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Abstract

This paper proposes saddlepoint expansions as a means to generate closed-form

approximations to the transition densities and cumulative distribution functions of Markov

processes. This method is applicable to a large class of models considered in finance, for which

a Laplace or characteristic functions, but not the transition density, can be found in closed

form. But even when such a computation is not possible explicitly, we go one step further by

showing how useful approximations can be obtained by replacing the Laplace or characteristic

functions by an expansion in small time.
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1. Introduction

Transition densities play a crucial role in continuous time finance, at both the
theoretical model building and econometric inference and testing levels: see, the
survey by Aı̈t-Sahalia et al. (2002). Arbitrage considerations in finance make many
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pricing problems linear; as a result, they depend upon the computation of
conditional expectations for which knowledge of the transition function is essential.
Inference strategies relying on maximum-likelihood or Bayesian methods can be
greatly simplified if the transition function is known. Unfortunately, such an object
is rarely known in closed form.

This has given rise to the development of a method designed to approximate it in
closed form: see, Aı̈t-Sahalia (1999, 2001, 2002) for the original work on diffusions.
This method is based on expanding the transition density of the process in
orthogonal polynomials around a Gaussian leading term. While writing down a
Hermite series can be done for any model, the key idea is to exploit the specificity
afforded by the diffusion hypothesis in order to obtain the expressions for the
coefficients of the series fully explicitly, as functions of the state vectors at the present
and future dates, the time interval that separates them and the parameters of the
assumed stochastic differential equation.

Jensen and Poulsen (2002) conducted an extensive comparison of different
techniques for approximating transition function and demonstrated that the method
is both the most accurate and the fastest to implement for the types of problems one
encounters in finance. The method has been extended to time inhomogeneous
processes by Egorov et al. (2003) and to jump-diffusions by Schaumburg (2001) and
Yu (2003). DiPietro (2001) has extended the methodology to make it applicable in a
Bayesian setting. Bakshi and Yu (2005) proposed a refinement to the method.

In this paper, we propose an alternative strategy for constructing closed-form
approximations to the transition density of a continuous time Markov process.
Instead of expanding the transition function in orthogonal polynomials around a
leading term, we rely on the saddlepoint method, which originates in the work of
Daniels (1954). In addition to the transition function, saddlepoint approximations
can be usefully applied to compute tail probabilities: see, Rogers and Zane (1999) for
an application to option pricing. Jensen (1995) provides a detailed survey of the
saddlepoint method.

To understand our approach, it is useful to contrast it with the Hermite-based
method in Aı̈t-Sahalia (2002). Consider a standardized sum of random variables to
which the central limit theorem (CLT) apply. Often, one is willing to approximate
the actual sample size n by infinity and use the Nð0; 1Þ limiting distribution for the
properly standardized transformation of the data. If not, higher-order terms of the
limiting distribution (for example, the classical Edgeworth expansion based on
Hermite polynomials) can be calculated to improve the small sample performance of
the approximation. The basic idea is to create an analogy between this situation and
that of approximating the transition density of a diffusion. The sampling interval D
plays the role of the sample size n in the CLT. If we properly standardize the data, we
can find out the limiting distribution of the standardized data as D tends to 0 (by
analogy with what happens in the CLT when n tends to1). Properly standardizing
the data in the CLT means summing them and dividing by n1=2; here, it involves
transforming the original process into another one. In both cases, the appropriate
standardization makes Nð0; 1Þ the leading term. This Nð0; 1Þ approximation is then
refined by correcting for the fact that D is not 0 (just like in practical applications of
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the CLT n is not infinity), i.e., by computing the higher-order terms. So this
expansion can be viewed as analogous to a small sample correction to the CLT. As in
the CLT case, it is natural to consider higher-order terms based on Hermite
polynomials, which are orthogonal with respect to the leading Nð0; 1Þ term. This is
an Edgeworth (or Gram–Charlier, depending upon how the terms are gathered) type
of expansion.

By contrast, saddlepoint expansions rely on first tilting the original density—
transforming it into another one—and then applying an Edgeworth-like expansion
to the tilted density. If the tilted density is chosen wisely, the resulting approximation
can be quite accurate in the tails, and applicable fairly generally. In order to be able
to calculate a saddlepoint approximation, one needs to be able to calculate the
Laplace transform or characteristic function of the process of interest. This
requirement is a restriction on the applicability of the method, but as we will see, one
that is possible to satisfy in many cases in our context of Markov processes. But even
when such a computation is not possible explicitly, we go one step further by
showing how useful approximations can be obtained by replacing the characteristic
function by an expansion in small time. Expansions in small time, which involve the
infinitesimal generator of the Markov process, are a key element shared with the
Hermite-based expansions described above.

The paper is organized as follows. We start in Section 2 with some brief
preliminaries on Markov processes, focusing on their transition properties, and on
characteristic functions. We then present in Section 3 the main results of the
saddlepoint theory and then specialize its results to our context. We first construct
saddlepoint approximations for diffusion processes in Section 4 and give examples in
Section 5. Next, we turn to jump-diffusions and give examples in Section 6. Finally,
we present results for more general Lévy processes and give examples in Sections 7.
Section 8 concludes. All proofs are in Appendices.
2. Preliminaries

We consider a Markov process, specified in continuous time. The premise of this
paper is that the characteristic function of the process is tractable, often known in
closed form, while the transition function of the process over discrete time intervals
is not. Yet we are interested in the transition function for a variety of purposes,
ranging from likelihood inference about the parameters of the model (where the
discrete time interval is the data sampling interval) to option pricing (where the
discrete time interval is the option’s time to expiration).

2.1. The transition density of a Markov process

In what follows, we consider a stochastic process X on Rm, with the standard
probability space ðO;F;PrÞ and s-field of Borelians E in Rm such that for each tX0,
X t : ðO;F;PrÞ ! ðE;EÞ is a measurable function. Consider the family of (time-
homogeneous) conditional probability functions P : ðRþ � E� RmÞ ! ½0;1�, where
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PðD; �jxÞ is a probability measure in E for each x in Rm and time interval DX0 with
the limit PðD; �jxÞ ! d as D! 0. A transition function is a family of conditional
probability functions that satisfies for each ðD; tÞ in R2

þ the Chapman–Kolmogorov
equation

PðDþ t;BjxÞ ¼
Z

PðD;BjyÞPðt;dyjxÞ. (2.1)

Let now Ft �F be an increasing family of s-algebras and X a stochastic process
that is adapted to Ft. X is Markov with transition function P if for each non-
negative, Borel measurable c : Rm ! R and each ðs; tÞ 2 R2

þ; sot

E½cðX tÞjFs� ¼

Z
cðyÞPðt� s;dyjX sÞ. (2.2)

Kolmogorov’s construction (for example, Revuz and Yor, 1994, Chapter III,
Theorem 1.5) allows one to parameterize Markov processes using transition
functions. Namely, given a transition function P and a probability measure n on
Rm serving as the initial distribution, there exists a unique probability measure such
that the coordinate process X is Markovian with respect to sðX u; uptÞ, has
transition function P, and X 0 has n as its distribution.

2.2. Characteristic functions

In what follows, we will assume that for each ðD;xÞ 2 Rþ � Rm the probability
measure PðD; �jxÞ admits a probability density pðD; �jxÞ with respect to Lebesgue
measure. The (conditional) Laplace transform of the process X is defined for u 2 Rm

as

jðD; ujxÞ ¼ E½expðuTXDÞjX 0 ¼ x�, (2.3)

where T denotes transposition, for all values of ðD; u;xÞ. We assume that for each
ðD;xÞ, the region of convergence in Rm of the integral jðD; ujxÞ (i.e., the set L of
u 2 Rm such that jðD; ujxÞo1) is a product of m non-vanishing intervals which
contain the origin. That is, L ¼

Qm
i¼1 Li, with Li ¼ ð�ci; diÞ; ciX0; diX0 and

ci þ di40. Note that the existence of the density p insures that jðD; ujxÞ ! 0 as
juj ! 1.

The cumulant transform (or cumulant generating function) of X is the function

KðD; ujxÞ ¼ lnjðD; ujxÞ. (2.4)

For given ðD;xÞ, K is a closed-convex function of u in Rm and if the variance matrix
VarðX Þ is positive definite, K is strictly convex on L. Note that KðD; 0jxÞ ¼ 0.

Derivatives of all order of j with respect to u exist and are given by

qr1þ���þrmjðD; ujxÞ
qur1

1 . . . qurm
m

¼ E½X r1
1D . . .X

rm

mD expðu � XDÞjX 0 ¼ x�.
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The characteristic function of X is the function jðD; iujxÞ, where i2 ¼ �1. The
cumulants of X are the arrays kr � fkr1;...;rm

: r1 þ � � � þ rm ¼ rg, where

kr1;...;rm
¼

qr1þ���þrm KðD; ujxÞ
qur1

1 . . . qurm
m

����
u¼0

and we leave the dependence on ðD;xÞ implicit. In particular,

k2 ¼
q2KðD; ujxÞ

ququT

����
u¼0

is an m�m matrix.
We will use a number of facts about characteristic functions which can be applied

in our context of Markovian transition functions. In particular, the density function
and characteristic functions are linked by the Fourier inversion formula

pðD; yjxÞ ¼ ð2pÞ�m

Z þ1
�1

expð�iu � yÞjðD; iujxÞdu

¼ ð2piÞ�m

Z ûþi1

û�i1

expð�u � yÞjðD; ujxÞdu ð2:5Þ

provided that jðD; �jxÞ 2 L1ðRmÞ. The vector û 2 Rm in the integration limits is
chosen in such a way that �cioûiodi so that �cioReðuiÞodi on the path of
integration.
3. The saddlepoint method

We now provide a brief review of the saddlepoint method, which originated with
Daniels (1954), before specializing the results to our context of Markov transition
densities. The new aspect introduced by Markov processes is the dynamic dimension,
i.e., the dependence of all quantities on D and the analysis of their asymptotic
behavior in small time, i.e., as D gets small.
3.1. Expansion of the cumulant generating function

The key to the saddlepoint method is to choose the path of integration, i.e., û in
(2.5), well. Consider the following choice: set û ¼ ûðD; yjxÞ 2 Rm as the solution in u

of the equation

qKðD; ujxÞ
qu

¼ y. (3.1)

Such a solution exists and is unique because of the convexity in u of the function K .
Often, the solution û to Eq. (3.1) must be computed numerically either because the
function K is not known explicitly or because Eq. (3.1) is too involved: see, Phillips
(1986) for a discussion of this issue in the context of large deviations, Easton and
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Ronchetti (1986) in the context of L-statistics and Lieberman (1994) for an approach
involving replacing û by an approximation.

Despite this difficulty, why does the selection of û of Eq. (3.1) make sense? Rewrite
Eq. (2.5) in the form

pðD; yjxÞ ¼ ð2piÞ�m

Z ûþi1

û�i1

expðKðD; ujxÞ � u � yÞdu (3.2)

and Taylor expand the function u 7�!KðD; ujxÞ � u � y around its minimum û:

KðD; ujxÞ � u � y ¼ KðD; ûjxÞ � û � yþ
1

2
ðu� ûÞT

q2KðD; ûjxÞ
ququT

ðu� ûÞ

þOðku� ûk3Þ. ð3:3Þ

Incidentally, the name ‘‘saddlepoint’’ comes from the shape of the right-hand side of
(3.3) for u in a neighborhood of û. Consider the univariate case m ¼ 1. If u� û is the
complex number c ¼ aþ ib, then the real part of the right-hand side of (3.3) is of the
form ða; bÞ7�!aþ bða2 � b2

Þ, where a and b are real-valued constants. This function
has the shape of a saddle.

