxÞ dx: ðD:22Þ

To obtain an upper bound for the right hand side of Eq. (D.22), I use the Cauchy–
Schwarz Inequality as follows:

ð
RþN

�N
uðw;xÞ dwÞ2RþN

�N
vðw; xÞ dw

p
Z þN

�N

uðw;xÞ2

vðw; xÞ
dw ðD:23Þ

to obtain

Z þN

�N

hDðxÞ dxp
Z þN

�N

Z þN

�N

exp �ðx�wÞ2

2


 �
ðx � wÞ2oDðwÞ


 �2
exp �ðx�wÞ2

2


 �
oDðwÞ

dw dx

¼
Z þN

�N

Z þN

�N

e�
ðx�wÞ2

2 ðx � wÞ4oDðwÞ dw dx ðD:24Þ

Now, inverting the order of integration by integrating in x first, we have:Z þN

�N

e�
ðx�wÞ2

2 ðx � wÞ4 dx ¼
Z þN

�N

e�
x2

2 x4 dx ¼ 3
ffiffiffiffiffiffi
2p

p
: ðD:25Þ
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Integrating now in w,Z þN

�N

wDðwÞ dw ¼ 1 ðD:26Þ

ThereforeZ þN

�N

hDðxÞ dxp3
ffiffiffiffiffiffi
2p

p
: ðD:27Þ

Combined with Eq. (D.22), it therefore follows that

3
ffiffiffiffiffiffi
2p

p
¼
Z þN

�N

h0ðxÞ dxplim
Z þN

�N

hDðxÞ dxplim
Z þN

�N

hDðxÞ dxp3
ffiffiffiffiffiffi
2p

p
ðD:28Þ

which establishes Eq. (D.21):

lim

Z þN

�N

hDðxÞ dx ¼ 3
ffiffiffiffiffiffi
2p

p
: ðD:29Þ

Hence I have obtained that

*A ¼
1

4
ffiffiffiffiffiffi
2p

p
s4

Z þN

�N

hDðxÞ dx ¼
3

4s4
þ oð1Þ ðD:30Þ

and from Eq. (D.12) Fisher’s Information for s2 is

Is2 ¼ *A �
1

4s4
¼
1

2s4
þ oð1Þ; ðD:31Þ

which, in light of (36), proves the theorem.

Appendix E. Proof of Lemma 1

A Brownian motion has density

fWDðyÞ ¼
1ffiffiffiffiffiffi

2p
p ffiffiffiffiffiffiffiffi

Ds2
p exp �

y2

2Ds2

� �
ðE:1Þ

so that

PrðjYDj > eÞ ¼
Z
jyj>e

fWDðyÞ dy

¼ 2F
e

D1=2s

� �
� 1

¼
D1=2s
e

ffiffiffi
2

p

r
exp �

e2

2Ds2

� �
ð1þ oð1ÞÞ ðE:2Þ
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with the last equation following from the known asymptotic behavior of the Normal
cdf F near infinity (see, e.g., 26.2.12 in Abramowitz and Stegun, 1972):

1� FðxÞ ¼
fðxÞ

x
ð1þ oð1ÞÞ; ðE:3Þ

as x-þN; where f is the Normal pdf.
For a L!evy pure jump process with jump measure vðdzÞ and probability measure

fLDðdyÞ it is known that for points ya0; under regularity conditions,

fLDðdyÞ ¼ D� vðdyÞ þ oðDÞ ðE:4Þ

(see, e.g., Corollary 1 in R .uschendorf and Woerner, 2002, as a special case for L!evy
processes of L!eandre, 1987; Picard, 1997, for points that can be reached in one jump
from 0). The regularity conditions referred to in the statement of the lemma are those
of Theorem 1 in R .uschendorf and Woerner (2002). They are satisfied for instance by
the symmetric stable class emphasized here.
Then, by Fatou’s Lemma,

PrðjYDj > eÞ ¼
Z
jyj>e

fLD ðdyÞ

¼D�
Z
jyj>e

vð dyÞ þ oðDÞ: ðE:5Þ

References

Abramowitz, M., Stegun, I.A., 1972. Handbook of Mathematical Functions. Dover, New York, NY.

A.ıt-Sahalia, Y., 2002a. Maximum-likelihood estimation of discretely-sampled diffusions: a closed-form

approximation approach. Econometrica 70, 223–262.

A.ıt-Sahalia, Y., 2002b. Telling from discrete data whether the underlying continuous-time model is a

diffusion. Journal of Finance 57, 2075–2112.

A.ıt-Sahalia, Y., Mykland, P.A., 2003. The effects of random and discrete sampling when estimating

continuous-time diffusions. Econometrica 71, 483–549.

A.ıt-Sahalia, Y., Mykland, P.A., Zhang, L., 2003. How often to sample a continuous-time process in the

presence of market microstructure noise. Review of Financial Studies, forthcoming.

