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T his chap ter rev iew s clo sed fo rm ex p ansio ns fo r d iscretely sam p led d if-

fu sio ns, and their u se fo r lik eliho o d inference and testing . T he m etho d is

ap p licab le to a larg e class o f m o d els, co v ering b o th u niv ariate and m u lti-

v ariate p ro cesses, and w ith a state v ecto r that is either fu lly o r p artially

o b serv ed . E x am p les are inclu d ed .

17.1. In tro d u c tio n

This chapter surveys recent results on closed form likelihood ex pansions for

discretely sampled diff usions. The b asic model is w ritten in the form of a

stochastic diff erential eq uation for the state vector X

d Xt = µ(Xt; θ)d t + σ(Xt; θ)d Wt (1 7 .1 )

w here Wt is an m−dimensional standard B row nian motion. In the para-

metric case, the functions µ and σ are know n, b ut not the parameter vector

θ w hich is the ob ject of interest. A vailab le data are discrete ob servations

on the process sampled at dates ∆, 2 ∆, ..., N ∆, w ith ∆ fi x ed. The case

w here ∆ is either deterministic and time-varying or random (as long as

independent from X) introduces no further diffi culties.

O ne major impediment to b oth theoretical modeling and empirical w ork

w ith continuous-time models is the fact that in most cases little can b e

said ab out the implications of the instantaneous dynamics (1 7 .1 ) for Xt

for long er time intervals ∆. O ne cannot in g eneral characterize in closed

form an ob ject as simple, yet fundamental for everything from prediction

to estimation and derivative pricing , as the conditional density of Xt+∆
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given the current value Xt, also known as the transition function of the

process. F or a list of the rare exceptions, see W ong (19 6 4 ). In finance, the

well-known models of Black and S choles (19 73 ) (the geometric Brownian

motion dXt = βXtdt +σXtdWt), V asicek (19 77) (the Ornstein-U hlenbeck

process dXt = β (α − Xt) dt +σdWt) and C ox, Ingersoll, and R oss (19 8 5 )

(F eller’s square root process dXt = β (α − Xt) dt +σX
1/2
t dWt) rely on these

existing closed-form expressions.

In many cases that are relevant in finance, however, the transi-

tion function is unknown: see for example the models used in C our-

tadon (19 8 2) (dXt = β (α − Xt) dt +σXtdWt), M arsh and R osen-

feld (19 8 2) (dXt = (αX
−(1−δ)
t + β)dt +σX

δ/2
t dWt), C ox (19 75 ) and

the more general version of C han, K arolyi, L ongstaff, and S anders

(19 9 2) (dXt = β (α − Xt) dt + σXγ
t dWt), C onstantinides (19 9 2) (dXt =

(

α0 + α1Xt + α2X
2
t

)

dt + (σ0 + σ1Xt) dWt), the affine class of models in

D uffie and K an (19 9 6 ) and D ai and S ingleton (20 0 0 ) (dXt = β (α − Xt) dt

+
√

σ0 + σ1XtdWt), the nonlinear mean reversion model in Aı̈t-S ahalia

(19 9 6 ) (dXt = (α0+α1Xt +α2X
2
t +α

−1/ Xt)dt +(β0+β1Xt +β2X
β3

t )dWt).

W hile it is possible to write down the continuous-time likelihood function

for the full sample sample path, ignoring the difference between sampling

at a fixed time interval ∆ and seeing the full sample path can lead to

inconsistent estimators of the parameter vector θ.

In Aı̈t-S ahalia (19 9 9 ) (examples and application to interest rate data),

Aı̈t-S ahalia (20 0 2) (univariate theory) and Aı̈t-S ahalia (20 0 1) (multivariate

theory), I developed a method which produces accurate approximations in

clo sed fo rm to the unknown transition function pX (x|x0, ∆; θ), that is, the

conditional density that Xn∆ = x given X(n−1)∆ = x0 in an amount of

time ∆ implied by the model in equation (17.1).

Bayes’ rule combined with the M arkovian nature of the process, which

the discrete data inherit, imply that the log-likelihood function has the

simple form

`N (θ) ≡
N

∑

i= 1

lX
(

Xi∆|X(i−1)∆, ∆; θ
)

(17.2)

where lX ≡ ln pX , and the asymptotically irrelevant density of the initial

observation, X0, has been left out. As is clear from (17.2), the availability of

tractable formulae for pX is what makes likelihood inference feasible under

these conditions.

The rest of this paper is devoted to reviewing these methods and their

applications. I start with the univariate case in S ection 17.2, then move on
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to the multivariate case in Section 17.3. Section 17.4 shows a connection

between this method and saddlepoint approximations. I then provide two

examples, one of a nonlinear univariate model, and one of a multivariate

model, in Sections 17.5 and 17.6 respectively. Section 17.7 discusses infer-

ence using this method when the state vector is only partially observed,

as in stochastic volatility or term structure models. Section 17.8 outlines

the use of this method in specification testing while Section 17.9 sketches

derivative pricing applications. Finally, Section 17.10 discusses likelihood

inference for continuous time models when the underlying process is non-

stationary.

17.2. The Univariate Case

E xisting methods to derive MLE for discretely sampled diffusions re-

quired solving numerically the Fokker-P lanck-Kolmogorov partial differ-

ential equation satisfied by pX (see e.g., Lo (1988)), or simulating a large

number of sample paths along which the process is sampled very finely

(P edersen (1995), Brandt and Santa-Clara (2002)). N either methods pro-

duce a closed-form expression, so they both result in a large computational

effort since the likelihood must be recomputed for each observed realiza-

tion of the state vector, and each value of the parameter vector θ along the

maximization. Both methods deliver a sequence of approximations to `N (θ)

which become increasingly accurate as some control parameter J tends to

infinity.

By contrast, the closed form likelihood expressions that I will describe

here make MLE a feasible choice for estimating θ in practical applications.

The method involves no simulations and no P DE to solve numerically. Like

these two methods, I also construct a sequence `
(J)
N for J = 1, 2, ... of ap-

proximations to `N , but the essential difference is that `
(J)
N will be obtained

in closed-form. It converges to `N as J →∞ and maximizing `
(J)
N in lieu of

the true but incomputable `N results in an estimator which converges to

the true MLE . Since `
(J)
N is explicit, the effort involved is minimal.

17.2.1. The density approximation sequence

To understand the construction of the sequence of approximations to pX ,

the following analogy may be helpful. Consider a standardized sum of ran-

dom variables to which the Central Limit Theorem (CLT) applies. Often,

one is willing to approximate the actual sample size n by infinity and use

the N(0, 1) limiting distribution for the properly standardized transforma-
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tion of the data. If not, higher order terms of the limiting distribution (for

example the classical Edgeworth expansion based on H ermite polynomials)

can be calculated to improve the small sample performance of the approx-

imation. Consider now approximating the transition density of a diffusion,

and think of the sampling interval ∆ as playing the role of the sample

size N in the CLT. If we properly standardize the data, then we can find

out the limiting distribution of the standardized data as ∆ tends to 0 (by

analogy with what happens in the CLT when N tends to ∞). Properly

standardizing the data in the CLT means summing them and dividing by

N1/2; here it involves transforming the original diffusion X into another

one, called Z below. In both cases, the appropriate standardization makes

N(0, 1) the leading term of the approximation. This N(0, 1) approximation

is then refined by “ correcting” for the fact that ∆ is not 0 (just like in

practical applications of the CLT N is not infinity). As in the CLT case,

it is natural to consider higher order terms based on H ermite polynomials,

which are orthogonal with respect to the leading N(0, 1) term.

This is not a standard Edgeworth expansion, however: we want conver-

gence as J →∞, not N →∞. Further, in general, pX cannot be approx-

imated for fixed ∆ around a Normal density by standard series because

the distribution of X is too far from that of a Normal: for instance, if X

follows a geometric Brownian motion, the right tail of pX is too thick, and

the Edgeworth expansion diverges as J →∞. Therefore there is a need for

a transformation of X that standardizes the tails of its distribution.

Since Z is a known transformation of X , one can then revert the trans-

formation from X to Z and obtain an expansion for the density of X . As

a result of transforming Z back into X , which in general is a nonlinear

transformation (unless σ(x; θ) is independent of the state variable x), the

leading term of the expansion for the transition function of X will be a de-

formed, or stretched, normal density rather than the N(0, 1) leading term

of the expansion for pZ .

The first step towards constructing the sequence of approximations to

pX consists in standardizing the diffusion function of X , i.e., transforming

X into Y defined as

Yt ≡ γ (Xt; θ) =

∫ Xt du

σ (u; θ)
(17.3)

so that

dYt = µY (Yt; θ) dt + dWt (17.4)
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where

µY (y; θ) =
µ

(

γ−1 (y; θ) ; θ
)

σ (γ−1 (y; θ) ; θ)
− 1

2

∂ σ

∂ x

(

γ−1 (y; θ) ; θ
)

. (17.5)

Let pY denote the transition function of Y. The tails of pY have a

G aussian-like upper bound, so Y is “closer” to a Normal variable than

X is. But it is still not practical to expand pY . This is due to the fact that

pY gets peaked around the conditioning value y0 when ∆ gets small. And

a Dirac mass is not a particularly appealing leading term for an expan-

sion. For that reason, a further transformation is performed, defining the

“pseudo-normalized” increment of Y as

Zt ≡ ∆ −1/2 (Yt − y0) . (17.6)

G iven the density of Y, we can work back to the density of X by applying

the J acobian formula:

pX (x|x0, ∆; θ) =
pY (γ (x; θ) |γ (x0; θ) , ∆; θ)

σ (γ (x; θ) ; θ)
(17.7)

where pY can itself be deduced from the density pZ of Z :

pY (y|y0, ∆; θ) = ∆−1/2pZ

(

∆−1/2 (y − y0)
∣

∣

∣
y0, ∆; θ

)

. (17.8)

So this leaves us with the need to approximate the density function

pZ . Consider a Hermite series expansion for the conditional density of the

variable Zt, which has been constructed precisely so that it be close enough

to a N(0, 1) variable for an expansion around a N(0, 1) density to converge.