On the path of integration relevant for (3.2), we have u ¼ ûþ iv with v 2 Rm,
hence u� û is a purely imaginary complex vector. Thus,

KðD; ujxÞ � u � y ¼ KðD; ûjxÞ � û � y�
1

2
vT

q2KðD; ûjxÞ
ququT

vþOðkvk3Þ.

From this it follows that the leading term of an approximation to pðD; yjxÞ can be
taken to be

pð0ÞðD; yjxÞ ¼ ð2pÞ�m expðKðD; ûjxÞ � û � yÞ

Z 1
�1

exp �
1

2
vT

q2KðD; ûjxÞ
ququT

v

� �
dv.

Then, we have

ð2pÞ�m

Z 1
�1

exp �
1

2
vT

q2KðD; ûjxÞ
ququT

v

� �
dv ¼ ð2pÞ�m=2 det

q2KðD; ûjxÞ
ququT

� ��1=2
from which it follows that

pð0ÞðD; yjxÞ ¼ ð2pÞ�m=2 det
q2KðD; ûjxÞ

ququT

� ��1=2
expðKðD; ûjxÞ � û � yÞ. (3.4)

This leading term, while everywhere positive, will not in general integrate to 1.
Dividing pð0ÞðD; yjxÞ in (3.4) by its integral over y insures the latter.

3.2. Higher-order expansions

Higher-order saddlepoint expansions can be obtained by expanding the function
KðD; ujxÞ � u � y around û at a higher order. To avoid complicating matters with the
tensor notation for multivariate series (see, McCullagh, 1987), we write this
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expansion in the univariate case

KðD; ujxÞ � u � y ¼ KðD; ûjxÞ � û � y�
1

2

q2KðD; ûjxÞ
qu2

v2

�
1

6

q3KðD; ûjxÞ
qu3

iv3 þ
1

24

q4KðD; ûjxÞ
qu4

v4 þOðv5Þ ð3:5Þ

from which it follows that

expðKðD; ujxÞ � u � yÞ ¼ expðKðD; ûjxÞ � û � yÞ exp �
1

2

q2KðD; ûjxÞ
qu2

v2
� �

� 1�
1

6

q3KðD; ûjxÞ
qu3

iv3 þ
1

24

q4KðD; ûjxÞ
qu4

v4

(

�
1

72

q3KðD; ûjxÞ
qu3

� �2

v6 þOðv7Þ

)
,

where the last term comes from the quadratic term in expanding ex ¼ 1þ xþ
1
2

x2 þOðx3Þ.
The leading term, called the saddlepoint approximation, is the term

pð0ÞðD; yjxÞ ¼
expðKðD; ûjxÞ � û � yÞffiffiffiffiffiffi
2p
p
ðq2KðD; ûjxÞ=qu2Þ

1=2
. (3.6)

Next, stopping the expansion (3.5) at order 4 in v, we have that

pð1ÞðD; yjxÞ

¼ ð2pÞ�1 expðKðD; ûjxÞ � û � yÞ

Z þ1
�1

exp �
1

2

q2KðD; ûjxÞ
qu2

v2
� �

� 1�
1

6

q3KðD; ûjxÞ
qu3

iv3 þ
1

24

q4KðD; ûjxÞ
qu4

v4 �
1

72

q3KðD; ûjxÞ
qu3

� �2

v6

( )
dv

¼
expðKðD; ûjxÞ � û � yÞ

2pðq2KðD; ûjxÞ=qu2Þ
1=2

Z þ1
�1

exp �
1

2
w2

� �
dw

�

�
1

6

q2KðD; ûjxÞ
qu2

� ��3=2
q3KðD; ûjxÞ

qu3
i

Z þ1
�1

exp �
1

2
w2

� �
w3 dw

þ
1

24

q2KðD; ûjxÞ
qu2

� ��2
q4KðD; ûjxÞ

qu4

Z þ1
�1

exp �
1

2
w2

� �
w4 dw

�
1

72

q2KðD; ûjxÞ
qu2

� ��3
q3KðD; ûjxÞ

qu3

� �2 Z þ1
�1

exp �
1

2
w2

� �
w6 dw

)
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so that

pð1ÞðD; yjxÞ ¼
expðKðD; ûjxÞ � û � yÞffiffiffiffiffiffi
2p
p
ðq2KðD; ûjxÞ=qu2Þ

1=2
1þ

1

8

q2KðD; ûjxÞ
qu2

� ��2
q4KðD; ûjxÞ

qu4

(

�
5

24

q2KðD; ûjxÞ
qu2

� ��3
q3KðD; ûjxÞ

qu3

� �2
)
, ð3:7Þ

where we have used the change of variable w ¼ ðq2KðD; ûjxÞ=qu2Þ
1=2v. The result then

follows from the facts that

Z þ1
�1

exp �
1

2
w2

� �
dw ¼

ffiffiffiffiffiffi
2p
p

;

Z þ1
�1

exp �
1

2
w2

� �
w3 dw ¼ 0,

Z þ1
�1

exp �
1

2
w2

� �
w4 dw ¼ 3

ffiffiffiffiffiffi
2p
p

;

Z þ1
�1

exp �
1

2
w2

� �
w6 dw ¼ 15

ffiffiffiffiffiffi
2p
p

.

In the case of diffusions, for instance, we shall see that both correction terms
ðq2KðD; ûjxÞ=qu2Þ

�2 q4KðD; ûjxÞ=qu4 and ðq2KðD; ûjxÞ=qu2Þ
�3
ðq3KðD; ûjxÞ=qu3Þ

2 are
of order OðDÞ as shown in the proof of Theorem 3. A higher-order expansion,
pð2ÞðD; yjxÞ, can be obtained similarly. To simplify the notation, let K ðnÞ denote
qðnÞKðD; ûjxÞ=qun so that

KðD; ujxÞ � u � y ¼ KðD; ûjxÞ � û � y� 1
2
K ð2Þv

2 � 1
6
K ð3Þiv

3 þ 1
24

K ð4Þv
4

þ 1
120

K ð5Þiv
5 � 1

720
K ð6Þv

6 þOðkvk7Þ.

We will see in the proof of Theorem 3 that, for diffusions, we have

pð2ÞðD; yjxÞ ¼
expðKðD; ûjxÞ � û � yÞffiffiffiffiffiffi

2p
p

K
1=2
ð2Þ

1þ
1

8

K ð4Þ

K2
ð2Þ

�
5

24

K2
ð3Þ

K3
ð2Þ

�
1

48

K ð6Þ

K3
ð2Þ

þ
35

384

K2
ð4Þ

K4
ð2Þ

(

þ
7

48

K ð3ÞK ð5Þ

K4
ð2Þ

�
35

64

K2
ð3ÞK ð4Þ

K5
ð2Þ

þ
385

1152

K4
ð3Þ

K6
ð2Þ

)
. ð3:8Þ

Different Markov processes will differ in that their corresponding K ðnÞ can be of
different orders in D.
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3.3. Non-Gaussian leading terms

It is possible to use a local approximation, in the neighborhood of the saddlepoint
û, different from (3.3). Any cumulant generating function K0 that is analytic at 0 can
serve that role. A non-Gaussian choice can be useful, in particular, when focusing on
the small time behavior of jump processes (more on that later in Sections 6 and 7).

To understand how this works, it is useful to first derive the classical saddlepoint
approximation using a change of variable inside the integral (3.2). Consider for
simplicity the univariate case. The idea is to find an approximation for the function
KðD; ujxÞ � uy, that is, valid both when u is in a neighborhood of û and when u is in a
neighborhood of 0. The function vanishes at 0, while its first derivative vanishes at û

(recalling from (3.1) that y ¼ qKðD; ûjxÞ=qu). Let us approximate the quadratic
behavior of KðD; ujxÞ � u � y near û, given by (3.3), by the same quadratic behavior of
w near some ŵ. That is,

fKðD; ujxÞ � uyg � fKðD; ûjxÞ � ûyg ¼ 1
2
ðw� ŵÞ2

for an arbitrary real ŵ. In particular, suppose that we select ŵ to satisfy

KðD; ûjxÞ � ûy ¼ �1
2
ŵ2, (3.9)

that is,

ŵ ¼ f2ðûy� KðD; ûjxÞÞg1=2 sgnðûÞ, (3.10)

where sgnðûÞ ¼ �1; 0 or þ1 depending upon whether û is negative, zero or positive.
Then, we obtain

KðD; ujxÞ � uy ¼ 1
2
w2 � wŵ (3.11)

and the minima on the left- and right-hand side are indeed identical.
Eq. (3.11) defines implicitly the change of variable uðwÞ.

Applying this change of variable in the inverse Fourier representation (3.2) for the
density yields

pðD; yjxÞ ¼ ð2piÞ�1
Z ûþi1

û�i1

expðKðD; ujxÞ � u � yÞdu

¼ ð2piÞ�1
Z bwþi1
bw�i1 exp

1

2
w2 � wŵ

� �
duðwÞ

dw
dw,

where the term duðwÞ=dw can now be approximated near w ¼ ŵ as
duðwÞ=dw ¼ duðŵÞ=dwþOðw� ŵÞ. To compute duðŵÞ=dw, we differentiate both
sides of (3.11) with respect to w, once then twice:

qKðD; uðwÞjxÞ
qu

duðwÞ

dw
�

duðwÞ

dw
y ¼ w� ŵ,

q2KðD; uðwÞjxÞ
qu2

duðwÞ

dw

� �2

þ
qKðD; uðwÞjxÞ

qu

d2uðwÞ

dw2
�

d2uðwÞ

dw2
y ¼ 1.
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Evaluating this at w ¼ ŵ, and recalling that uðŵÞ ¼ û and qKðD; ûjxÞ=qu ¼ y gives

duðŵÞ

dw
¼

q2KðD; ûjxÞ
qu2

� ��1=2
. (3.12)

Thus, we obtain as the leading term

pð0ÞðD; yjxÞ ¼ ð2piÞ�1
Z bwþi1
bw�i1 exp

1

2
w2 � wŵ

� �
dw

duðŵÞ

dw

¼ fðŵÞ
q2KðD; ûjxÞ

qu2

� ��1=2
, ð3:13Þ

where f is the standard normal density function. It is easy to check that (3.13)
coincides with (3.6). Indeed, from (3.9)

fðŵÞ
q2KðD; ûjxÞ

qu2

� ��1=2
¼ ð2pÞ�1=2

q2KðD; ûjxÞ
qu2

� ��1=2
exp �

1

2
ŵ2

� �
¼ ð2pÞ�1=2

q2KðD; ûjxÞ
ququT

� ��1=2
expðKðD; ûjxÞ � ûyÞ.