Ball, C.A., Torous, W.N., 1983. A simplified jump process for common stock returns. Journal of Financial

and Quantitative Analysis 18, 53–65.

Barndorff-Nielsen, O.E., Shephard, N., 2002. Power variation with stochastic volatility and jumps.

Unpublished Working paper. University of Aarhus.

Beckers, S., 1981. A note on estimating the parameters of the diffusion-jump model of stock returns.

Journal of Financial and Quantitative Analysis 16, 127–140.

Bertoin, J., 1998. L!evy Processes. Cambridge University Press, Cambridge, UK.

Carr, P., Wu, L., 2003. What type of process underlies options? A simple robust test. Journal of Finance

58, 2581–2610.

Carr, P., Wu, L., 2004. Time-changed L!evy processes and option pricing. Journal of Financial Economics

71, 113–141.

Carr, P., Geman, H., Madan, D.B., Yor, M., 2002. The fine structure of asset returns: an empirical

investigation. Journal of Business 75, 305–332.

Chan, K., 1999. Pricing contingent claims on stocks driven by L!evy processes. Annals of Applied

Probability 9, 504–528.

ARTICLE IN PRESS
Y. A.ıt-Sahalia / Journal of Financial Economics 74 (2004) 487–528 527



Chernov, M., Gallant, A.R., Ghysels, E., Tauchen, G.T., 2003. Alternative models of stock price

dynamics. Journal of Econometrics 116, 225–257.

Ding, Z., Granger, C.W., Engle, R.F., 1993. A long memory property of stock market returns and a new

model markets. Journal of Empirical Finance 1, 83–106.

Eberlein, E., Raible, S., 1999. Term structure models driven by general L!evy processes. Mathematical

Finance 9, 31–53.

Eberlein, E., Keller, U., Prause, K., 1998. New insights into smile, mispricing and value at risk: the

hyperbolic model. Journal of Business 71, 371–405.

Eraker, B., Johannes, M.S., Polson, N., 2003. The impact of jumps in equity index volatility and returns.

Journal of Finance 58, 1269–1300.

Haaser, N.B., Sullivan, J.A., 1991. Real Analysis. Dover, New York, NY.

Hansen, L.P., 1982. Large sample properties of generalized method of moments estimators. Econometrica

50, 1029–1054.

Honor!e, P., 1998. Pitfalls in estimating jump-diffusion models. Unpublished Working paper. Aarhus

School of Business.

Kiefer, N.M., 1978. Discrete parameter variation: efficient estimation of a switching regression model.

Econometrica 46, 427–434.

L!eandre, R., 1987. Densite en temps petit d’un processus de sauts. In: S!eminaire de Probabilit!es, Vol. XXI,

Lecture Notes in Mathematics, 1247. Springer, Berlin, Germany, pp. 81–99.

Lepingle, D., 1976. La variation d’ordre p des semi-martingales. Zeitschrift fur Wahrscheinlichkeitstheorie

und Verwandte Gebiete 36, 295–316.

Madan, D.B., Carr, P.P., Chang, E.E., 1998. The variance gamma process and option pricing. European

Finance Review 2, 79–105.

Merton, R.C., 1976. Option pricing when underlying stock returns are discontinuous. Journal of Financial

Economics 3, 125–144.

Picard, J., 1997. Density in small time for L!evy processes. ESAIM Probability and Statistics 1, 357–389.

Press, S.J., 1967. A compound events model for security prices. Journal of Business 40, 317–335.

Ray, D., 1956. Stationary markov processes with continuous paths. Transactions of the American

Mathematical Society 82, 452–493.

R .uschendorf, L., Woerner, J.H.C., 2002. Expansions of transition distributions of L!evy processes in small

time. Bernoulli 8, 81–96.

Schaumburg, E., 2001. Maximum likelihood estimation of jump processes with applications to finance.

Ph.D. Dissertation. Princeton University.

ARTICLE IN PRESS
Y. A.ıt-Sahalia / Journal of Financial Economics 74 (2004) 487–528528


	Disentangling diffusion from jumps
	Introduction
	The model and setup
	The transition density
	Moments of the process
	Absolute moments of noninteger order

	Intuition for the difficulty in identifying the parameters
	Isonoise curves
	Inferring jumps from large realized returns
	The time-smoothing effect

	Disentangling the diffusion from the jumps using the likelihood
	Asymptotics
	Fisher’s Information in the presence of jumps

	Using moments: how close does GMM come to MLE?
	Estimating sigma2 alone
	Estimating sigma2 and lambda together
	Estimating sigma2, lambda and eta together

	Disentangling the diffusion from other jump processes: the Cauchy case
	LÕvy processes
	Mixing Cauchy jumps with Brownian noise
	Intuition for the result: how big is that infinite number of small jumps?

	Monte Carlo simulations
	Conclusions
	Proof of Proposition 1
	Proof of Theorem 1
	Proof of Propositions 2, 3, and 4
	Proof of Theorem 2
	Proof of Lemma 1
	References