The classical Hermite polynomials are

Hj (z) ≡ ez2/2 dj

dzj

[

e−z2/2
]

, j ≥ 0, (17.9)

and let φ (z) ≡ e−z2/2/
√

2π denote the N(0, 1) density function. Also, define

p
(J)
Z (z|y0, ∆; θ) ≡ φ (z)

J
∑

j=0

ηj (∆, y0; θ) Hj (z) (17.10)

as the Hermite expansion of the density function z 7→ pZ (z|y0, ∆; θ) (for

fixed ∆, y0 and θ). The coefficients η
(j)
Z are given by:
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η
(j)
Z (∆, y0; θ) = (1/j!)

∫ +∞

−∞

Hj (z) pZ (z|y0, ∆; θ) dz

= (1/j!)

∫ +∞

−∞

Hj (z) ∆1/2pY

(

∆1/2z + y0

∣

∣

∣
y0, ∆; θ

)

dz

= (1/j!)

∫ +∞

−∞

Hj

(

∆−1/2 (y − y0)
)

pY (y|y0, ∆; θ) dy

= (1/j!) E
[

Hj

(

∆−1/2 (Yt+∆ − y0)
) ∣

∣

∣
Yt = y0; θ

]

(17.11)

so that the coefficients η
(j)
Z are specific conditional moments of the process

Y . As such, they can be computed in a number of ways, including for

instance Monte Carlo integration.

A particularly attractive alternative, however, is to calculate explicitly

a Taylor series expansion in ∆ for the coefficients η
(j)
Z . Let f(y, y0) be a

polynomial. Polynomials and their iterates obtained by repeated applica-

tion of the generator A are in D(A) under regularity assumptions on the

boundary behavior of the process. A is the operator which under regularity

conditions returns

A · f =
∂f

∂δ
+ µ(y)

∂f

∂y
+

1

2
σ2(y)

∂2f

∂y2
(17.12)

when applied to functions f(δ , y, y0) that are sufficiently differentiable and

display an appropriate growth behavior (this includes the Hermite polyno-

mials under mild restrictions on (µ, σ)). For such an f, we have

E[f (∆, Yt+∆, y0) |Yt = y0] =

K
∑

k=0

Ak (θ) • f (0, y0, y0)
∆k

k!

+O(∆K+1), (17.13)

which is then applied to the Taylor-expand (17.11) in powers of ∆. This can

be viewed as an expansion in small time, although one that is fully explicit

since it merely requires the ability to differentiate repeatedly (µ, σ).

17.2.2. Explicit expressions for the transition function

expansion

I now apply the method just described. Let p
(J,K)
Z denote the Taylor series

up to order K in ∆ of p
(J)
Z , formed by using the Taylor series in ∆, up to
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order K, of the coefficients η
(j)
Z . The series η

(j,K)
Z of the first seven Hermite

coefficients (j = 0, . . . , 6) are given by η
(0)
Z = 1, and, to order K = 3, by:

η
(1,3)
Z = − µY ∆1/2 −

(

2µY µ
[1]
Y + µ

[2]
Y

)

∆3/2/4

×
(

4µY µ
[1]2
Y + 4µ2

Y µ
[2]
Y + 6µ

[1]
Y µ

[2]
Y + 4µY µ

[3]
Y + µ

[4]
Y

)

∆5/2/24

η
(2,3)
Z =

(

µ2
Y + µ

[1]
Y

)

∆/2 +
(

6µ2
Y µ

[1]
Y + 4µ

[1]2
Y + 7µY µ

[2]
Y + 2µ

[3]
Y

)

∆2/12

+
(

28µ2
Y µ

[1]2
Y + 28µ2

Y µ
[3]
Y + 16µ

[1]3
Y +16µ3

Y µ
[2]
Y

+ 88µY µ
[1]
Y µ

[2]
Y + 21µ

[2]2
Y + 32µ

[1]
Y µ

[3]
Y + 16µY µ

[4]
Y + 3µ

[5]
Y

)

∆3/96

η
(3,3)
Z = −

(

µ3
Y + 3µY µ

[1]
Y + µ

[2]
Y

)

∆3/2/6 −
(

12µ3
Y µ

[1]
Y + 28µY µ

[1]2
Y + 22µ2

Y µ
[2]
Y

+ 24µ
[1]
Y µ

[2]
Y + 14µY µ

[3]
Y + 3µ

[4]
Y

)

∆5/2/48

η
(4,3)
Z =

(

µ4
Y + 6µ2

Y µ
[1]
Y + 3µ

[1]2
Y + 4µY µ

[2]
Y + µ

[3]
Y

)

∆2/24

+
(

20µ4
Y µ

[1]
Y + 50µ3

Y µ
[2]
Y + 100µ2

Y µ
[1]2
Y + 50µ2

Y µ
[3]
Y + 23µY µ

[4]
Y

+ 180µY µ
[1]
Y µ

[2]
Y + 40µ

[1]3
Y + 34µ

[2]2
Y + 52µ

[1]
Y µ

[3]
Y + 4µ

[5]
Y

)

∆3/240

η
(5,3)
Z = −

(

µ5
Y + 10µ3

Y µ
[1]
Y + 15µY µ

[1]2
Y + 10µ2

Y µ
[2]
Y

+ 10µ
[1]
Y µ

[2]
Y + 5µY µ

[3]
Y + µ

[4]
Y

)

∆5/2/120

η
(6,3)
Z =

(

µ6
Y + 15µ4

Y µ
[1]
Y + 15µ

[1]3
Y + 20µ3

Y µ
[2]
Y + 15µ

[1]
Y µ

[3]
Y + 45µ2

Y µ
[1]2
Y

+ 10µ
[2]2
Y + 15µ2

Y µ
[3]
Y + 60µY µ

[1]
Y µ

[2]
Y + 6µY µ

[4]
Y + µ

[5]
Y

)

∆3/720

where µ
[k]m
Y ≡

(

∂kµY (y0; θ)/∂y
k

0

)m

.

Different ways of gathering the terms are available (as in the CLT,

where for example both the Edgeworth and Gram-Charlier expansions are

based on a Hermite expansion). Here, if we gather all the terms according

to increasing powers of ∆ instead of increasing order of the Hermite poly-

nomials, and let p̃
(K)
Z ≡ p

(∞,K)
Z –and similarly for Y –we obtain an explicit

representation of p̃
(K)
Y , given by:

p̃
(K)
Y (y|y0, ∆; θ) = ∆−1/2φ

(

y − y0

∆1/2

)

exp

(
∫ y

y0

µY (w; θ) dw

)

×
K

∑

k=0

ck (y|y0; θ)
∆k

k !
(17.14)
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where c0 = 1 and for all j > 1

ck (y|y0; θ) = k (y − y0)
−k

∫ y

y0

(w − y0)
k−1

{

λY (w; θ) ck−1 (w|y0; θ)

+
(

∂2ck−1

(

w|y0; θ
)

/∂w
2
)

/2
}

dw (17.15)

with

λY (y; θ) ≡ −
(

µ2
Y (y; θ) + ∂µY (y; θ)/∂y

)

/2. (17.16)

This equation allows the determination of the coefficients ck recursively

starting from c0. These calculations are easily amenable to an implementa-

tion using software such as Mathematica. This implementation is typically

the most convenient and accurate in empirical applications. Of course, that

calculation needs only be done once for a particular model; once the for-

mulae are obtained, they can be used in a standard MLE routine.

The first two coefficients are given by

c1 (y|y0; θ)=

∫ y

y0

λY (u; θ)du

y − y0
(17.17)

c2 (y|y0; θ)=
1

(y − y0)2

∫ y

y0

dw

(y0 − w)2

{

2

(
∫ w

y0

λY (u; θ)du

)

×
(

λY (w; θ)(y0 − w)2 + 1
)

+ 2λY (w; θ)(y0 − w) + (y0 − w)2λ′

Y (w; θ)

}

. (17.18)

These formulae solve the FPK equations up to order ∆K , both forward

and backward:

∂p̃
(K)
Y

∂∆
+

∂

∂y

{

µY (y; θ) p̃
(K)
Y

}

− 1

2

∂2p̃
(K)
Y

∂y2
= O

(

∆K
)

(17.19)

∂p̃
(K)
Y

∂∆
− µY (y0; θ)

∂p̃
(K)
Y

∂y0
− 1

2

∂2p̃
(K)
Y

∂y2
0

= O
(

∆K
)

. (17.20)

The boundary behavior of p̃
(K)
Y is similar to that of pY : limy→y o r ȳ pY =

0. The expansion is designed to deliver an approximation of the density

function y 7→ pY (∆, y|y0; θ) for a fixed value of conditioning variable y0. It

is not designed to reproduce the limiting behavior of pY in the limit where

y0 tends to the boundaries.
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By applying (17.7), we obtain the corresponding expression for p̃
(K)
X .