To allow for a non-Gaussian leading term, we replace the cumulant generating
function w2=2 with another choice K0, which is also analytic at 0. Let F0 (resp., f 0)
be the explicit cumulative distribution function (resp., density function) correspond-
ing to K0. The idea is to again approximate the quadratic behavior of u 7�!ðD; ujxÞ �
uy near û, but this time with a function involving the base K0. Consider a fixed point
y0 and its associated saddlepoint ŵ for K0, which by definition solves K 00ðŵÞ ¼ y0.
The function w7�!K0ðwÞ � wy0 is quadratic near ŵ and should therefore
approximate the original function u 7�!KðD; ujxÞ � uy near û:

fKðD; ujxÞ � uyg � fKðD; ûjxÞ � ûyg ¼ fK0ðwÞ � wy0g � fK0ðŵÞ � ŵy0g. (3.14)

Suppose now that, for a given y, we select y0 ¼ y. Then, instead of (3.11), the change
of variable from u to w will be given by

fKðD; ujxÞ � uyg � fKðD; ûjxÞ � ûyg ¼ fK0ðwÞ � wyg � fK0ðŵÞ � ŵyg. (3.15)

The two functions have the same local behavior near û. As in the Gaussian case, we
now have

pðD; yjxÞ ¼ ð2piÞ�1
Z ûþi1

û�i1

expðKðD; ujxÞ � uyÞdu

¼ ð2piÞ�1 expðfKðD; ûjxÞ � ûyg � fK0ðŵÞ � ŵygÞ

�

Z ŵþi1

ŵ�i1

expðK0ðwÞ � wyÞ
duðwÞ

dw
dw
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to be approximated by the leading term

pð0ÞðD; yjxÞ ¼ ð2piÞ�1 expðfKðD; ûjxÞ � ûyg � fK0ðŵÞ � ŵygÞ

�

Z ŵþi1

ŵ�i1

expðK0ðwÞ � wyÞdw
duðŵÞ

dw

¼ f 0ðyÞ expðfKðD; ûjxÞ � ûyg � fK0ðŵÞ � ŵygÞ

�ðK 000ðŵÞÞ
1=2 q2KðD; ûjxÞ

ququT

� ��1=2
ð3:16Þ

since (3.15) now yields

duðŵÞ

dw
¼ ðK 000ðŵÞÞ

1=2 q2KðD; ûjxÞ
qu2

� ��1=2
instead of (3.12). Of course, these expressions coincide with their Gaussian
counterparts if K0ðwÞ ¼ w2=2 and f 0 ¼ f.

3.4. Approximating the cumulative transition density function

In some situations in finance, the need arises to approximate not the (conditional)
density function of the process, but rather the corresponding cumulative distribution
function. The calculation of Value at Risk (VaR) is the first example. In VaR
calculations, one needs to evaluate the probability that the value ST at date T of a
given portfolio will be lower than some preassigned cutoff a, i.e., PrðSToaÞ. The
cutoff is often set as a function of the value of the portfolio at the current date t, say
a loss not to exceed 20%, i.e., the calculation required is of the form PrðSToaStÞ

with, for example, a ¼ 0:8. All these probabilities are conditional on the information
set at t, which in this case reduces to St, so the calculation in the relative cutoff case
involves no additional difficulty.

A second example is represented by the calculation of the expected loss on a
portfolio, given that a loss of a certain magnitude occurs. This is sometimes
advocated as a better risk measure than the simple VaR. The calculation to be
performed in this case is E½ST jSToa�, with the expectation again taken conditionally
on St.

A combination of both types of calculations arise in a third situation, option
pricing. Considering the risk-neutral version of the process, the price at time t of a
European put option with strike price X, time to maturity D ¼ T � t, riskless rate r,
written on an asset with price S, is

Pt ¼ expð�rDÞE½maxð0;X � ST Þ�

¼ expðlnX � rDÞPrðSToX Þ � expð�rDÞE½ST jSToX �PrðSToX Þ,

where the expected value and probability are both conditioned on the current value
St of the underlying asset.

We can express the option price in terms of cumulative probabilities and the
corresponding cumulant generating functions, as in Rogers and Zane (1999). Let
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Y ¼ lnðSÞ and K denote the conditional cumulant generating function of Y T ,
that is, KðD; ujxÞ ¼ lnðE½expðuY T Þ�Þ. Note that E½ST jSToX �PrðSToX Þ ¼

expðKð1ÞÞ ePrðSToX Þ, where the probability ePr is defined by

eE½expðuY T Þ� ¼ E½expððuþ 1ÞY T Þ� expð�KðD; 1jxÞÞ.

The cumulant generating function of ePr is given by

eKðuÞ ¼ Kðuþ 1Þ � Kð1Þ.

Therefore, provided that the function K is known, we can express the option price as

Pt ¼ expðlnX � rDÞPrðY To lnX Þ � expð�rDþ Kð1ÞÞ ePrðY To lnX Þ

and all that remains to be done is to approximate the cumulative probabilities
PrðY To lnX Þ and ePrðY To lnX Þ in order to approximate the option price. In all
these situations, we need to be able to estimate the cumulative distribution function
of a given Markov process.

An obvious approximation of the cumulative distribution function can be
obtained by integrating the density approximation. Even if the cumulant generating
function is not explicit, this is less tedious than it first seems because the
monotonicity of qK=qu means that the saddlepoint need not be recomputed at each
point. In any event, this can be bypassed altogether. An explicit saddlepoint
approximation for the cumulative distribution function can be constructed using a
method proposed by Lugannani and Rice (1980). Start from the Fourier inversion
formula, applied to the cumulative distribution function

PrðYD4yjY 0 ¼ xÞ � PðD; yjxÞ ¼ ð2piÞ�1
Z ûþi1

û�i1

expðKðD; ujxÞ � u � yÞ
du

u
.

(3.17)

Changing the variable u to w, as defined in (3.11), yields

PðD; yjxÞ ¼ ð2piÞ�1
Z ŵþi1

ŵ�i1

exp
1

2
w2 � wŵ

� �
1

uðwÞ

duðwÞ

dw

� �
dw. (3.18)

Near u ¼ w ¼ 0, KðD; ujxÞ � uqKðD; 0jxÞ=qu, hence

w �
y� qKðD; 0jxÞ=qu

ŵ

� �
u

provided that yaqKðD; 0jxÞ=qu ¼ E½XDjX 0 ¼ x�, and

w � fq2KðD; 0jxÞ=qu2g�1=2u

otherwise (since û ¼ ŵ ¼ 0 when y ¼ qKðD; 0jxÞ=qu ¼ E½XDjX 0 ¼ x�). Thus, near 0,

1

u

du

dw
�

1

w
.
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To isolate the singularity in u�1 du=dw near w ¼ 0, it is therefore necessary to
decompose the integral (3.18) into two pieces

PðD; yjxÞ ¼ ð2piÞ�1
Z ŵþi1

ŵ�i1

exp
1

2
w2 � wŵ

� �
dw

w

þ ð2piÞ�1
Z ŵþi1

ŵ�i1

exp
1

2
w2 � wŵ

� �
1

u

du

dw
�

1

w

� �
dw. ð3:19Þ

The first integral in (3.19) above is simply 1� FðŵÞ, where F is the standard normal
cumulative distribution function. In the second integral, the function u�1 du=dw�

w�1 is now analytic in a neighborhood of 0 (since du=dw is) and there is no
singularity. It can be Taylor expanded around ŵ.

The expansion can be calculated to an arbitrary order using the definition of the
function uðwÞ implicit in (3.11); the leading term is

1

uðwÞ

duðwÞ

dw
�

1

w
¼

1

û

duðŵÞ

dw
�

1

ŵ
þOððw� ŵÞÞ

¼
1

û

q2KðD; ûjxÞ
qu2

� ��1=2
�

1

ŵ
þOððw� ŵÞÞ

when yaE½XDjX 0 ¼ x�. This yields the following leading term for the cumulative
distribution function approximation:

Pð0ÞðD; yjxÞ ¼ 1� FðŵÞ

þ ð2piÞ�1
Z ŵþi1

ŵ�i1

exp
1

2
w2 � wŵ

� �
dw

1

û

q2KðD; ûjxÞ
qu2

� ��1=2
�

1

ŵ

( )

¼ 1� FðŵÞ þ fðŵÞ
1

û

q2KðD; ûjxÞ
qu2

� ��1=2
�

1

ŵ

( )
. ð3:20Þ

When y ¼ E½XDjX 0 ¼ x�, we have û ¼ ŵ ¼ 0 and

1

uðwÞ

duðwÞ

dw
�

1

w
¼ �

q3KðD; 0jxÞ=qu3

6ðq2KðD; 0jxÞ=qu2Þ
3=2
þOðwÞ

from which it follows as in (3.20) that the leading term of the approximation is

Pð0ÞðD;E½XDjX 0 ¼ x�jxÞ ¼ 1� Fð0Þ þ fð0Þ �
q3KðD; 0jxÞ=qu3

6ðq2KðD; 0jxÞ=qu2Þ
3=2

( )

¼
1

2
�

1

6
ffiffiffiffiffiffi
2p
p

q3KðD; 0jxÞ=qu3

ðq2KðD; 0jxÞ=qu2Þ
3=2

. ð3:21Þ
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As shown by Wood et al. (1993), the natural generalizations of formulae
(3.20)–(3.21) to non-Gaussian leading terms are

Pð0ÞðD; yjxÞ ¼ 1� F 0ðy0Þ þ f 0ðy0Þ
1

û
ðK 000ðŵÞÞ

1=2 q2KðD; ûjxÞ
qu2

� ��1=2
�

1

ŵ

( )
(3.22)

and

Pð0ÞðD;E½XDjX 0 ¼ x�jxÞ ¼ 1� F 0ðK
0
0ð0ÞÞ þ f 0ðK

0
0ð0ÞÞ

K 000ð0Þ

6

�
K 0000 ð0Þ

K 000ð0Þ
3=2
�

q3KðD; 0jxÞ=qu3

ðq2KðD; 0jxÞ=qu2Þ
3=2

( )
ð3:23Þ

when yaE½XDjX 0 ¼ x� and y ¼ E½XDjX 0 ¼ x�, respectively.
4. The limiting behavior of the saddlepoint approximation for diffusions

We now turn to studying the behavior of the saddlepoint approximation when
applied to diffusions. Consider the stochastic differential equation

dX t ¼ mðX tÞdtþ sðX tÞdW t (4.1)

and for simplicity of notation consider the scalar case. We let S ¼ ðx; x̄Þ denote the
domain of the diffusion X t. Under regularity assumptions on the drift and diffusion
function of the process (covering smoothness of the coefficients and boundary behavior),
the stochastic differential equation (4.1) admits a weak solution which is unique in
probability law. We will make use of the scale density of the process, defined as

sðxÞ � exp �2

Z x mðyÞ
s2ðyÞ

dy

� �
(4.2)

for a given lower bound of integration whose choice is irrelevant in what follows. We will
denote by L2 the Hilbert space of measurable real-valued functions f on S such that
kf k2 � E½f ðX 0Þ

2
�o1. When f is a function of other variables, in addition to the state

variable y, we say that f 2 L2 if it satisfies the integrability condition for every given value
of the other variables.

Expansions in D are obtained by iterations of the infinitesimal generator A of the
process, that is, the operator which returns

A � f ¼
qf

qd
þ mðyÞ

qf

qy
þ

1

2
s2ðyÞ

q2f
qy2

(4.3)

when applied to functions f ðd; y;xÞ that are continuously differentiable once in d,
twice in y and such that qf =qy and A � f are both in L2 and satisfy

lim
y!x

qf =qy

sðyÞ
¼ lim

y!x̄

qf =qy

sðyÞ
¼ 0. (4.4)
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We define D to be the set of functions f which have these properties. For instance,
functions f that are polynomial in y near the boundaries of S, and their iterates by
repeated application of the generator, retain their polynomial growth characteristic
near the boundaries provided that ðm;s2Þ and their successive derivatives with respect
to y have polynomial growth there; so they are all in L2. They then satisfy (4.4) if sðyÞ

diverges exponentially near both boundaries of S, whereas polynomials and their
iterates diverge at most polynomially (multiplying and adding functions with
polynomial growth yields a function still with polynomial growth). If f exhibits
exponential divergence (for example, f � expðyÞÞ, then s must also diverge
exponentially and faster (for example, f � expðy2Þ). Finally, let us define DJ as the
set of functions f which with J þ 2 continuous derivatives in d, 2ðJ þ 2Þ in y, such
that f and its first J iterates by repeated applications of A all remain in D. For such
an f , we have

E½f ðD;Y ;X ÞjX ¼ x� ¼
XJ

j¼0

Dj

j!
Aj � f ð0;x;xÞ þOðDJþ1Þ (4.5)

which can be viewed as an expansion in small time.

4.1. Expansions for the saddlepoint

The key to our approach is to approximate the Laplace transform of the process,
and the resulting saddlepoint, as a Taylor series in D around their continuous-time
limit. This will result in an approximation (in DÞ to the saddlepoint (which itself is an
approximation to the true but unknown transition density of the process). By
applying (4.5) to the function f ðd; y;xÞ ¼ expðuyÞ, u treated as a fixed parameter, we
can compute the expansion of the Laplace transform jðD; ujxÞ in D. At order n2 ¼ 1,
the result is

jð1ÞðD; ujxÞ ¼ euxð1þ ðmðxÞuþ 1
2
s2ðxÞu2ÞDÞ.

Then, by taking its log, we see that the expansion at order D of the cumulant
transform K is simply

K ð1ÞðD; ujxÞ ¼ uxþ
q
qD

KðD; ujxÞ
����
D¼0

D

¼ uxþ mðxÞuþ
1

2
s2ðxÞu2

� �
D.

The first-order saddlepoint ûð1Þ solves qK ð1ÞðD; ujxÞ=qu ¼ y, that is,

ûð1ÞðD; yjxÞ ¼
y� ðxþ mðxÞDÞ

s2ðxÞD
,

and, when evaluated at y ¼ xþ zD1=2, we have

ûð1ÞðD; xþ zD1=2jxÞ ¼
z

s2ðxÞD1=2
þOð1Þ (4.6)
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and

K ð1ÞðD; ûð1ÞðD;xþ zD1=2jxÞjxÞ � ûð1ÞðD;xþ zD1=2jxÞðxþ zD1=2Þ

¼ �
z2

2s2ðxÞ
þOðD1=2Þ.

Similarly, a second-order expansion in D of j is

jð2ÞðD; ujxÞ ¼ exp uxþ ðmðxÞuþ
1

2
s2ðxÞu2ÞD

� �
� 1þ

1

2

q2

qD2
KðD; ujxÞ

����
D¼0

D2

� �
, ð4:7Þ

K ð2ÞðD; ujxÞ ¼ uxþ D mðxÞuþ
1

2
s2ðxÞu2

� �
þ

D2u

8
f4mðxÞm0ðxÞ þ 2s2ðxÞm00ðxÞ

þ uð4s2ðxÞm0ðxÞ þ 2mðxÞðs2Þ0ðxÞ þ s2ðxÞðs2Þ00ðxÞÞ

þ 2u2s2ðxÞðs2Þ0ðxÞg þOðD3Þ.

The second-order saddlepoint ûð2Þ solves qK ð2ÞðD; ujxÞ=qu ¼ y, which is a quadratic
equation explicitly solvable in u, and we see after some calculations that

ûð2ÞðD; xþ zD1=2jxÞ ¼
z

s2ðxÞD1=2
�

mðxÞ
s2ðxÞ

þ
3ðs2Þ0ðxÞ
4s4ðxÞ

z2
� �

þOðD1=2Þ (4.8)

and

K ð2ÞðD; ûð2ÞðD;xþ zD1=2jxÞjxÞ � ûð2ÞðD;xþ zD1=2jxÞðxþ zD1=2Þ

¼ �
z2

2s2ðxÞ
þ

mðxÞ
s2ðxÞ

zþ
ðs2Þ0ðxÞ
4s4ðxÞ

z3
� �

D1=2 þOðDÞ.

The way the correction terms in jð2ÞðD; ujxÞ are grouped is similar to that of an
Edgeworth expansion. The proof of Theorem 3 discusses how higher-order
approximate Laplace transforms are constructed.
4.2. Explicit expressions for the saddlepoint approximation

In what follows, we use the notation pðn1;n2Þ to indicate a saddlepoint
approximation of order n1 (in the sense of Section 3.2) using a Taylor expansion
in D of the Laplace transform j, that is, correct at order n2 in D. When the
expansions in D are analytic at zero (see, Aı̈t-Sahalia, 2002), then pðn1;1Þ ¼ pðn1Þ.

Theorem 1. Assume that ðm;s2Þ are such that the function f ðyÞ � expðuyÞ is in D2.
Then, the leading term of the saddlepoint approximation at the first order in D and with

a Gaussian base coincides with the classical Euler approximation of the transition
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density

pð0;1ÞðD; yjxÞ ¼ ð2pDs2ðxÞÞ�1=2 exp �
ðy� x� mðxÞDÞ2

s2ðxÞD

� �
. (4.9)

The next order saddlepoint approximation, which will obviously be more useful in
empirical applications than the term pð0;1Þ, is given by the following:

Theorem 2. Under the same assumption as Theorem 1, the first-order saddlepoint

approximation at the first order in D and with a Gaussian base is given by (3.7)

pð1;1ÞðD; xþ zD1=2jxÞ ¼
expð�z2=2s2ðxÞ þ e1=2ðzjxÞD

1=2 þ e1ðzjxÞDÞffiffiffiffiffiffi
2p
p

sðxÞD1=2f1þ d1=2ðzjxÞD1=2 þ d1ðzjxÞDg
f1þ c1ðzjxÞDg,

(4.10)

where

e1=2ðzjxÞ ¼
zmðxÞ
s2ðxÞ

þ
z3ðs2Þ0ðxÞ
4s4ðxÞ

,

e1ðzjxÞ ¼ �
mðxÞ2

2s2ðxÞ
þ

z2ð12s2ðxÞð4m0ðxÞ þ ðs2Þ00ðxÞÞ � 48mðxÞðs2Þ0ðxÞÞ
96s4ðxÞ

þ
z4ð8s2ðxÞðs2Þ00ðxÞ � 15ðs2Þ0ðxÞ2Þ

96s6ðxÞ
, ð4:11Þ

d1=2ðzjxÞ ¼
3zs0ðxÞ
2sðxÞ

,

d1ðzjxÞ ¼
m0ðxÞ
2
�

mðxÞs0ðxÞ
sðxÞ

þ
s0ðxÞ2

4
þ

sðxÞs00ðxÞ
4

þ z2
5s0ðxÞ2

8sðxÞ2
þ

s00ðxÞ
sðxÞ

� �
,

c1ðzjxÞ ¼
1

4
ðs2Þ00ðxÞ �

3

32

ðs2Þ0ðxÞ2

s2ðxÞ
.

The expression (4.10) provides an alternative gathering of the correction terms beyond

the leading term that is equivalent at order D to the irreducible expansion of the

transition density in Aı̈t-Sahalia (2001).

Note also that there is no need to compute the saddlepoint in the two theorems
above, as the results already incorporate this calculation and represent the final
‘‘ready-to-use’’ saddlepoint approximation as a function of the specification of the
diffusion model, ðmð�Þ;s2ð�ÞÞ and their derivatives.

As for the next order, two, the expression can be computed similarly: the
saddlepoint expansion is obtained from the expansion of the moment generating
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function

expðKðD; ujxÞ � u � yÞ

� expðKðD; ûjxÞ � û � yÞ expð�1
2
K ð2Þv

2Þ

�f1� 1
6
K ð3Þiv

3 þ 1
24

K ð4Þv
4 þ 1

120
K ð5Þiv

5 � 1
720

K ð6Þv
6

þ 1
2
½� 1

36
K2
ð3Þv

6 � 1
72

K ð3ÞK ð4Þiv
7 þ 1

576
K2
ð4Þv

8 þ 1
360

K ð3ÞK ð5Þv
8�

þ 1
6
½ 1
216

K3
ð3Þiv

9 � 1
288

K2
ð3ÞK ð4Þv

10� þ 1
24

1
1296

K4
ð3Þv

12g,

where, to simplify notation, K ðnÞ denotes qðnÞKðD; ûjxÞ=qun and only terms of the
relevant order in D are kept. The specific terms below are retained in the expansion
so that the saddlepoint approximation will have the desired order in D (rather than
the irrelevant v):

pð2;2ÞðD;xþ zD1=2jxÞ ¼
expðK ð4ÞðD; ûð2ÞjxÞ � ûð2Þðxþ zD1=2ÞÞffiffiffiffiffiffi

2p
p

K
1=2
ð2Þ

� 1þ
1

8

K ð4Þ

K2
ð2Þ|{z}

OðDÞ

�
5

24

K2
ð3Þ

K3
ð2Þ|{z}

OðDÞ

�
1

48

K ð6Þ

K3
ð2Þ|{z}

OðD2Þ

þ
35

384

K2
ð4Þ

K4
ð2Þ|{z}

OðD2Þ

8>>>><>>>>:

þ
7

48

K ð3ÞK ð5Þ

K4
ð2Þ|fflfflfflffl{zfflfflfflffl}

OðD2Þ

�
35

64

K2
ð3ÞK ð4Þ

K5
ð2Þ|fflfflfflffl{zfflfflfflffl}

OðD2Þ

þ
385

1152

K4
ð3Þ

K6
ð2Þ|{z}

OðD2Þ

9>>>>=>>>>;
by proceeding as in the proof of Theorem 2.

We now turn to expansions of higher order in D, and have the following:

Theorem 3. For n1X0 and n2X1, pðD;xþ zD1=2jxÞ ¼ pðn1;n2ÞðD;xþ zD1=2jxÞ

ð1þOðDminðn1þ1;n2=2ÞÞÞ.

Corollary 1. If ðm;s2Þ are such that KðD; ujX 0Þ is analytic at D ¼ 0, then

pðD;xþ zD1=2jxÞ ¼ pðn1ÞðD;xþ zD1=2jxÞð1þOðDn1þ1ÞÞ

for n1X0.
5. Some diffusion examples

5.1. The Ornstein– Uhlenbeck process

Consider an Ornstein–Uhlenbeck process

dX t ¼ ½AðtÞX t þ aðtÞ�dtþ sðtÞdW t. (5.1)
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For this process, XD � X 0�NðmðDÞ;V ðDÞÞ, where

mðtÞ ¼ GðtÞ
Z t

0

G�1ðsÞaðsÞds,

V ðtÞ ¼ GðtÞ
Z t

0

G�1ðsÞsðsÞ½G�1ðsÞsðsÞ�T ds

� �
GTðtÞ

and GðtÞ solves G0ðtÞ ¼ AðtÞGðtÞ subject to Gð0Þ ¼ I .
The saddlepoint is

ûðD;XDjX 0Þ ¼ ½V ðDÞ��1½XD � X 0 �mðDÞ�. (5.2)
5.2. The log-normal model

In the Black–Scholes geometric Brownian motion specification

dX t ¼ mX t dtþ sX t dW t. (5.3)

Replacing X by Y ¼ lnðX Þ and applying Itô’s lemma, we have

dY t ¼ ðm� s2=2Þdtþ sdW t

which takes us back to the Gaussian case. Since YD � Y 0�NðDðm� s2=2Þ;s2DÞ, the
saddlepoint for this model is given by

ûðD;YDjY 0Þ ¼
YD � Y 0 � Dðm� s2=2Þ

Ds2
. (5.4)
5.3. The square-root process

Consider Feller’s square-root process (used in the Cox et al. (1985) interest rate
model):

dX t ¼ kðy� X tÞdtþ s
ffiffiffiffiffiffi
X t

p
dW t. (5.5)

Let

c ¼
2k

ð1� e�DkÞs2
; b ¼

2kX 0

eDkð1� e�DkÞs2
; q ¼

2yk
s2
� 1.