For instance, at order K = 1 we get

p̃
(1)
X (x|x0, ∆; θ) = σ (γ (x; θ) ; θ)

−1
∆−1/2φ

(
∆−1/2

∫ x

x0

du

σ (u; θ)

)

× exp

(∫ x

x0

µY (γ(u; θ); θ)du/σ(u; θ)

)

×
(
1 + c1 (γ (x; θ) |γ (x0; θ) ; θ)∆

)

=

(
σ(x0; θ)

2π∆σ3(x; θ)

)1/2

exp

{
− 1

2∆

(∫ x

x0

du

σ (u; θ)

)2

+

∫ x

x0

µ (u; θ)

σ2(u; θ)
du

}(
1 + c1 (γ (x; θ) |γ (x0; θ) ; θ) ∆

)
(17.21)

where

c1 (γ (x; θ) |γ (x0; θ) ; θ) =

∫ x

x0

λY (γ(u; θ); θ)du/σ(u; θ)
∫ x

x0

du/σ(u; θ)
. (17.22)

17.2.3. Convergence of the density sequence

Aı̈t-Sahalia (2002) shows that the resulting expansion converges as more

correction terms are added. Under regularity conditions, there exists ∆̄ > 0

such that for every ∆ ∈
(
0, ∆̄

)
, θ ∈ Θ and (x, x0) ∈ D2

X :

p
(J)
X (∆, x|x0; θ) → pX (∆, x|x0; θ) as J → ∞.

In addition, the convergence is uniform in θ over Θ , in x over DX , and in

x0 over compact subsets of DX .

Finally, maximizing `
(J)
N (θ) instead of the true `N (θ) results in an es-

timator θ̂
(J)
N which converges to the true (but incomputable) MLE θ̂N as

J → ∞ and inherits all its asymptotic properties. In general, the expansion

p̃
(K)
X will converge to pX as ∆ → 0.

17.2.4 . Extensions and comparison w ith other methods

Jensen and Poulsen (2002), Stramer and Yan (2005) and Hurn, Jeisman,

and L indsay (2005) conducted ex tensiv e comp arisons of diff erent tech -

niq ues for ap p rox imating th e transition function and demonstrated th at

th e meth od describ ed is b oth th e most ac curate and th e fastest to imp le-

ment for th e ty p es of p rob lems and samp ling freq uencies one encounters in
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finance. The method has been extended to time inhomogeneous processes

by E gorov, Li, and X u (2003 ) and to jump-diffusions by Schaumburg (2001 )

and Yu (2003 ). D iPietro (2001 ) has extended the methodology to mak e it

applicable in a B ayesian setting. B ak shi and Yu (2002) propose an alterna-

tive centering to (1 7 .6 ) in the univariate case. Li (2005) considers the case

of “ damped diffusion” processes.

17.3. Multivariate Likelihood Expansions

O f course, many models of interest in finance are inherently multivariate.

The main diffi culty in the multivariate case is that the transformation from

X to Y that played a crucial role in the construction of the expansions in

the univariate case above is, in general, not possible.

17.3.1. Reducibilty

A s defined in A ı̈t-Sahalia (2001 ), a diffusion X is reducible if and if only if

there exists a one-to-one transformation of the diffusion X into a diffusion

Y w hose diffusion matrix σY is the identity matrix. That is, there exists an

invertible function γ (x; θ) such that Yt ≡ γ (Xt; θ) satisfies the stochastic

differential equation

d Yt = µY (Yt; θ) d t + d W t. (1 7 .23 )

E very univariate diffusion is reducible, through the transformation

(1 7 .3 ). W hether or not a given multivariate diffusion is reducible depends

on the specification of its σ matrix. Specifically, Proposition 1 of A ı̈t-

Sahalia (2001 ) provides a necessary and suffi cient condition for reducibil-

ity: the diffusion X is reducible if and only if the inverse diffusion matrix

σ−1 =
[

σ−1

i,j

]

i,j= 1,...,m
satisfies on SX × Θ the condition that

∂ σ−1

ij (x; θ)

∂ xk

=
∂ σ−1

ik (x; θ)

∂ xj

(1 7 .24 )

for each triplet (i, j, k ) = 1 , ..., m such that k > j, or equivalently
m

∑

l= 1

∂ σik (x; θ)

∂ xl

σlj (x; θ) =

m
∑

l= 1

∂ σij (x; θ)

∂ xl

σlk (x; θ) . (1 7 .25)

W henever a diffusion is reducible, an expansion can be computed for

the transition density pX of X by first computing it for the density pY

of Y and then transforming Y back into X (see Section 1 7 .3 .2). W hen a

diffusion is not reducible, the situation is going to be more involved (see

Section 1 7 .3 .3 ), although it still leads to a closed form expression.
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17.3.2. Determination of the coefficients in the reducible

case

The expansion for lY is of the form

l
(K)
Y (∆, y|y0; θ) = −

m

2
ln (2π∆) +

C
(−1)
Y (y|y0; θ)

∆

+

K
∑

k=0

C
(k)
Y (y|y0; θ)

∆k

k!
. (17.26)

The coefficients of the expansion are given explicitly by:

C
(−1)
Y (y|y0; θ) = −

1

2

m
∑

i=1

(yi − y0i)
2

(17.27)

C
(0)
Y (y|y0; θ) =

m
∑

i=1

(yi − y0i)

∫ 1

0

µY i (y0 + u (y − y0) ; θ) du (17.28 )

and, for k ≥ 1,

C
(k)
Y (y|y0; θ) = k

∫ 1

0

G
(k)
Y (y0 + u (y − y0) |y0; θ) uk−1du (17.29 )

where

G
(1)
Y (y|y0; θ) = −

m
∑

i=1

∂µY i (y; θ)

∂yi

−

m
∑

i=1

µY i (y; θ)
∂C

(0)
Y (y|y0; θ)

∂yi

+
1

2

m
∑

i=1







∂2C
(0)
Y (y|y0; θ)

∂y2
i

+

[

∂C
(0)
Y (y|y0; θ)

∂yi

]2






(17.30)

and for k ≥ 2

G
(k)
Y (y|y0; θ) = −

m
∑

i=1

µY i (y; θ)
∂C

(k−1)
Y (y|y0; θ)

∂yi

+
1

2

m
∑

i=1

∂2C
(k−1)
Y (y|y0; θ)

∂y2
i

+
1

2

m
∑

i=1

k−1
∑

h=0

(

k − 1

h

)

∂C
(h)
Y (y|y0; θ)

∂yi

∂C
(k−1−h)
Y (y|y0; θ)

∂yi

. (17.31)

G iven an expansion for the density pY of Y, an expansion for the density

pX of X can be obtained by a direct application of the Jacobian formula:

l
(K)
X (∆, x|x0; θ) = −

m

2
ln (2π∆) − Dv (x; θ) +

C
(−1)
Y (γ (x; θ) |γ (x0; θ) ; θ)

∆

+
K

∑

k=0

C
(k)
Y (γ (x; θ) |γ (x0; θ) ; θ)

∆k

k!
(17.32)
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from l
(K)
Y given in (17.26), using the coefficients C

(k)
Y , k = −1, 0, ..., K given

above, and where

v(x; θ) ≡ σ(x; θ)σ(x; θ)T (17.33)

Dv (x; θ) ≡
1

2
ln (Det[v(x; θ)]) . (17.34)

17.3.3. Determination of the coefficients in the irreducible

case

In the irreducible case, the expansion of the log likelihood is taken in the

form

l
(K)
X (∆, x|x0; θ) = −

m

2
ln (2π∆) − Dv (x; θ)

+
C

(−1)
X (x|x0; θ)

∆
+

K
∑

k=0

C
(k)
X (x|x0; θ)

∆k

k!
. (17.35)

The approach is now to calculate a Taylor series in (x−x0) of each coefficient

C
(k)
X , at order jk in (x− x0). Such an expansion will be denoted by C

(jk,k)
X

at order jk = 2(K − k), for k = −1, 0, ..., K.

The resulting expansion will then be

l̃
(K)
X (∆, x|x0; θ) = −

m

2
ln (2π∆) − Dv (x; θ)

+
C

(j
−1,−1)

X (x|x0; θ)

∆
+

K
∑

k=0

C
(jk,k)
X (x|x0; θ)

∆k

k!
. (17.36)

Such a Taylor expansion was unnecessary in the reducible case: the ex-

pressions given in Section 17.3.2 provide the explicit expressions of the co-

efficients C
(k)
Y and then in (17.32) we have the corresponding ones for C

(k)
X .

However, even for an irreducible diffusion, it is still possible to compute the

coefficients C
(jk,k)
X explicitly.

With v (x; θ) ≡ σ (x; θ)σT (x; θ) , define the following functions of the
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coefficients and their derivatives:

G
(0)
X (x|x0; θ) =

m

2
−

m
∑

i=1

µi (x; θ)
∂C

(−1)
X (x|x0; θ)

∂xi

+

m
∑

i=1

m
∑

j=1

∂vij (x; θ)

∂xi

∂C
(−1)
X (x|x0; θ)

∂xj

+
1

2

m
∑

i=1

m
∑

j=1

vij (x; θ)
∂2C

(−1)
X (x|x0; θ)

∂xi∂xj

−

m
∑

i=1

m
∑

j=1

vij (x; θ)
∂C

(−1)
X (x|x0; θ)

∂xi

∂Dv (x; θ)

∂xj

, (17.37)

G
(1)
X (x|x0; θ) = −

m
∑

i=1

∂µi (x; θ)

∂xi

+
1

2

m
∑

i=1

m
∑

j=1

∂2vij (x; θ)

∂xi∂xj

−

m
∑

i=1

µi (x; θ)

(

∂C
(0)
X (x|x0; θ)

∂xi

−
∂Dv (x; θ)

∂xi

)

+
m
∑

i=1

m
∑

j=1

∂vij (x; θ)

∂xi

(

∂C
(0)
X (x|x0; θ)

∂xj

−
∂Dv (x; θ)

∂xj

)

+
1

2

m
∑

i=1

m
∑

j=1

vij (x; θ)

{

∂2C
(0)
X (x|x0; θ)

∂xi∂xj

−
∂2Dv (x; θ)

∂xi∂xj

+

(

∂C
(0)
X (x|x0; θ)

∂xi

−
∂Dv (x; θ)

∂xi

)

×

(

∂C
(0)
X (x|x0; θ)

∂xj

−
∂Dv (x; θ)

∂xj

)}

(17.38)
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and for k ≥ 2 :

G
(k)
X (x|x0; θ) = −

m
∑

i=1

µi (x; θ)
∂C

(k−1)
X (x|x0; θ)

∂xi

(17.39)

+

m
∑

i=1

m
∑

j=1

∂vij (x; θ)

∂xi

∂C
(k−1)
X (x|x0; θ)

∂xj

+
1

2

m
∑

i=1

m
∑

j=1

vij (x; θ)
∂2C

(k−1)
X (x|x0; θ)

∂xi∂xj

+
1

2

m
∑

i=1

m
∑

j=1

vij (x; θ)

×

{

2

(

∂C
(0)
X (x|x0; θ)

∂xi

−
∂Dv (x; θ)

∂xi

)

∂C
(k−1)
X (x|x0; θ)

∂xj

+

k−2
∑

h=1

(

k − 2

h

)

∂C
(h)
X (x|x0; θ)

∂xi

∂C
(k−1−h)
X (x|x0; θ)

∂xj

}

.