Then 2cðXD � X 0Þ is distributed with a non-central w2 with 2qþ 2 degrees of
freedom and non-centrality parameter 2b. The Laplace transform for XD given X 0 ¼

x is

jðD; ujxÞ ¼ 1�
u

c


 ��q�1

exp uxþ
bu

c� u

� �
.
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Fig. 1. Transition density pðD;XDjX 0Þ for Feller’s square-root model.
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Fig. 2. Log-approximation error of the saddlepoint expansions of order 0, 1 and 2 for Feller’s square-root

model.
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The saddlepoint is then

ûðD;XDjX 0Þ ¼
� 1þ q� 2cðXD � X 0Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2qþ q2 þ 4cbðXD � X 0Þ

p
 �
2ðXD � X 0Þ

.

(5.6)

We now illustrate the accuracy of saddlepoint approximation for the square-root
process. The parameters used are k ¼ 0:5, y ¼ 0:05, s ¼ 0:25, x ¼ 0:05, D ¼ 1

52

(weekly frequency). The left boundary 0 can be reached with this set of parameters.
The graph in Fig. 1 plots the true transition density pðD; yjxÞ. Fig. 2 shows that the



ARTICLE IN PRESS

Y. Aı̈t-Sahalia, J. Yu / Journal of Econometrics 134 (2006) 507–551 527
approximation error is small. Further, the approximation error decreases rapidly
when higher-order expansions pð1ÞðD; yjxÞ and pð2ÞðD; yjxÞ are used.

5.4. A stochastic volatility model

The following model was proposed by Heston (1993)

dX t ¼ ðrþ kvtÞdtþ
ffiffiffiffi
vt

p
dW 1t, (5.7)

dvt ¼ ða� bvtÞdtþ s
ffiffiffiffi
vt

p
dW 2t, (5.8)

where W 1 and W 2 are two Brownian motions with correlation coefficient r.
The Laplace transform of XD given X 0 ¼ x and v0 is given by

jðD; ujx; v0Þ ¼ expðCðu;DÞ þDðu;DÞv0 þ uX 0Þ, (5.9)

where

Cðu; tÞ ¼ rutþ
a

s2
ðb� rsuþ dÞt� 2 ln

1� gedt

1� g

� �� �
,

Dðu; tÞ ¼
bþ d � rsu

s2
1� edt

1� gedt

� �
,

g ¼
b� rsuþ d

b� rsu� d
,

d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrsu� bÞ2 � s2ð2kuþ u2Þ

q
. ð5:10Þ

We now illustrate the accuracy of the saddlepoint approximation for this
stochastic volatility process. The parameters used are r ¼ 0:05, k ¼ �0:01, a ¼ 0:3,
b ¼ 0:15, s ¼ 1, r ¼ 0:1, x ¼ 1, v0 ¼ 0:25, D ¼ 0:1. Fig. 3 plots the transition
density from numerical Fourier inversion which is treated as the true transition
0.5 1 1.5 2
X∆

0.5

1

1.5

2

2.5

Fig. 3. Transition density pðD;XDjX 0Þ for Heston’s stochastic volatility model.
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Fig. 4. Log-approximation error of the saddlepoint expansions of order 0, 1 and 2 for Heston’s stochastic

volatility model.
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density. Fig. 4 shows that the log-approximation error is very small. By the time a
second-order expansion pð2ÞðD; yjxÞ is used, the log-approximation error virtually
disappears. Of course, the transition density that we are approximating here is
pðXD; vDjX 0; v0Þ: this object cannot be directly used for likelihood inference on the
stochastic volatility model because the volatility state variable is unobservable.
Inference would have to be based on the integrated out density pðXDjX 0Þ.
6. The limiting behavior of the saddlepoint approximation for jump-diffusions

Consider now the stochastic differential equation

dX t ¼ mðX tÞdtþ sðX tÞdW t þ Jt dNt

and, for simplicity of notation, consider the scalar case. N is a Poisson process with
arrival rate l and the probability density nð�Þ of the jump size Jt has a moment-
generating function denoted as yðuÞ � E½expðuJtÞ�. A typical example would be the
model of Merton (1976), in which X t denotes the log-return derived from an asset,

dX t ¼ mdtþ sdW t þ Jt dNt, (6.1)

and the log-jump size Jt is a Gaussian random variable with mean b and variance Z,
so that

yðuÞ ¼ expð1
2
Z2u2 þ buÞ. (6.2)

Other typical examples would be one where Jt has an exponential distribution
with mean 0 and variance 2=k2 (i.e., density k expð�kjJjÞ=2), in which case, for
jujok we have

yðuÞ ¼
k2

k2 � u2
, (6.3)
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or an exponential distribution with all jumps positive of mean 1=k and variance 1=k2

(i.e., density k expð�kJÞ), in which case, again for jujok, we have

yðuÞ ¼
k

k� u
. (6.4)

In the presence of jumps, we will see first that selecting a Gaussian base for the
saddlepoint approximation leads to poor performance in the tails. Accurate
approximation in the tails requires the use of a better leading term, one that reflects
the presence of the jumps.
6.1. Saddlepoint approximation with a Gaussian base

If we attempt to use the same approach as in the purely diffusive case, that is, use a
Gaussian base for the saddlepoint approximation, we obtain at the leading order:

Lemma 1. The saddlepoint approximation at the first order with a Gaussian base is

pð0;1ÞðD; yjxÞ ¼
expð�1

2
s2ðxÞûð1Þ2DÞ

ð2pðs2ðxÞDþ Dly00ðûð1ÞÞÞÞ1=2
expðDlðyðûð1ÞÞ � ûð1Þy0ðûð1ÞÞ � 1ÞÞ,

(6.5)

where the saddlepoint ûð1Þ is the solution of the equation

ûð1Þ ¼
y� x� mðxÞD

s2ðxÞD
�

ly0ðûð1ÞÞ
s2ðxÞ

.

When l ¼ 0, there is no jump, and the saddlepoint density (6.5) coincides with the
first-order saddlepoint density pð0;1ÞðD; yjxÞ from the diffusion case, given in (4.9).

As an example, consider the jump-diffusion process

dX t ¼ sdW t þ Jt dNt

with X 0 ¼ 0 and where the jump Jt has exponential distribution with moment
generating function (6.4). The Gaussian saddlepoint approximation has the leading
term

f 0ðyÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2D
p exp �

y2

2s2D

� �
whose corresponding cumulant generating function is

K0ðuÞ ¼ uxþ 1
2
s2Du2

and the saddlepoint approximation to the transition density XDjX 0 ¼ 0 is then

pð0ÞðD; yjx ¼ 0Þ ¼ f 0ðyÞ expðfKðD; ûjxÞ � ûyg

� fK0ðŵÞ � ŵygÞðK 000ðŵÞÞ
1=2 q2KðD; ûjxÞ

ququT

� ��1=2
.
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Fig. 5. Transition density pðD;XDjX 0Þ for a jump-diffusion model with exponentially distributed jumps.
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The simple form of yðuÞ enables us to compute that

û ¼ k�

ffiffiffiffiffiffi
lk
y

s ffiffiffiffi
D
p
�

1

2

ffiffiffiffiffiffiffi
k3l
y3

s
s2D3=2 þOðD2Þ,

ŵ ¼
y

s2D

which imply

fKðD; ûjxÞ � ûyg � fK0ðŵÞ � ŵyg ¼
y2

2s2D
� ykþO

ffiffiffiffi
D
p
 �

,

ðK 000ðŵÞÞ
1=2 q2KðD; ûjxÞ

ququT

� ��1=2
¼

1ffiffiffi
2
p

kl
y3

� �1=4

sD3=4 þ oðD3=4Þ.

It can be seen that using the leading term f 0ðyÞ alone will lead to a very poor
approximation since f 0 is exponentially small in D for y in the tails yet a jump
distribution is of order D at tails. Fig. 5 plots the true transition density for
parameter values k ¼ 2, D ¼ 1

52
, s ¼ 0:3, l ¼ 1, X 0 ¼ 0. Fig. 6 plots the log difference

between the saddlepoint expansion of order 0 and the true transition density.
Exponential distribution allows positive jump size only. To the left of the origin, the
saddlepoint approximation is very good as in the diffusion case. To the right of the
origin, the saddlepoint approximation with Gaussian base cannot capture the true
transition density. It can be seen that Gaussian base cannot generate satisfactory
saddlepoint approximations for jump diffusions.

It is worth observing that the saddlepoint correction term in this case is

expðfKðD; ûjxÞ � ûyg � fK0ðŵÞ � ŵygÞ ¼ exp
y2

2s2D
� ykþOð

ffiffiffiffi
D
p
Þ

� �
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Fig. 6. Log-approximation error of the saddlepoint expansions with a Gaussian base of order 0 for a

jump-diffusion model with exponentially distributed jumps. This example illustrates the need for non-

Gaussian-based saddlepoint expansions in the case of processes with jumps.
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and therefore cancels the exponentially small Gaussian f 0 in order to attempt some
correction for the tail behavior that is badly misspecified by the Gaussian f 0. This
yields a much better approximation in the tails than using f 0 alone. However, the
saddlepoint density remains at order OðD1=4Þ in the tails which still is inadequate to
capture the true transition density. This leads us to consider a non-Gaussian leading
term for the saddlepoint approximation when the underlying process can jump.
6.2. Saddlepoint approximation with a non-Gaussian base

So, instead of a Gaussian base, we will now approximate pðD; yjxÞ by a
saddlepoint expansion with a non-Gaussian leading term and rely on the general
formula (3.16). To maintain explicitness, the non-Gaussian leading term we propose
to use corresponds to the following Laplace transform:

expðK0ðD; ujxÞÞ ¼ expðuxÞ½ð1� lDÞ expðmðxÞDuþ 1
2
s2ðxÞDu2Þ þ lDyðuÞ�

which is an order 1 in D approximation to the true expðKðD; ujxÞÞ. This can also be
viewed as the Laplace transform of a process that can have at most one jump in an
interval of length D and the jump probability is 1� lD; that is the density function
f 0ðyÞ corresponding to K0ðD; ujxÞ is

f 0ðyÞ ¼ ð1� lDÞfðy; xþ mðxÞD;s2ðxÞDÞ þ lDnðy� xÞ.

In what follows, we use the notation pð0;nÞ to indicate a saddlepoint approximation
with the non-Gaussian base K0 (in the sense of (3.16)) using a Taylor expansion in D
of the cumulant generating function K, that is, accurate at order n in D. When the
expansions in D are analytic at zero, then pð0;1Þ ¼ pð0Þ.
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The first order in D approximation of the cumulant generating function is

K ð1ÞðD; ujxÞ ¼ uxþ D½mðxÞuþ 1
2
sðxÞ2u2 þ lðyðuÞ � 1Þ� (6.6)

and the second-order approximation of K is

K ð2ÞðD; ujxÞ ¼ uxþ D mðxÞuþ
1

2
sðxÞ2u2 þ lðyðuÞ � 1Þ

� �
þ log 1þ

1

2
D2 d2

dD2
KðD; ujxÞ

����
D¼0

� �
, ð6:7Þ

where

d2

dD2
KðD; ujxÞ

����
D¼0
¼ ½mðxÞm0ðxÞ þ m00ðxÞ � mðxÞ�u

þ
1

2
mðxÞðs2Þ0ðxÞ þ s2ðxÞm0ðxÞ þ

1

2
ðs2Þ00ðxÞ �

1

2
s2ðxÞ

� �
u2

þ
1

2
s2ðxÞðs2Þ0ðxÞu3

� lðyðuÞ � 1Þ mðxÞuþ
1

2
s2ðxÞu2

� �
þ l

Z
euj mðxþ jÞuþ

1

2
s2ðxþ jÞu2

� �
nðdjÞ.