F or each k = −1, 0, ..., K, the coefficient C
(k)
X (x|x0; θ) in (17.35) solves

the equation

f
(k−1)
X (x|x0; θ) = 0 (17.40)

where

f
(−2)
X (x|x0; θ) = − 2C

(−1)
X (x|x0; θ)

−

m
∑

i=1

m
∑

j=1

vij (x; θ)
∂C

(−1)
X (x|x0; θ)

∂xi

∂C
(−1)
X (x|x0; θ)

∂xj

f
(−1)
X (x|x0; θ) = −

m
∑

i=1

m
∑

j=1

vij (x; θ)
∂C

(−1)
X (x|x0; θ)

∂xi

∂C
(0)
X (x|x0; θ)

∂xj

− G
(0)
X (x|x0; θ)

and for k ≥ 1

f
(k−1)
X (x|x0; θ) = C

(k)
X (x|x0; θ) −

m
∑

i=1

m
∑

j=1

vij (x; θ)
∂C

(−1)
X (x|x0; θ)

∂xi

×
∂C

(k)
X (x|x0; θ)

∂xj

− G
(k)
X (x|x0; θ) ,

where the functions G
(k)
X , k = 0, 1, ..., K are given above. G

(k)
X involves only

the coefficients C
(h)
X for h = −1, ..., k− 1, so this system of equation can be

utilized to solve recursively for each coefficient at a time. Specifically, the
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equation f
(−2)
X = 0 determines C

(−1)
X ; given C

(−1)
X , G

(0)
X becomes known

and the equation f
(−1)
X = 0 determines C

(0)
X ; given C

(−1)
X and C

(0)
X , G

(1)
X

becomes known and the equation f
(0)
X = 0 then determines C

(1)
X , etc. It

turns out that this results in a system of linear equations in the coefficients

of the polynomials C
(jk,k)
X , so each one of these equations can be solved

explicitly in the form of the Taylor expansion C
(jk,k)
X of the coefficient C

(k)
X ,

at order jk in (x − x0). C onvergence results for the expansion are proved

in Aı̈t-Sahalia (2001).

As in the univariate case, these calculations are straightforward to im-

plement using software. For actual implementation of this method to practi-

cal problems in various contexts and with various datasets, see Aı̈t-Sahalia

and K immel (2002), Aı̈t-Sahalia and K immel (2004), Thompson (2004),

C heridito, Filipović, and K immel (2005), M osburger and Schneider (2005),

Takamizawa (2005) and Schneider (2006).

17.4. Connection to Saddlepoint Approximations

Aı̈t-Sahalia and Yu (2005) developed an alternative strategy for construct-

ing closed form approximations to the transition density of a continuous

time M arkov process. Instead of expanding the transition function in or-

thogonal polynomials around a leading term, we rely on the saddlepoint

method, which originates in the work of Daniels (1954). We show that, in

the case of diffusions, it is possible by expanding the cumulant generat-

ing function of the process to obtain an alternative closed form expansion

of its transition density. We also show there that this approach provides

an alternative gathering of the correction terms beyond the leading term

that is equivalent at order ∆ to the irreducible expansion of the transition

density just described.

To understand the connection to the saddlepoint approach, it is useful to

contrast it with the Hermite-based method described in Section 17.2. That

expansion can be viewed as analogous to a small sample correction to the

C LT. As in the C LT case, it is natural to consider higher order terms based

on Hermite polynomials, which are orthogonal with respect to the leading

N(0, 1) term. This is an Edgeworth (or Gram– C harlier, depending upon

how the terms are gathered) type of expansion. By contrast, saddlepoint

expansions rely on first tilting the original density — transforming it into

anoth er one — and then applying an Edgeworth-like expansion to the tilted

density. If the tilted density is chosen wisely, the resulting approximation

can be quite accurate in the tails, and applicable fairly generally. In order
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to be able to calculate a saddlepoint approximation, one needs to be able

to calculate the Laplace transform or characteristic function of the process

of interest. This requirement is a restriction on the applicability of the

method, but as we will see, one that is possible to satisfy in many cases

in our context of Markov processes. But even when such a computation

is not possible explicitly, we go one step further by showing how useful

approximations can be obtained by replacing the characteristic function by

an expansion in small time. Expansions in small time, which involve the

infinitesimal generator of the Markov process, are a key element shared

with the Hermite-based expansions described above.

The key to our approach is to approximate the Laplace transform of

the process, and the resulting saddlepoint, as a Taylor series in ∆ around

their continuous-time limit. This will result in an approximation (in ∆)

to the saddlepoint (which itself is an approximation to the true but un-

known transition density of the process). By applying (17.13) to the func-

tion f(δ , x, x0) = exp(ux), u treated as a fixed parameter, we can compute

the expansion of the Laplace transform ϕ (∆, u|x0) in ∆. At order n2 = 1,

the result is

ϕ(1) (u|x0, ∆; θ) = eux0

(
1 +

(
µ(x0; θ)u +

1

2
σ2(x0; θ)u

2

)
∆

)
.

Then, by taking its log, we see that the expansion at order ∆ of the cumu-

lant transform K is simply

K(1) (u|x0, ∆; θ) = ux0 +

(
µ(x0; θ)u +

1

2
σ2(x0; θ)u

2

)
∆.

The first order saddlepoint û(1) solves ∂K(1) (u|x0, ∆; θ) / ∂u = x, that is

û(1) (x|x0, ∆; θ) =
x − (x0 + µ(x0; θ)∆)

σ2(x0; θ)∆

and, when evaluated at x = x0 + z∆1/2, we have

û(1)
(
x0 + z∆1/2|x0, ∆; θ

)
=

z

σ2(x0; θ)∆1/2
+ O(1) (17.41)

and

K(1)
(
û(1)

(
x0 + z∆1/2|x0, ∆; θ

)
|x0, ∆; θ

)

− û(1)
(
x0 + z∆1/2|x0, ∆; θ

)
·
(
x0 + z∆1/2

)
= −

z2

2σ2(x0; θ)
+ O(∆1/2).
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Similarly, a second order expansion in ∆ of K(2) is obtained as

K(2) (u|x0, ∆; θ) = ux0 + ∆

(
µ(x0; θ)u +

1

2
σ2(x0; θ)u

2

)

+
∆2u

8

{
4µ(x0; θ)µ

′(x0; θ) + 2σ2(x0; θ)µ
′′(x0; θ)

+ u
(
4σ2(x0; θ)µ

′(x0; θ) + 2µ(x0; θ)(σ
2)′(x0; θ) + σ2(x0; θ)(σ

2)′′(x0; θ)
)

+ 2u2σ2(x0; θ)(σ
2)′(x0; θ)

}
+ O(∆3).

The second order saddlepoint û(2) solves ∂K(2) (u|x0, ∆; θ) /∂u = x, which

is a quadratic equation explicitly solvable in u, and we see after some cal-

culations that

û(2)
(
x0 + z∆1/2|x0, ∆; θ

)

=
z

σ2(x0; θ)∆1/2
−

{
µ(x0; θ)

σ2(x0; θ)
+

3(σ2)′(x0; θ)

4σ4(x0; θ)
z2

}
+ O(∆1/2) (17.42)

and

K(2)
(
û(2)

(
x0 + z∆1/2|x0, ∆; θ

)
|x0, ∆; θ

)

− û(2)
(
x0 + z∆1/2|x0, ∆; θ

)
·
(
x0 + z∆1/2

)

= −
z2

2σ2(x0; θ)
+

{
µ(x0; θ)

σ2(x0; θ)
z +

(σ2)′(x0; θ)

4σ4(x0; θ)
z3

}
∆1/2 + O(∆).