Higher-order approximations to K can be calculated by iteratively applying the
infinitesimal generator as described in (4.5) for the diffusive case. Integrability of the
approximate Laplace transform is guaranteed because of the quadratic term
1
2
sðxÞ2u2D. We then obtain that:

Theorem 4. The saddlepoint approximations with the non-Gaussian base K0 and with

the true cumulant generating function K replaced by its n-th order approximation K ðnÞ

are given by

pð0;nÞðD; yjxÞ ¼ f 0ðyÞ expðfK
ðnÞðD; ûjxÞ � ûyg � fK0ðŵÞ � ŵygÞ

�ðK 000ðŵÞÞ
1=2 q2K ðnÞðD; ûjxÞ

ququT

� ��1=2
, ð6:8Þ

where the saddlepoint bu and bw can be solved from

y ¼
q
qu

K ðnÞðD; ûjxÞ

and from

y ¼
q
qu

K0ðD; ŵjxÞ.

In this case, the saddlepoint will often need to be computed numerically despite
the availability of an explicit Taylor series expansion for the function K and its
derivatives (obtained from (6.6) or (6.7)), because Eq. (3.1) will be too involved, in
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general, to provide a closed-form expression for û. One could then consider
employing the approximate method proposed in Lieberman (1994), which eliminates
the needs for a numerical solution.

As an example of the use of a non-Gaussian base for a jump diffusion model,
consider the following stochastic process:

dX t ¼ sdW t þ Jt dNt,

where X 0 ¼ 0 and vð�Þ is Nðb; Z2Þ, so that yðuÞ is given by (6.2).
Consider a non-Gaussian leading term saddlepoint approximation with the

probability density function of the leading term being

f 0ðyÞ ¼ ð1� lDÞfðy; 0;s2DÞ þ lDfðy; b; Z2Þ,

where fð�;m; vÞ is the probability density function of Nðm; vÞ. f 0ðyÞ corresponds to
the case where no jump occurs with probability 1� lD and with probability lD the
distribution is the same as the jump distribution.

We set the parameter values at s ¼ 0:3, l ¼ 1, b ¼ 0, Z ¼ 0:5, D ¼ 1
52
. Fig. 7 shows

the log difference between the saddlepoint density and the true density for XD

between �0.25 and 0.25, covering a five standard deviation region when there is no
jump. Compare this with Fig. 8 which shows the log difference between the leading
term f 0 and the true density. Both the saddlepoint density and the leading term f 0

itself provide adequate approximations to the true transition density. In the middle
part of the distribution, the saddlepoint correction does not improve the
approximation much.

However, things change if we look at the region ½�5; 5� which covers a 10 standard
deviation region (when a jump occurs). Fig. 9 plots the log difference between the
saddlepoint and the true density. Even for observations that are 10 standard
deviation away when jumps occur, the saddlepoint approximation provides a very
good approximation. Note that at such extreme tails, the probability density is
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Fig. 7. Log-approximation error of the saddlepoint expansion of order 0 for a jump-diffusion model with

normally distributed jumps.
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Fig. 8. Log-approximation error of the saddlepoint leading term f 0 for jump-diffusion model with

normally distributed jumps, using a non-Gaussian base.

-4 -2 2 4

-0.05

0.05

0.1

0.15

0.2

0.25

X∆

ln  p(0)  -  ln p 

Fig. 9. Tail log-approximation error of the saddlepoint expansion of order 0 for a jump-diffusion model

with normally distributed jumps, using a non-Gaussian base.
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extremely small and a proportional error of 5% implies an extremely small density
approximation error. This is quite different from Fig. 10 which shows the log
difference between the leading term f 0 and the true density in the same region of
½�5; 5�. The approximation error of the leading term f 0 increases dramatically as we
move further into the tails.
7. The limiting behavior of the saddlepoint approximation for Lévy processes

We now turn to Lévy processes. Lévy processes are natural generalizations of
Brownian motion: like Brownian motion, they have stationary and independent
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Fig. 10. Tail log-approximation error of the non-Gaussian leading term f 0 (without a further saddlepoint

correction) for a jump-diffusion model with normally distributed jumps. This example illustrates the need,
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increments. However, their increments need not be Gaussian (equivalently, their
sample paths need not be continuous). By the Lévy–Khintchine formula, a Lévy
process X t has the characteristic function

E½eiuXD jX 0 ¼ 0� ¼ eDCðuÞ, (7.1)

where CðuÞ ¼ imu� 1
2
s2u2 þ

R
Rnf0g e

iuw � 1� iuw1fjwjo1gnðdwÞ and the Lévy measure
nð�Þ satisfies

R
minf1; jwj2gnðdwÞo1. It is known that a Lévy process can be

decomposed into the sum of a Brownian motion with drift, a compound Poisson
process with jump size at least 1 and a pure jump process with jump size smaller than
1 (see, e.g., Bertoin (1998) for an introduction to Lévy processes).

For an m-dimensional Lévy process X t with X 0 ¼ 0, the Laplace transform of XD

is given by the Lévy–Khintchine formula

jðD; ujX 0 ¼ 0Þ ¼ e�DCðuÞ,

where

CðuÞ ¼ �
1

2
uTQu� d � uþ

Z
Rd

ð1� eu�x þ u � hðxÞÞnðdxÞ

¼ �
1

2
uTQu� d � uþ

Z
RdnD

ð1� eu�xÞnðdxÞ þ

Z
D

ð1� eu�x þ u � hðxÞÞnðdxÞ

for some matrix Q 2 Rm�m, vector d 2 Rm, and truncation function h : Rm ! Rm

which is bounded, with compact support D, and satisfies hðxÞ ¼ x in a neighborhood
of 0. The Lévy measure n on Rmnf0g satisfies

R
Rm ð1 ^ jxj2ÞnðdxÞo1 and nðdxÞ gives

the expected number of jumps which fall in dx per unit of time. Each Lévy process is
characterized by its ðQ; d; nÞ. Its characteristic function is known, and therefore the
saddlepoint can be computed.
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Remark 1. Numerical Fourier inversion is the numerical integration of
ð1=2pÞ

R T

T
e�t�xjðtÞdt for some truncation points T and T (see, e.g., Carr and

Madan, 1998). For Lévy processes, such truncation does not exploit information
about the highest frequency part of the pure-jump component (very small jumps)
since

lim
J#0

Z
jxjpJ

ð1� eu�x þ u � hðxÞÞnðdxÞ ¼ 0

for any u 2 ½T ;T �. Therefore, over the bounded interval ½T ;T �, the effect of jumps
smaller than J on ð1=2pÞ

R T

T
e�t�xjðtÞdt can be arbitrarily small by making J smaller

which implies identification of extremely small jumps is hardly possible after
numerical Fourier inversion. In contrast, there is no such truncation in saddlepoint
approximation which makes the identification possible.

The cumulant generating function of a Lévy process is

KðD; ujX 0 ¼ 0Þ ¼ D muþ
1

2
s2u2 þ

Z
eux � 1� ux1fjxjo1gnðdxÞ

� �
.

Choose c 2 ð0; 1Þ inZ c

�c

eux � 1� ux1fjxjo1gnðdxÞ ¼

Z c

�c

eux � 1� uxnðdxÞ

¼

Z c

�c

1

2
u2x2 þ oðx2ÞnðdxÞ.

Since
R
Rmð1 ^ jxj2ÞnðdxÞo1, we approximate

R c

�c
eux � 1� ux1fjxjo1gnðdxÞ with

1

2
u2

Z c

�c

x2nðdxÞ �
1

2
u2s2J

which captures the behavior of the infinitesimal jumps. Let l denote

l ¼
Z
jxjXc

nðdxÞ.

We approximate the transition density using the saddlepoint method with the
following non-Gaussian leading term

f 0ðxÞ ¼ ð1� lDÞfðx; mD; ðs2 þ s2J ÞDÞ þ DnðxÞ1fjxjXcg. (7.2)

There is a discontinuity of f 0 at x ¼ c. In practice, one can pick c small so that all
observations in absolute values are larger than c to avoid this discontinuity. The
cumulant generating function corresponding to f 0 is

K0ðD; ujX 0 ¼ 0Þ ¼ ln ð1� lDÞ exp mDuþ
1

2
ðs2 þ s2JÞDu2

� �
þ D

Z
jxjXc

euxnðdxÞ

� �
.
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Theorem 5. The saddlepoint approximation pð0ÞðD; xj0Þ is given by

pð0ÞðD; xj0Þ ¼ f 0ðxÞ expðfKðD; ûj0Þ � ûxg � fK0ðD; ŵj0Þ � ŵxgÞ

�
q2

qwqwT
K0ðD; ŵj0Þ

� �1=2
q2KðD; ûj0Þ

ququT

� ��1=2
, ð7:3Þ

where the saddlepoint bu and bw can be solved from

x ¼
q
qu

KðD; ûj0Þ

and from

x ¼
q
qu

K0ðD; ŵj0Þ.

As a first example, consider the variance gamma process, a time-changed
Brownian motion:

X t ¼ Bðgðt;m; uÞ; y;sÞ,

where Bðt; y; sÞ ¼ ytþ sW t and gðtþ h;m; uÞ � gðt;m; uÞ have Gamma distribution
with mean mh and variance uh (see, Madan et al., 1998).

When m ¼ 1, the Laplace transform for XD given X 0 ¼ 0 is

jðD; uj0Þ ¼ ð1� uuy� s2u2u=2Þ�D=u

and the three characteristics ðQ; d; nÞ of the variance gamma Lévy process are Q ¼ 0,
d ¼ 0 and

nðdxÞ ¼
expðyx=s2Þ

ujxj
exp �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=uþ y2=s2

q
s

jxj

0@ 1Adx. (7.4)

Note that the fact that (7.4) has a singularity of order one at zero implies that Y t is
an infinite activity jump process.

For this model, we can obtain the saddlepoint as

ûðD;XDjX 0 ¼ 0Þ ¼
�XDyu� Ds2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X 2

Dy
2u2 þ 2X 2

Dus2 þ D2s4
q

XDus2
.

For the variance gamma model, X t ¼ ygðt; 1; nÞ þ sW t, where gðtþ D; 1; nÞ � gðt; 1; nÞ
has Gamma distribution with mean D and variance nD. The transition density for XD



ARTICLE IN PRESS

-0.1 -0.05 0.05 0.1

20

40

60

80

X∆

Fig. 11. Transition density pðD;XDjX 0Þ for the variance gamma model.
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Fig. 12. Log-approximation error of the saddlepoint expansion of order 0 for the variance gamma model,

using a non-Gaussian base.
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given X 0 ¼ 0 is then

f XD
ðxjX 0 ¼ 0Þ

¼

Z 1
0

1

s
ffiffiffiffiffiffiffiffi
2pg
p exp �

ðx� ygÞ2

2s2g

� �
gD=n�1 expð�g=nÞ

nD=nGðD=nÞ
dg

¼

exy=s2
ffiffi
2
p

q
y2nþ2s2

x2n


 �ð�2DþnÞ=4n
BesselK1=2�D=n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðy2nþ2s2Þ

ns4

q� �
nD=nsGðDnÞ

when xa0,

where BesselK is the modified Bessel function of the second kind.
As mentioned, the density of the marginals of a Lévy process Y tðWÞ is rarely

known in closed form. Instead, it can be obtained by Fourier inversion of the
characteristic function whenever the function etcðu;WÞ is integrable, in which case we
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Fig. 13. Log-approximation error of the saddlepoint leading term f 0 for the variance gamma model.
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define

hðx; W; dÞ ¼
1

2p

Z 1
�1

e�ixuedcðu;WÞ du (7.5)

to be the density of the Lévy increment Y tþd � Y t.
Setting y ¼ 0:1, s ¼ 0:12, n ¼ 0:17, D ¼ 1

52
and x ¼ 0, the true transition density

between �0.1 and 0.1 is plotted in Fig. 11. Fig.12 shows the log difference between
the saddlepoint density pð0ÞðD; yjxÞ and the true transition density. The constant c in
(7.2) is set to 0.001. As shown in the plot, the accuracy of saddlepoint approximation
is again very good. Fig. 13 plots the log difference between the leading term f 0 and
the true transition density. The saddlepoint density pð0ÞðD; yjxÞ again improves the
tail approximation error relative to the leading term f 0.
8. Conclusions

We have presented a construction of saddlepoint approximations for Markov
processes. If the characteristic function is not known explicitly, our method can still
be applied by appealing to an expansion in small time of the characteristic function.
We have included a number of examples drawn from the recent financial
econometrics literature. The examples show that the method can be practically
applied to generate transition densities and produce useful results.
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Appendix A. Proof of Theorem 1

Fix u. With f ðyÞ � expðuyÞ, we have

jðD; ujxÞ ¼ E½expðuXDÞjX 0 ¼ x�.

At order 1 in D, we obtain the first-order term in the expansion of j

jð1ÞðD; ujxÞ ¼ f ðxÞ þ DA � f ðxÞ

¼ euxf1þ mðxÞuDþ 1
2
s2ðxÞu2Dg

and by taking the log at order 1 in D

K ð1ÞðD; ujxÞ ¼ uxþ mðxÞuDþ 1
2
s2ðxÞu2D

¼ ðxþ mðxÞDÞuþ 1
2s

2ðxÞDu2.

The first-order saddlepoint ûð1Þ solves qK ð1ÞðD; ujxÞ=qu ¼ y, that is,

ûð1ÞðD; yjxÞ ¼
y� ðxþ mðxÞDÞ

s2ðxÞD
. (A.1)

From (3.6), we now have the saddlepoint approximation

pð0;1ÞðD; yjxÞ ¼ ð2pÞ�1=2
q2K ð1ÞðD; ûð1ÞjxÞ

qu2

 !�1=2
expðK ð1ÞðD; ûð1ÞjxÞ � ûð1ÞyÞ

¼ ð2pDs2ðxÞÞ�1=2 exp �
ðy� x� mðxÞDÞ2

s2ðxÞD

� �
.

In other words, pð0;1Þ is the Euler approximation to the transition density of the
process.
Appendix B. Proof of Theorem 2

From Theorem 1, we recall that (A.1) and thus, at y ¼ xþ zD1=2, we have u ¼buð1Þ þOð1Þ with

ûð1Þ ¼
z

s2ðxÞD1=2
. (B.1)

Now, consider the case n2 ¼ 2. Let K ð2Þ be the cumulant transform at order 2 in D:

K ð2ÞðD; ujxÞ ¼ logjð2ÞðD; ujxÞ

¼ uxþ ðmðxÞuþ 1
2
s2ðxÞu2ÞDþ ln½1þ 1

2
ðf 2;3u3 þ f 2;2u

2 þ f 2;1uÞD2�

with f j;k denoting the coefficient of ðiuÞk in ðqj=qDjÞKðD; iujxÞjD¼0; f j;k depends only
on x, through mðxÞ, s2ðxÞ and their derivatives. The terms f j;k all have closed-form
expressions. Specifically, we have the Taylor expansion in D of order 2, where we
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gather the terms according to their dependence in u:

K ð2ÞðD; ujxÞ ¼ u xþ DmðxÞ þ
D2mðxÞm0ðxÞ

2
þ

D2s2ðxÞm00ðxÞ
4

� �
þ u2 Ds2ðxÞ

2
þ

D2s2ðxÞm0ðxÞ
2

þ
D2mðxÞðs2Þ0ðxÞ

4
þ

D2s2ðxÞðs2Þ00ðxÞ
8

� �
þ

u3D2s2ðxÞðs2Þ0ðxÞ
4

. ðB:2Þ

The saddlepoint bu at order 2 solves

xþ zD1=2 ¼
q
qu

K ð2ÞðD; bujxÞ
which in light of (B.2) is a quadratic equation in u. Selecting of the two roots of that
quadratic equation the one whose leading term in D coincides with (B.1), we obtain
that u ¼ buð2Þ þOðD1=2Þ, where

buð2Þ ¼ z

s2ðxÞD1=2
�

2mðxÞsðxÞ þ 3s0ðxÞz2

2s3ðxÞ
. (B.3)

More generally, the form of KðD; ujxÞ and its Taylor expansion in D imply that the
partial derivatives of K with respect to u satisfy

K ðnÞ �
qk

quk
KðD; ujxÞ ¼ OðDk�1Þ. (B.4)

This follows from

qK

qu
¼

1

j
qj
qu
;

q2K

qu2
¼

1

j
q2j
qu2
�

1

j
qj
qu

� �2

,

etc., and therefore by applying (4.5) we have the specific expressions

K ð1Þ ¼
qKðD; ujxÞ

qu
¼ xþ oð1Þ,

K ð2Þ ¼
q2KðD; ujxÞ

qu2
¼ Ds2ðxÞ þ oðDÞ,

K ð3Þ ¼
q3KðD; ujxÞ

qu3
¼

3

2
D2s2ðxÞðs2Þ0ðxÞ þ oðD2Þ,

K ð4Þ ¼
q4KðD; ujxÞ

qu4
¼ D3ð3s2ðxÞðs2Þ0ðxÞ2 þ 2s2ðxÞ2ðs2Þ00ðxÞÞ þ oðD3Þ ðB:5Þ

so that

q2KðD; ûjxÞ
qu2

� ��2
q4KðD; ûjxÞ

qu4
¼ OðDÞ,

q2KðD; ûjxÞ
qu2

� ��3
q3KðD; ûjxÞ

qu3

� �2

¼ OðDÞ.
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Recalling now the general formula (3.7) for the saddlepoint expansion at order
n1 ¼ 1, we have

pð1ÞðD; xþ zD1=2jxÞ ¼
expðKðD; ûjxÞ � ûðxþ zD1=2ÞÞffiffiffiffiffiffi

2p
p q2KðD; ûjxÞ

qu2

� �1=2
1þ

1

8

q2KðD; ûjxÞ
qu2

� ��2(

�
q4KðD; ûjxÞ

qu4
�

5

24

q2KðD; ûjxÞ
qu2

� ��3
q3KðD; ûjxÞ

qu3

� �2
)
,

ðB:6Þ

where, from (B.5), we have

1þ
1

8

q2KðD; ûjxÞ
qu2

� ��2
q4KðD; ûjxÞ

qu4
�

5

24

q2KðD; ûjxÞ
qu2

� ��3
q3KðD; ûjxÞ

qu3

� �2

¼ 1þ D
1

4
ðs2Þ00ðxÞ �

3

32

ðs2Þ0ðxÞ2

s2ðxÞ

� �
þOðD2Þ ðB:7Þ

and, for the term inside the exponent,

KðD; ûjxÞ � ûðxþ zD1=2Þ

¼ �
z2

2s2ðxÞ
þ

zmðxÞ
s2ðxÞ

þ
z3ðs2Þ0ðxÞ
4s4ðxÞ

� �
D1=2

þ �
mðxÞ2

2s2ðxÞ
þ

z2ð12s2ðxÞð4m0ðxÞ þ ðs2Þ00ðxÞÞ � 48mðxÞðs2Þ0ðxÞÞ
96s4ðxÞ

�
þ

z4ð8s2ðxÞðs2Þ00ðxÞ � 15ðs2Þ0ðxÞ2Þ
96s6ðxÞ

�
DþOðD3=2Þ. ðB:8Þ

Note that this term is obtained as KðD; ûjxÞ � ûðxþ zD1=2Þ ¼ K ð3ÞðD;
ûð2ÞjxÞ � ûð2Þðxþ zD1=2Þ þ oðDÞ.

As for the determinant, we need to expand at order D3=2, to obtain an expression
that is correct at order D after its leading term

pð0;0ÞðD;xþ zD1=2jxÞ ¼
1ffiffiffiffiffiffi

2p
p

D1=2
exp �

z2

2s2ðxÞ

� �
(B.9)

(note the presence of the term D1=2 in the determinant, this is due to the fact that we
are evaluating the density of the original diffusion at y ¼ xþ zD1=2, this is not the
density of the transformed variable z, for which the term D1=2 goes away as part of
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the Jacobian formula). Again from (4.5), we have

ffiffiffiffiffiffi
2p
p q2KðD; ûjxÞ

qu2

� �1=2

¼
ffiffiffiffiffiffi
2p
p

sðxÞD1=2 1þ
3zs0ðxÞ
2sðxÞ

D1=2 þ
m0ðxÞ
2
�

mðxÞs0ðxÞ
sðxÞ

��
þ
s0ðxÞ2

4
þ

sðxÞs00ðxÞ
4

þ z2
5s0ðxÞ2

8sðxÞ2
þ

s00ðxÞ
sðxÞ

� ��
DþOðD3=2Þ

�
. ðB:10Þ

Putting together (B.7), (B.8) and (B.10) into (B.6), leads to the result (4.10) in the
form

pð1;1ÞðD; xþ zD1=2jxÞ ¼
expð�z2=ð2s2ðxÞÞ þ e1=2ðzjxÞD

1=2 þ e1ðzjxÞDÞffiffiffiffiffiffi
2p
p

sðxÞD1=2f1þ d1=2ðzjxÞD
1=2 þ d1ðzjxÞDg

f1þ c1ðzjxÞDg.

(B.11)

To compare this expression to the one produced by the irreducible expansion of
Aı̈t-Sahalia (2001), we Taylor-expand the form (B.11) in D, around the leading term
(B.9):

pð1;1ÞðD;xþ zD1=2jxÞ ¼
1ffiffiffiffiffiffi

2p
p

D1=2
exp �

z2

2s2ðxÞ

� �
1þ ðe1=2ðzjxÞ � d1=2ðzjxÞÞD

1=2

�
þ c1ðzjxÞ þ d1=2ðzjxÞ

2
� d1ðzjxÞ � d1=2ðzjxÞe1=2ðzjxÞ

�
þ
1

2
e1=2ðzjxÞ

2
þ e1ðzjxÞ

�
DþOðD3=2Þ

�
. ðB:12Þ

On the other hand, the irreducible expansion of Aı̈t-Sahalia (2001) at order 1 in D
is of the form

lð1Þðxþ zD1=2jx;DÞ ¼ �
1

2
lnð2pDÞ � ln sðxþ zD1=2Þ þ

Cð�1Þðxþ zD1=2jxÞ

D
þ Cð0Þðxþ zD1=2jx1Þ þ Cð1Þðxþ zD1=2jxÞD, ðB:13Þ

where l ¼ ln p, and

Cð�1ÞðyjxÞ ¼ �
ðy� xÞ2

2sðxÞ2
þ

s0ðxÞ

2sðxÞ3
ðy� xÞ3 þ

ð4sðxÞs00ðxÞ � 11s0ðxÞ2Þ

24sðxÞ4
ðy� xÞ4

þOððy� xÞ5Þ,

Cð0ÞðyjxÞ ¼
ð2mðxÞ � sðxÞs0ðxÞÞ

2sðxÞ2
ðy� xÞ

þ
ðsðxÞð2m0ðxÞ þ s0ðxÞ2Þ � sðxÞ2s00ðxÞ � 4mðxÞs0ðxÞÞ

4sðxÞ3
ðy� xÞ2

þOððy� xÞ3Þ,
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Cð1ÞðyjxÞ ¼
1

8
2sðxÞs00ðxÞ �

4mðxÞ2

sðxÞ2
� 4m0ðxÞ þ

8mðxÞs0ðxÞ
sðxÞ

� s0ðxÞ2
� �
þOððy� xÞÞ.