The way the correction terms in ϕ(2) (u|x0, ∆; θ) are grouped is similar to

that of an Edgeworth expansion. Higher order approximate Laplace trans-

forms can be constructed (see Aı̈t-Sahalia and Yu (2005)). Write p(n1,n2) to

indicate a saddlepoint approximation of order n1 using a Taylor expansion

in ∆ of the Laplace transform ϕ, that is correct at order n2 in ∆. When

the expansions in ∆ are analytic at zero, then p(n1,∞) = p(n1). First, the

leading term of the saddlepoint approximation at the first order in ∆ and

with a Gaussian base coincides with the classical Euler approximation of

the transition density,

p
(0,1)
X (x|x0, ∆; θ) =

(
2π∆σ2(x0; θ)

)−1/2

× exp

(
−

(x − x0 − µ(x0; θ)∆)
2

σ2(x0; θ)∆

)
. (17.43)

The first order saddlepoint approximation at the first order in ∆ and



April 24, 2006 11:24 WSPC/Trim Size: 9in x 6in for Review Volume Frontiers

386 Aı̈t-Sahalia

with a Gaussian base is

p
(1,1)
X

(
x0 + z∆1/2|x0, ∆; θ

)

=
exp

(
− z2

2σ2(x0;θ) + e1/2(z|x0; θ)∆
1/2 + e1(z|x0; θ)∆

)

√
2πσ(x0; θ)∆1/2

{
1 + d1/2(z|x0; θ)∆1/2 + d1(z|x0; θ)∆

}

× { 1 + c1(z|x0; θ)∆} (17.44)

where

e1/2(z|x0; θ) =
zµ(x0; θ)

σ2(x0; θ)
+

z3(σ2)′(x0; θ)

4σ4(x0; θ)

e1(z|x0; θ) = − µ(x0; θ)
2

2σ2(x0; θ)

+
z2
(
12σ2(x0; θ)

(
4µ′(x0; θ) + (σ2)′′(x0; θ)

)
− 48µ(x0; θ)(σ

2)′(x0; θ)
)

96σ4(x0; θ)

+
z4
(
8σ2(x0; θ)(σ

2)′′(x0; θ) − 15(σ2)′(x0; θ)
2
)

96σ6(x0; θ)
(17.45)

d1/2(z|x0; θ) =
3zσ′(x0; θ)

2σ(x0; θ)

d1(z|x0; θ) =
µ′(x0; θ)

2
− µ(x0; θ)σ

′(x0; θ)

σ(x0; θ)
+

σ′(x0; θ)
2

4
+

σ(x0; θ)σ
′′(x0; θ)

4

+ z2

(
5σ′(x0; θ)

2

8σ(x0; θ)2
+

σ′′(x0; θ)

σ(x0; θ)

)
(17.46)

c1(z|x0; θ) =
1

4
(σ2)′′(x0; θ) −

3

32

(σ2)′(x0; θ)
2

σ2(x0; θ)
.

The expression (17.44) provides an alternative gathering of the correction

terms beyond the leading term that is equivalent at order ∆ to the irre-

ducible expansion of the transition density resulting from the irreducible

method described in Section 17.3.3.

17.5. An Example with Nonlinear Drift and Diffusion

Specifi cations

The likelihood expansions are given for many specific models in Aı̈t-Sahalia

(1999), including the Ornstein-U hlenbeck specification of V asicek (1977),

the Feller square root model of Cox, Ingersoll, and R oss (1985), the linear

drift with CEV diffusion model of Cox (1975) and the more general version
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of Chan, Karolyi, Longstaff, and Sanders (1992),

dXt = κ (α − Xt) dt + σXρ
t dWt

a double well model

dXt =
(
α1Xt − α3X

3
t

)
dt + dWt

and a simpler version of the nonlinear model of Aı̈t-Sahalia (1996),

dXt =
(
α−1X

−1
t + α0 + α1Xt + α2X

2
t

)
dt + σXρ

t dWt.

One example that was not included in full generality in Aı̈t-Sahalia

(1999), however, is the general model proposed for the short term interest

rate in Aı̈t-Sahalia (1996)

dXt =
(
α−1X

−1
t + α0 + α1Xt + α2X

2
t

)
dt

+(β0 + β1Xt + β2X
β3

t )dWt (17.47)

because even in the univariate case the transformation X 7→ Y does not

lead to an explicit integration in (17.3). But, as discussed in Aı̈t-Sahalia

(2001), one can use the irreducible method in that case, thereby bypassing

that transformation. For instance, at order K = 1 in ∆, the irreducible

expansion for the generic model dXt = µ(Xt)dt +σ(Xt)dWt is given by

(17.36) with m = 1, namely:

l̃
(1)
X (∆, x|x0; θ) = − 1

2
ln (2π∆) − Dv (x; θ) +

C
(4,−1)
X (x|x0; θ)

∆

+ C
(2,0)
X (x|x0; θ) + C

(0,1)
X (x|x0; θ) ∆

with Dv (x; θ) = ln(σ (x; θ)). The coefficients C
(jk,k)
X , k = −1, 0, 1 are given

by

C
(4,−1)
X (x|x0; θ) = − 1

2σ(x0; θ)2
(x − x0)

2 +
σ′(x0; θ)

2σ(x0; θ)3
(x − x0)

3

+

(
4σ(x0; θ)σ

′′(x0; θ) − 11σ′(x0; θ)
2
)

24σ(x0; θ)4
(x − x0)

4

C
(2,0)
X (x|x0; θ) =

(2µ(x0; θ) − σ(x0; θ)σ
′(x0; θ))

2σ(x0; θ)2
(x − x0)

+
1

4σ(x0; θ)3

{(
σ′(x0; θ)

2 + 2µ′(x0; θ)
)
σ(x0; θ)

− 4µ(x0; θ)σ
′(x0; θ) − σ′′(x0; θ)σ(x0; θ)2

}
(x − x0)

2
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C
(0,1)
X (x|x0; θ) =

1

8

(
2σ(x0; θ)σ′′(x0; θ) −

4µ(x0; θ)
2

σ(x0; θ)2

+
8σ′(x0; θ)µ(x0; θ)

σ(x0; θ)
− σ′(x0; θ)

2 − 4µ′(x0; θ)

)
(17.48)

In the case of model (17.47), this specializes to the following expressions:

C
(4,−1)
X (x|x0; θ) = − 1

2
(
β2x0

β3 + β1x0 + β0

)2 (x − x0)
2

+

(
β2β3x0

β3−1 + β1

)

2
(
β2x0

β3 + β1x0 + β0

)3 (x − x0)
3

+
1

24
(
β2x0

β3 + β1x0 + β0

)4

{
4β2(β3 − 1)β3x0

β3−2

×
(
β2x0

β3 + β1x0 + β0

)
− 11

(
β2β3x0

β3−1 + β1

)2
}

(x − x0)
4

C
(2,0)
X (x|x0; θ) =

1

2
(
β2x0

β3 + β1x0 + β0

)2

{(
−β2β3x0

β3−1 − β1

)

×
(
β2x0

β3 + β1x0 + β0

)
+ 2

(
α0 + x0(α1 + α2x0) +

α−1

x0

)}

×(x − x0) +





1

4
(
β2x0

β3 + β1x0 + β0

)3

{
− β2(β3 − 1)β3

×
(
β2x0

β3 + β1x0 + β0

)2

x0
β3−2

−4
(
β2β3x0

β3−1 + β1

)(
α0 + x0(α1 + α2x0) +

α−1

x0

)}

+

(
β2β3x0

β3−1 + β1

)2

+ 2
(
α1 + 2α2x0 − α

−1

x0
2

)

4
(
β2x0

β3 + β1x0 + β0

)2





(x − x0)
2
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C
(0,1)
X (x|x0; θ) =

1

8

{
2β2(β3 − 1)β3

(
β2x0

β3 + β1x0 + β0

)
x0

β3−2

−
(
β2β3x0

β3−1 + β1

)2 − 4
(
α1 + 2α2x0 −

α−1

x0
2

)}

+
1

8
(
β2x0

β3 + β1x0 + β0

)2
{

8
(
β2β3x0

β3−1 + β1

)(
α0 + x0(α1 + α2x0) +

α−1

x0

)

×
(
β2x0

β3 + β1x0 + β0

)
− 4
(
α0 + x0(α1 + α2x0) +

α−1

x0

)2}
.

Bakshi, Ju and Q u-Yang (2006) provide an application to equity volatility

dynamics for a variety of models.

17.6. An Example with Stochastic Volatility

Consider as a second example a typical stochastic volatility model
(

dX1t

dX2t

)
=

(
µ

κ (α − X2t)

)
dt +

(
γ11 exp(X2t) 0

0 γ22

)(
dW1t

dW2t

)
(17.49)

where X1t plays the role of the log of an asset price and exp(X2t) is the

stochastic volatility variable. While the term exp(X2t) violates the linear

growth condition, it does not cause explosions due to the mean reverting

nature of the stochastic volatility. This model has no closed-form solution.

The diffusion (17.49) is in general not reducible, so I will apply the

irreducible method described above to derive the expansion. The expansion

at order K = 3 is of the form (17.35), with the coefficients C
(jk,k)
X , k =

−1, 0, ..., 3 given explicitly by:

C
(8,−1)
X (x|x0; θ) = −1

2

(x1 − x01)
2

e2x02γ2
11

− 1

2

(x2 − x02)
2

γ2
22

+
(x1 − x01)

2
(x2 − x02)

2e2x02γ2
11

− (x1 − x01)
2
(x2 − x02)

2

6e2x02γ2
11

+
(x1 − x01)

4
γ2
22

24e4x02γ4
11

− (x1 − x01)
4
(x2 − x02) γ2

22

12e4x02γ4
11

+
(x1 − x01)

2
(x2 − x02)

4

90e2x02γ2
11

+
(x1 − x01)

4
(x2 − x02)

2
γ2
22

15e4x02γ4
11

− (x1 − x01)
6
γ4
22

180e6x02γ6
11

− (x1 − x01)
4
(x2 − x02)

3
γ2
22

45e4x02γ4
11

+
(x1 − x01)

6
(x2 − x02) γ4

22

60e6x02γ6
11

− (x1 − x01)
2
(x2 − x02)

6

945e2x02γ2
11

− (x1 − x01)
4
(x2 − x02)

4
γ2
22

630e4x02γ4
11

− 3(x1 − x01)
6
(x2 − x02)

2
γ4
22

140e6x02γ6
11

+
(x1 − x01)

8
γ6
22

1120e8x02γ8
11
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C
(6,0)
X (x|x0; θ) =

µ (x1 − x01)

e2x02γ2
11

+ (x2 − x02)

(
1

2
+

κ (α − x02)

γ2
22

)

− µ (x1 − x01) (x2 − x02)

e2x02γ2
11

− (x1 − x01)
2
γ2
22

12e2x02γ2
11

− (x2 − x02)
2 (

6κ + γ2
22

)

12γ2
22

+
µ (x1 − x01) (x2 − x02)

2

3e2x02γ2
11

− µ(x1 − x01)
3
γ2
22

6e4x02γ4
11

+
(x1 − x01)

2
(x2 − x02) γ2

22

12e2x02γ2
11

+
(x2 − x02)

4

360
+

µ(x1 − x01)
3
(x2 − x02) γ2

22

3e4x02γ4
11

− (x1 − x01)
2
(x2 − x02)

2
γ2
22

45e2x02γ2
11

+
7(x1 − x01)

4
γ4
22

720e4x02γ4
11

− µ (x1 − x01) (x2 − x02)
4

45e2x02γ2
11

− 4µ(x1 − x01)
3
(x2 − x02)

2
γ2
22

15e4x02γ4
11

− (x1 − x01)
2
(x2 − x02)

3
γ2
22

180e2x02γ2
11

+
µ(x1 − x01)

5
γ4
22

30e6x02γ6
11

− 7(x1 − x01)
4
(x2 − x02) γ4

22

360e4x02γ4
11

− (x2 − x02)
6

5670
+

4µ(x1 − x01)
3
(x2 − x02)

3
γ2
22

45e4x02γ4
11

+
(x1 − x01)

2
(x2 − x02)

4
γ2
22

315e2x02γ2
11

− µ(x1 − x01)
5
(x2 − x02) γ4

22

10e6x02γ6
11

+
223(x1 − x01)

4
(x2 − x02)

2
γ4
22

15120e4x02γ4
11

− 71(x1 − x01)
6γ6

22

45360e6x02γ6
11

C
(2,2)
X (x|x0; θ) =

1

180e2x02γ2
11

{
− 30e2x02κ2γ2

11 − 30e2x02ακ2γ2
11

+ 30e2x02κ2x02γ
2
11 − 30µ2γ2

22 + e2x02γ2
11γ

4
22

}
+

(x2 − x02)
(
e2x02κ2γ2

11 + 2µ2γ2
22

)

12e2x02γ2
11

− µ (x1 − x01)

90e4x02γ4
11

{
30e2x02ακ2γ2

11 − 30e2x02κ2x02γ
2
11 + 30µ2γ2

22 + e2x02γ2
11γ

4
22

}

+
µ (x1 − x01) (x2 − x02)

90e4x02γ4
11

{
15e2x02κ2γ2

11 + 30e2x02ακ2γ2
11 − 30e2x02κ2x02γ

2
11

+ 60µ2γ2
22 + e2x02γ2

11γ
4
22

}
− (x1 − x01)

2
γ2
22

3780e4x02γ4
11

{
− 105e2x02κ2γ2

11 − 21e2x02ακ2γ2
11

+ 21e2x02κ2x02γ
2
11 − 441µ2γ2

22 + 4e2x02γ2
11γ

4
22

}
− (x2 − x02)

2

3780e2x02γ2
11

{
− 21e2x02κ2γ2

11

− 42e2x02ακ2γ2
11 + 42e2x02κ2x02γ

2
11 + 168µ2γ2

22 + 4e2x02γ2
11γ

4
22

}
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C
(4,1)
X (x|x0; θ) = −

1

24 e2x02γ2
11γ

2
22

{

12e2x02α2κ2γ2
11 − 24 e2x02ακ2x02γ

2
11

+ 12e2x02κ2x02γ
2
11 + 12µ2γ2

2212e2x02κγ2
11γ

2
22 + e2x02γ2

11γ
4
22

}

+
µ (x1 − x01) γ2

22

6e2x02γ2
11

−
(x2 − x02)

2e2x02γ2
11γ

2
22

{

− e2x02ακ2γ2
11 + e2x02κ2x02γ

2
11 − µ2γ2

22

}

−
µ (x1 − x01) (x2 − x02) γ2

22

6e2x02γ2
11

−
(x1 − x01)

2

3 60 e4x02γ4
11

{

− 3 0 e2x02ακ2γ2
11 + 3 0 e2x02κ2x02γ

2
11

− 9 0 µ2γ2
22 − e2x02γ2

11γ
4
22

}

+
(x2 − x02)

2

3 60 e2x02γ2
11γ

2
22

{

− 60 e2x02κ2γ2
11 − 60 µ2γ2

22

+ e2x02γ2
11γ

4
22

}

+
2µ (x1 − x01) (x2 − x02)

2
γ2
22

4 5 e2x02γ2
11

−
7µ(x1 − x01)

3
γ4
22

18 0 e4x02γ4
11

−
(x1 − x01)

2
(x2 − x02)

3 60 e4x02γ4
11

{

15 e2x02κ2γ2
11 + 3 0 e2x02ακ2γ2

11 − 3 0 e2x02κ2x02γ
2
11

+ 18 0 µ2γ2
22 + e2x02γ2

11γ
4
22

}

+
µ (x1 − x01) (x2 − x02)

3
γ2
22

9 0 e2x02γ2
11

+
7µ(x1 − x01)

3
(x2 − x02) γ4

22

9 0 e4x02γ4
11

−
(x2 − x02)

4 (

−4 2µ2 + e2x02γ2
11γ

2
22

)

3 78 0 e2x02γ2
11

+
(x1 − x01)

2
(x2 − x02)

2

25 20 e4x02γ4
11

{

9 8 e2x02κ2γ2
11 + 5 6e2x02ακ2γ2

11 − 5 6e2x02κ2x02γ
2
11

+ 10 0 8 µ2γ2
22 + e2x02γ2

11γ
4
22

}

−
(x1 − x01)

4
γ2
22

10 0 8 0 e6x02γ6
11

{

4 2e2x02κ2γ2
11 + 112e2x02ακ2γ2

11

− 112e2x02κ2x02γ
2
11 + 8 4 0 µ2γ2

22 + 5 e2x02γ2
11γ

4
22

}

a n d

C
(0,3)
X (x|x0; θ) =

1

75 60 e4x02γ4
11γ

2
22

{

18 9 0 µ4γ4
22

+ 126e2x02µ2γ2
11γ

2
22

(

3 0 κ2 (α − x02) γ4
22

)

+ e4x02γ4
11

(

18 9 0 κ4(x02 − α)2

− 63 κ2 (1 − 2α + 2x02) γ4
22 − 16γ8

22

) }

.

17.7. Inference When the State is Partially Observed

In m a n y c a se s, th e sta te v e c to r is o f th e fo rm Xt = [St; Vt]
′, w h e re th e

(m − q)−d im e n sio n a l v e c to r St is o b se rv e d b u t th e q−d im e n sio n a l Vt is



April 24, 2006 11:24 WSPC/Trim Size: 9in x 6in for Review Volume F rontiers

3 92 Aı̈t-Sahalia

not. Two typical examples in finance consist of stochastic volatility models,

such as the example just discussed, where Vt is the volatility state vari-

able(s), and term structure models, where Vt is a vector of factors or yields.

O ne can conduct lik elihood inference in this setting , without resorting to

the statistically sound but computationally infeasible integ ration of the la-

tent variables from the lik elihood function. The idea is simple: write down

in closed form an expansion for the log -lik elihood of the state vector X,

including its unobservable components. Then enlarg e the observation state

by adding variables that are observed and functions of X. F or example, in

the stochastic volatility case, an option price or an option-implied volatil-

ity; in term structure models, as many bonds as there are factors. Then,

using the J acobian formula, write down the lik elihood function of the pair

consisting of the observed components of X and the additional observed

variables, and maximize it.

Identification of the parameter vector must be ensured. In fact, identify-

ing a multivariate continuous-time M ark ov process from discrete-time data

can be problematic when the process is not reversible, as an aliasing problem

can be present in the multivariate case (see P hilips (1973) and H ansen and

S arg ent (1983)). A s for the distributional properties of the resulting estima-

tor, a fixed interval sample of a time-homog enous continuous-time M ark ov

process is a M ark ov process in discrete time. G iven that the M ark ov state

vector is observed and the unk nown parameters are identified, properties of

the M L E follow from what is k nown about M L estimation of discrete-time

M ark ov processes (see B illing sley (1961)).

17.7.1. Likelihood inference for stochastic volatility models

In a stochastic volatility model, the asset price process St follows

dSt = (r − δ)Stdt + σ1 (Xt; θ) dW
Q
t (17.50)

where r is the risk free rate, δ is the dividend yield paid by the asset (both

tak en to be constant for simplicity only), σ1 denotes the first row of the

matrix σ and Q denotes the eq uivalent marting ale measure (see e.g ., H arri-

son and K reps (1979)). The volatility state variables Vt then follow a S D E

on their own. F or example, in the H eston (1993) model, m = 2 and q = 1:

dXt = d

[

St

Vt

]

=

[

(r − δ)St

κ (γ − Vt)

]

dt

+

[
√

(1 − ρ2)VtSt ρ
√

VtSt

0 σ
√

Vt

]

d

[

W
Q
1 (t)

W
Q
2 (t)

]

. (17.51)
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The model is completed by the specification of a vector of market prices of

risk for the diff erent sources of risk (W1 and W2 here), such as

Λ (Xt; θ) =
[

λ1

√

(1 − ρ2)Vt, λ2

√

Vt

]

′

, (17.52)

which characterizes the change of measure from Q back to the physical

probability measure P .

Likelihood inference for this and other stochastic volatility models is

discussed in Aı̈t-Sahalia and Kimmel (2004). Given a time series of obser-

vations of both the asset price, St, and a vector of option prices (which, for

simplicity, we take to be call options) Ct, the time series of Vt can then be

inferred from the observed Ct. If Vt is multidimensional, suffi ciently many

options are required with varying strike prices and maturities to allow ex-

traction of the current value of Vt from the observed stock and call prices.

Otherwise, only a single option is needed. For reasons of statistical effi ciency,

we seek to determine the joint likelihood function of the observed data, as

opposed to, for example, conditional or unconditional moments. W e employ

the closed-form approximation technique described above, which yields in

closed form the joint likelihood function of [St; Vt]
′. From there, the joint

likelihood function of the observations on Gt = [St; Ct]
′ = f (Xt; θ) is ob-

tained simply by multiplying the likelihood of Xt = [St; Vt]
′ by the Jacobian

term Jt:

ln pG (g|g0, ∆ ; θ) = − ln Jt (g|g0, ∆ ; θ)

+ lX(f−1 (g; θ) |f−1 (g0; θ) ; ∆ , θ) (17.53)

with lX obtained as described above.

If a proxy for Vt is used directly, this last step is not necessary. Indeed,

we can avoid the computation of the function f by first transforming Ct

into a proxy for Vt. The simplest one consists in using the Black-Scholes

implied volatility of a short-maturity at-the-money option in place of the

true instantaneous volatility state variable. The use of this proxy is justified

in theory by the fact that the implied volatility of such an option converges

to the instantaneous volatility of the logarithmic stock price as the maturity

of the option goes to zero. An alternate proxy (which we call the integrated

volatility proxy) corrects for the eff ect of mean reversion in volatility during

the life of an option. If Vt is the instantaneous variance of the logarithmic

stock price, we can express the integral of variance from time t to T as

V (t, T ) =

∫ T

t

Vudu (17.54)
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If the volatility process is instantaneously uncorrelated with the logarith-

mic stock price process, then we can calculate option prices by taking the

expected value of the Black-Scholes option price (with V (t, T ) as implied

variance) over the probability distribution of V (t, T ) (see Hull and White

(1987)). If the two processes are correlated, then the price of the option is a

weighted average of Black-Scholes prices evaluated at different stock prices

and volatilities (see R omano and Touzi (1997)).

The proxy we examine is determined by calculating the expected value

of V (t, T ) first, and substituting this value into the Black-Scholes formula

as implied variance. This proxy is model-free, in that it can be calcu-

lated whether or not an exact volatility can be computed and results in

a straightforward estimation procedure. On the other hand, this procedure

is in general approximate, first because the volatility process is unlikely to

be instantaneously uncorrelated with the logarithmic stock price process,

and second, because the expectation is taken before substituting V (t, T )

into the Black-Scholes formula rather than after and we examine in Monte

C arlo simulations the respective impact of these approximations, with the

objective of determining whether the trade-off involved between simplicity

and exactitude is worthwhile.

The idea is to adjust the Black-Scholes implied volatility for the effect

of mean reversion in volatility, essentially undoing the averaging that takes

place in equation (17.54). Specifically, if the Q-measure drift of Yt is of the

form a + bYt (as it is in many of the stochastic volatility models in use),

then the expected value of V (t, T ) is given by:

Et [V (t, T )] =

(

eb(T−t) − 1

b

)

(

Vt +
a

b

)

− a

b
(T − t) . (17.55)

A similar expression can be derived in the special case where b = 0. By

taking the expected value on the left-hand side to be the observed implied

variance Vim p (t, T ) of a short maturity T at-the-money option, our adjusted

proxy is then given by:

Vt ≈
bVim p (t, T ) + a (T − t)

eb(T−t) − 1
− a

b
. (17.56)

Then we can simply take [St; Vim p (t, T )]′ as the state vector, write its likeli-

hood from that of [St; Vt]
′ using a Jacobian term for the change of variable

(17.56).

It is possible to refine the implied volatility proxy by expressing it in

the form of a Taylor series in the “ volatility of volatility” parameter σ in

the case of the C EV model, where the Q-measure drift of Yt is of the form
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a+bYt, and the Q-measure diffusion of Yt is of the form σY
β
t (Lewis (2000)).

However, unlike (17.56), the relationship between the observed Vimp(t, T )

and the latent Yt is not invertible without numerical computation of the

parameter-dependent integral.

17.7.2. Likelihood inference for term structure models

Another example of a class of models where the state can be only partially

observed consist of term structure models. A multivariate term structure

model specifies that the instantaneous riskless rate rt is a deterministic

function of an m−dimensional vector of state variables, Xt

rt = r (Xt; θ) (17.57)

which will typically not be fully observable. U nder the equivalent martingale

measure Q, the state vector X follows the dynamics given in (17.1). In

order to avoid arbitrage opportunities, the price at t of a zero-coupon bond

maturing at T is given by the Feynman-Kac representation:

P (x, t, T ; θ) = EQ

[
exp

(
−
∫ T

t

rudu

)∣∣∣∣∣Xt = x

]
. (17.58)

An affine yield model is any model where the short rate (17.57) is an

affine function of the state vector and the risk-neutral dynamics (17.1) are

affine:

dXt =
(
Ã + B̃Xt

)
dt + Σ

√
S (Xt; α, β)dW

Q
t (17.59)

where Ã is an m– element column vector, B̃ and Σ are m×m matrices, and

S (Xt; α, β) is the diagonal matrix with elements Sii = αi +X ′

tβi, with each

αi a scalar and each βi an m × 1 vector, 1 ≤ i ≤ m (see Dai and Singleton

(2000)).

It can then be shown that, in affine models, bond prices have the expo-

nential affine form

P (x, t, T ; θ) = exp
(
−γ0 (τ ; θ) − γ (τ ; θ)

′

x
)

(17.60)

where τ = T − t is the bond’s time to maturity. That is, bond yields (non-

annualized, and denoted by g (x, t, T ; θ) = − ln (P (x, t, T ; θ))) are affine

functions of the state vector:

g(x, t, T ; θ) = γ0 (τ ; θ) + γ (τ ; θ)
′

x. (17.61)
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Alternatively, one can start with the requirement that the yields be affine,

and show that the dynamics of the state vector must be affine (see Duffie

and Kan (1996)).

The final condition for the bond price implies that γ0 (0; θ) = γ (0; θ) =

0, while

rt = δ0 + δ′x. (17.62)

Affine yield models owe much of their popularity to the fact that bond

prices can be calculated quickly as solutions to a system of ordinary dif-

ferential equations. Under non-linear term structure models, bond prices

will normally be solutions to a partial differential equation that is far more

difficult to solve.

Aı̈t-Sahalia and Kimmel (2002) consider likelihood inference for affine

term structure models. They derive the likelihood expansions for the nine

canonical models of Dai and Singleton (2000) in dimensions m = 1, 2 and 3.

For instance, in dimension m = 3, the four canonical models are respectively
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MLE in this case requires evaluation of the likelihood of an observed

panel of yield data for each parameter vector considered during a search pro-

cedure. The procedure for evaluating the likelihood of the observed yields

at a particular value of the parameter vector consists of four steps. First,

we extract the value of the state vector Xt (which is not directly observed)

from those yields that are treated as observed without error. Second, we

evaluate the joint likelihood of the series of implied observations of the state

vector Xt, using the closed-form approximations to the likelihood function

described above. Third, we multiply this joint likelihood by a Jacobian

term, to find the likelihood of the panel of observations of the yields ob-

served without error. Finally, we calculate the likelihood of the observation

errors for those yields observed with error, and multiply this likelihood by

the likelihood found in the previous step, to find the joint likelihood of the

panel of all yields.

The first task is therefore to infer the state vector Xt at date t from

the cross-section of bond yields at date t with different maturities. Affine

yield models, as their name implies, make yields of zero coupon bonds affine

functions of the state vector. Given this simple relationship between yields

and the state vector, the likelihood function of bond yields is a simple

transformation of the likelihood function of the state vector.

If the number of observed yields at that point in time is smaller than

the number N of state variables in the model, then the state is not com-

pletely observed, and the vector of observed yields does not follow a Markov

process, even if the (unobserved) state vector does, enormously complicat-

ing maximum likelihood estimation. On the other hand, if the number of

observed yields is larger than the number of state variables, then some of

the yields can be expressed as deterministic functions of other observed

yields, without error. Even tiny deviations from the predicted values have

a likelihood of zero. This problem can be avoided by using a number of

yields exactly equal to the number of state variables in the underlying

model, but, in general, the market price of risk parameters will not all be

identified. Specifically, there are affine yield models that generate identical

dynamics for yields with a given set of maturities, but different dynamics for

yields with other maturities. A common practice (see, for example, Duffee

(2002)) is to use more yields than state variables, and to assume that cer-

tain benchmark yields are observed precisely, whereas the other yields are

observed with measurement error. The measurement errors are generally

held to be i.i.d., and also independent of the state variable processes.

We take this latter approach, and use N + H observed yields, H ≥ 0,
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in the postulated model, and include observation errors for H of those

yields. At each date t, the state vector Xt is then exactly identified by the

yields observed without error, and these N yields jointly follow a Markov

process. Denoting the times to maturity of the yields observed without

error as τ1, ..., τN , the observed values of these yields, on the left-hand

side, are equated with the predicted values (from (17.61)) given the model

parameters and the current values of the state variables, Xt:

gt = Γ0 (θ) + Γ (θ)
′

Xt. (17.63)

The current value of the state vector Xt is obtained by inverting this equa-

tion:

Xt =
[
Γ (θ)

′
]−1

[gt − Γ0 (θ)] . (17.64)

While the only parameters entering the transformation from observed

yields to the state variables are the parameters of the risk-neutral (or Q-

measure) dynamics of the state variables, once we have constructed our

time series of values of Xt sampled at dates τ0, τ1, ..., τn, the dynamics of

the state variable that we will be able to infer from this time series are the

dynamics under the physical measure (denoted by P ). The first step in the

estimation procedure is the only place where we rely on the tractability of

the affine bond pricing model. In particular, we can now specify freely (that

is, without regard for considerations of analytical tractability) the market

prices of risk of the different Brownian motions

dXt = µP (Xt; θ) dt + σ (Xt; θ) dWP
t

=
{
µQ (Xt; θ) + σ (Xt; θ) Λ (Xt; θ)

}
dt + σ (Xt; θ) dWP

t . (17.65)

We adopt the simple specification for the market price of risk

Λ (Xt; θ) = σ (Xt; θ)
′

λ (17.66)

with λ an m × 1 vector of constant parameters, so that under P , the in-

stantaneous drift of each state variables is its drift under the risk-neutral

measure, plus a constant times its volatility squared. Under this specifica-

tion, the drift of the state vector is then affine under both the physical and

risk-neutral measures, since

µP (Xt; θ) =
(
Ã + B̃Xt

)
+ ΣS (Xt; β)

′

Σ′λ ≡ A + BXt. (17.67)

An affine µP is not required for our likelihood expansions. Since we can

derive likelihood expansions for arbitrary diffusions, µP may contain terms

that are non-affine, such as the square root of linear functions of the state
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vector, as in Duarte (2004) for instance. Duffee (2002) and Cheridito, Fil-

ipović, and Kimmel (2005) also allow for a more general market price of

risk specifications than Dai and Singleton (2000), but retain the affinity of

µQ and µP (and also of the diffusion matrix). However, we do rely on the

affine character of the dynamics under Q because those allow us to go from

state to yields in the tractable manner given by (17.64).

These closed form likelihood expansions are used in various contexts

by Thompson (2004), Takamizawa (2005) and Schneider (2006) for interest

rate and term structure models of affine or more general type.

17.8. Application to Specification Testing

Aı̈t-Sahalia, Fan, and Peng (2005) develop a specification test for the tran-

sition density of the process, based on a direct comparison of the non-

parametric estimate of the transition function to the parametric transition

function pX(x|x0, ∆; θ) implied by the model in order to test

H0 : pX(x|x0, ∆) = pX(x|x0, ∆; θ)

vs. H1 : pX(x|x0, ∆) 6= pX(x|x0, ∆; θ). (17.68)

As in the parametric situation of (17.2), note that the logarithm of the

likelihood function of the observed data {X1, · · · , Xn+ ∆} is

`(pX) =
N∑

i= 1

ln pX(Xi∆|X(i−1)∆, ∆),

after ignoring the stationary density of X0. A natural test statistic is then

to compare the likelihood ratio under the null and alternative hypotheses.

This leads to the test statistic

T0 =

N∑

i= 1

ln
(
p̂X(Xi∆|X(i−1)∆, ∆)/ pX(Xi∆|X(i−1)∆, ∆; θ̂)

)

×w(X(i−1)∆, Xi∆) (17.69)

where w is a weight function, p̂X a nonparametric estimator of the transition

function based on locally linear polynomials (see Fan,Y ao and Tong (1996))

and pX(·, θ̂) a parametric estimator based on the closed form expressions

described above. Aı̈t-Sahalia, Fan, and Peng (2005) consider other distance

measures and tests, and derive their asymptotic properties.

A complementary approach to this is the one proposed by Hong and

Li (2005), who use the fact that under the null hypothesis, the random

variables {P (Xi∆|X(i−1)∆, ∆, θ)} are a sequence of i.i.d. uniform random
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variables; see also Thompson (2004), Chen and Gao (2004) and Corradi

and Swanson (2005). That approach will only work in the univariate case,

however, unlike one based on (17.69).

17.9. Derivative Pricing Applications

Consider a generic derivative security with payoff function Ψ (X∆) at time

∆. If the derivative is written on a traded underlying asset, with price

process X and risk-neutral dynamics

dXt/Xt = {r − q} dt + σ (Xt; θ) dWt (17.70)

where r is the risk-free rate, q the dividend yield paid by that asset, both

viewed as constant, then with complete markets, absence of arbitrage op-

portunities implies that the price at time 0 of the derivative is

P0 = e−r∆E [ Ψ (X∆)|X0 = x0]

= e−r∆

∫ +∞

0

Ψ (x) pX (∆, x|x0; θ) dx. (17.71)

In general, the transition function pX corresponding to the dynamics (17.70)

is unknown and one will either solve numerically the PDE solved by P or

perform Monte Carlo integration of (17.71).

But we can instead, as long as ∆ is not too large, use the p
(J)
X corre-

sponding to the SDE (17.70), and get a closed form approximation of the

derivative price in the form

P
(J)
0 = e−r∆

∫ +∞

0

Ψ (x) p
(J)
X (∆, x|x0; θ) dx (17.72)

which is of a different nature than the ad hoc “corrections” to the Black-

Scholes Merton formula (as in for example Jarrow and Rudd (1982)), which

break the link between the derivative price and the dynamic model for the

underlying asset price by assuming directly a functional form for pX . By

contrast, (17.72) is the option pricing formula (of order J in ∆) which

matches the dynamics of the underlying asset. Being in closed form, com-

parative statics, etc. are possible. Being an expansion in small time, accu-

racy will be limited to relatively small values of ∆ (of the order of 3 months

in practical applications.)
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17.10. Likelihood Inference for Diffusions under

N onstationarity

There is an extensive literature applicable to discrete-time stationary

Markov processes starting with the work of Billingsley (1961). The as-

ymptotic covariance matrix for the ML estimator is the inverse of the

score covariance or information matrix where the score at date t is

∂ ln p(Xt+∆|Xt, ∆, θ)/∂θ where ln p(·|x, ∆, θ) is the logarithm of the condi-

tional density over an interval of time ∆ and a parameter value θ. In the

stationary case, the MLE will under standard regularity conditions con-

verge at speed n1/2 to a normal distribution whose variance is given by the

inverse of Fisher’s information matrix.

When the underlying Markov process is nonstationary, the score process

inherits this nonstationarity. The rate of convergence and the limiting dis-

tribution of the maximum likelihood estimator depends upon growth prop-

erties of the score process (e.g. see Hall and Heyde (1980) Chapter 6.2). A

nondegenerate limiting distribution can be obtained when the score process

behaves in a sufficiently regular fashion. The limiting distribution can be

deduced by showing that general results pertaining to time series asymp-

totics (see e.g., Jeganathan (1995)) can be applied to the present context.

One first establishes that the likelihood ratio has the locally asymptotically

quadratic (LAQ ) structure, then within that class separates between the lo-

cally asymptotically mixed N ormal (LAMN ), locally asymptotically N ormal

(LAN ) and locally asymptotically Brownian functional (LABF) structures.

As we have seen, when the data generating process is stationary and er-

godic, the estimation is typically in the LAN class. The LAMN class can

be used to justify many of the standard inference methods given the abil-

ity to estimate the covariance matrix pertinent for the conditional normal

approximating distribution. Rules for inference are special for the LABF

case. These structures are familiar from the linear time series literature on

unit roots and co-integration. Details for the case of a nonlinear Markov

process can be found in Aı̈t-Sahalia (2002).

As an example of the types of results that can be derived, consider

the Ornstein-Uhlenbeck specification, dXt = −κXtdt + σdWt, where θ =

(κ, σ2). The sampled process is a first-order scalar autoregression, which has

received extensive attention in the literature on time series. The discrete-

time process obtained by sampling at a fixed interval ∆ is a Gaussian

first-order autoregressive process with autoregressive parameter exp(−κ∆)

and innovation variance σ2
(
1 − e−2κ∆

)
/(2κ). White (1958) and Anderson
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(1959) originally characterized the limiting distribution for the discrete-time

autoregressive parameter when the Markov process is not stationary. Alter-

natively, by specializing the general theory of the limiting behavior of the

ML estimation to this model, one obtains the following asymptotic distrib-

ution for the MLE of the continuous-time parameterization (see Corollary

2 in Aı̈t-Sahalia (2002)):

• If κ > 0 (LAN, stationary case):

√
N

((
κ̂N

σ̂2
N

)
−
(

κ

σ2

))
−→ N

((
0

0

)
,




e2κ∆
−1

∆2

σ2(e2κ∆
−1−2κ∆)

κ∆2

σ2(e2κ∆
−1−2κ∆)

κ∆2

σ4 (e2κ∆
−1)

2
+2κ2∆2(e2κ∆+1)+4κ∆(e2κ∆

−1)
κ2∆2(e2κ∆−1)






(17.73)

• If κ < 0 (LAMN, explosive case), assume X0 = 0, then:

e−(N+1)κ∆∆

e−2κ∆ − 1
(κ̂N−κ) → G−1/2 × N (0, 1)

√
N
(
σ̂2

N − σ2
)
→ N

(
0, 2σ4

)
(17.74)

where G has a χ2[1] distribution independent of the N(0, 1). G −1/2 ×
N (0, 1) is a Cauchy distribution.

• If κ = 0 (LABF, unit root case), assume X0 = 0, then:

N κ̂N →
(
1 − W 2

1

)(
2∆

∫ 1

0

W 2
t dt

)−1

√
N
(
σ̂2

N − σ2
)
→ N

(
0, 2σ4

)
(17.75)

where N is the sample size and {Wt : t ≥ 0} is a standard Brownian

motion.
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