Therefore, we have

ln sðxþ zD1=2Þ ¼ ln sðxÞ þ
zs0ðxÞ
sðxÞ

D1=2 þ
z2ðsðxÞs00ðxÞ � s0ðxÞ2Þ

2sðxÞ2
DþOðD3=2Þ,

Cð�1Þðxþ zD1=2jxÞ

D
¼ �

z2

2sðxÞ2
þ

z3s0ðxÞ

2sðxÞ3
D1=2 þ

z4ð4sðxÞs00ðxÞ � 11s0ðxÞ2Þ

24sðxÞ4
D

þOðD3=2Þ,

Cð0Þðxþ zD1=2jxÞ ¼
zð2mðxÞ � sðxÞs0ðxÞÞ

2sðxÞ2
D1=2

þ
z2ðsðxÞð2m0ðxÞ þ s0ðxÞ2Þ � sðxÞ2s00ðxÞ � 4mðxÞs0ðxÞÞ

4sðxÞ3
D

þOðD3=2Þ,

Cð1Þðxþ zD1=2jxÞD ¼
1

8
2sðxÞs00ðxÞ �

4mðxÞ2

sðxÞ2
� 4m0ðxÞ þ

8mðxÞs0ðxÞ
sðxÞ

� s0ðxÞ2
� �

D

þOðD3=2Þ.

Gathering the terms above according to their order in powers of D, we see that
the irreducible expansion in log-form comparable to (B.12) at order D is of
the form

lð1Þðxþ zD1=2jx;DÞ ¼ �
1

2
lnð2pDÞ � ln sðxÞ �

z2

2sðxÞ2

þ l1=2ðzjxÞD
1=2 þ l1ðzjxÞDþOðD3=2Þ. ðB:14Þ

Taking the exponential, the expansion for the transition density itself (instead of its
log) is

exp lð1Þðxþ zD1=2jx;DÞ ¼
1ffiffiffiffiffiffi

2p
p

D1=2
exp �

z2

2s2ðxÞ
þ l1=2ðzjxÞD

1=2 þ l1ðzjxÞD
� �

¼
1ffiffiffiffiffiffi

2p
p

D1=2
exp �

z2

2s2ðxÞ

� �
1þ l1=2ðzjxÞD

1=2

�
þ

1

2
l1=2ðzjxÞ

2
þ l1ðzjxÞ

� �
DþOðD3=2Þ

�
. ðB:15Þ
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Replacing the coefficients l1=2 and l1 by their expressions, we see that, for the
coefficient of order D1=2

l1=2ðzjxÞ ¼ e1=2ðzjxÞ � d1=2ðzjxÞ ¼
zð2mðxÞsðxÞ þ ðz2 � 3sðxÞ2Þs0ðxÞÞ

2sðxÞ3
(B.16)

and, for the coefficient of order D,

1

2
l1=2ðzjxÞ

2
þ l1ðzjxÞ

¼ c1ðzjxÞ þ d1=2ðzjxÞ
2
� d1ðzjxÞ � d1=2ðzjxÞe1=2ðzjxÞ þ

1

2
e1=2ðzjxÞ

2
þ e1ðzjxÞ

¼
1

24sðxÞ6
f12mðxÞsðxÞs0ðxÞðz4 � 5z2sðxÞ2 þ 2sðxÞ4Þ

þ 3z6s0ðxÞ2 � 29z4sðxÞ2s0ðxÞ2 � 3sðxÞ6ð4m0ðxÞ þ s0ðxÞ2Þ

þ 3z2sðxÞ4ð4m0ðxÞ þ 15s0ðxÞ2Þ � 18z2sðxÞ5s00ðxÞ

þ 12mðxÞ2sðxÞ2ðz2 � sðxÞ2Þ þ 4z4sðxÞ3s00ðxÞ þ 6sðxÞ7s00ðxÞg ðB:17Þ

so that the two expansions (B.12) and (B.15) agree up to the relevant design order D.
Appendix C. Proof of Theorem 3

Let

qðn2ÞðD; yjxÞ ¼ Re
1

2p

Z
u

e�iuyjðn2ÞðD; iujxÞdu

� �
(C.1)

denote the ‘‘density’’ corresponding to the approximate Laplace transform
jðn2ÞðD; ujX 0Þ which is itself a small time expansion at order n2 in D of j.
Integrability is assured because the correction term of jðn2Þ is of polynomial order in
u. Because the Fourier inverse of an approximate Laplace transform need not be
real, Re½�� is used to guarantee that qðn2Þ is real.

The proof proceeds in two steps: (i) first, we deal with the approximation
introduced by the Taylor expansion in D of the Laplace transform, and show
that

qðn2ÞðD; xþ zD1=2jxÞ ¼ pðD;xþ zD1=2jxÞð1þOðDn2=2ÞÞ. (C.2)

(ii) Second, we deal with the approximation introduced by the fact that the
Fourier inversion is replaced by its saddlepoint approximation, and show that

qðn2ÞðD; xþ zD1=2jxÞ ¼ pðn1;n2ÞðD;xþ zD1=2jxÞð1þOðDn1þ1ÞÞ. (C.3)

For the sake of concreteness, we show below the computations for n2 ¼ 1; 2 and
n1 ¼ 0; 1; 2, and outline briefly how the proof in the general case proceeds similarly.
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For step (i), n2 ¼ 1 reduces to the case treated in Theorem 1. When n2 ¼ 2,
we have

jð2ÞðD; iujxÞ ¼ exp iuxþ imðxÞu�
1

2
s2ðxÞu2

� �
D

� �
� 1þ

1

2

q2

qD2
KðD; iujxÞ

����
D¼0

D2

� �
,

where

q2

qD2
KðD; iujxÞ

����
D¼0
¼ �if 2;3u

3 � f 2;2u2 þ if 2;1u

with f j;k denoting the coefficient of ðiuÞk in ðqj=qDjÞKðD; iujxÞjD¼0; f j;k depends only
on x, through mðxÞ, sðxÞ and their derivatives. As an example, f 2;3ðxÞ ¼ sðxÞ3s0ðxÞ.

Evaluating at y ¼ xþ zD1=2, we have

1

2p
Re

Z
u

e�iuyeiuxþðimðxÞu�ð1=2Þs2ðxÞu2ÞD q2

qD2
KðD; iujxÞ

����
D¼0

D2 du

� �
¼

1

2p
D2Re

Z
u

e�iuzD1=2þðimðxÞu�ð1=2Þs2ðxÞu2ÞDð�if 2;3u
3 � f 2;2u2 þ if 2;1uÞdu

� �
¼

1

2p
D2Re

Z
u

ðcosðuðzD1=2 � mðxÞDÞÞ � i sinðuðzD1=2 � mðxÞDÞÞÞ
�

�e�ð1=2Þs
2ðxÞu2Dð�if 2;3u

3 � f 2;2u2 þ if 2;1uÞdu

�
¼

1

2p
D2 �f 2;3

Z
u

sinðuðzD1=2 � mðxÞDÞÞe�ð1=2Þs
2ðxÞu2Du3 du

�
� f 2;2

Z
u

cosðuðzD1=2 � mðxÞDÞÞe�ð1=2Þs
2ðxÞu2Du2 du

þ f 2;1

Z
u

sinðuðzD1=2 � mðxÞDÞÞe�ð1=2Þs
2ðxÞu2Du du

�
.

The integrals above have closed-form expressions. Specifically,

Z þ1
�1

sinðuðzD1=2 � mðxÞDÞÞe�ð1=2Þs
2ðxÞu2Duk du ¼

0 if k even;

OðD�ðkþ1Þ=2Þ if k odd;

(
Z þ1
�1

cosðuðzD1=2 � mðxÞDÞÞe�ð1=2Þs
2ðxÞu2Duk du ¼

OðD�ðkþ1Þ=2Þ if k even;

0 if k odd:

(
ðC:4Þ
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For instance,Z þ1
�1

sinðuðzD1=2 � mðxÞDÞÞe�ð1=2Þs
2ðxÞu2Dudu ¼ e�z2=ð2sðxÞ2Þ

ffiffiffiffiffiffi
2p
p

z

sðxÞ3
D�1 þOðD�1=2Þ,Z þ1

�1

cosðuðzD1=2 � mðxÞDÞÞe�ð1=2Þs
2ðxÞu2D du ¼ e�z2=ð2sðxÞ2Þ

ffiffiffiffiffiffi
2p
p

sðxÞ
D�1=2 þOð1Þ.

Using these closed-form expressions, it can be calculated that

qð1ÞðD;xþ zD1=2jxÞ ¼
e�z2=ð2sðxÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðxÞD

p 1þ g
ð1Þ
1

ffiffiffiffi
D
p
þOðDÞ


 �
,

qð2ÞðD;xþ zD1=2jxÞ ¼
e�z2=ð2sðxÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðxÞD

p 1þ g
ð2Þ
1

ffiffiffiffi
D
p
þOðDÞ


 �
,

where

g
ð2Þ
1 ¼

2mðxÞsðxÞ þ ðz2 � 3s2ðxÞÞs
0

ðxÞ

2s3ðxÞ
z and g

ð1Þ
1 ag

ð2Þ
1 .

On the other hand, we know from Aı̈t-Sahalia (2002) that

pðD;xþ zD1=2jxÞ ¼
e�z2=ð2sðxÞ2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2ðxÞD

p 1þ g
ð2Þ
1

ffiffiffiffi
D
p
þOðDÞ


 �
.

Therefore,

qð1ÞðD;xþ zD1=2jxÞ ¼ pðD;xþ zD1=2jxÞ 1þO
ffiffiffiffi
D
p
 �
 �

,

qð2ÞðD;xþ zD1=2jxÞ ¼ pðD;xþ zD1=2jxÞð1þOðDÞÞ.

A by-product of the calculation above is to show us how we need to approximate
jðn2Þ for n242:

KðD; ujxÞ ¼ uxþ
q
qD

KðD; ujxÞ
����
D¼0

Dþ
1

2

q2

qD2
KðD; ujxÞ

����
D¼0

D2 þ � � � þ oðDn2Þ,

(C.5)

jðD; ujxÞ ¼ exp uxþ
q
qD

KðD; ujxÞ
����
D¼0

D
� �

� 1þ
1

2

q2

qD2
KðD; ujxÞ

����
D¼0

D2 þ � � � þ oðDn2 Þ

� �
. ðC:6Þ

The derivative ðqk=qDkÞKðD; ujxÞjD¼0 is an order k þ 1 polynomial in u. This,
together with (C.4), gives the order information for grouping correction terms. Note,
in particular, that in (C.6) the grouping of the first two terms is inside the
exponential.

In step (ii), we now show (C.3). When n2 ¼ 1, jð1Þ and hence qð1Þ correspond to a
normal distribution with mean xþ mðxÞD and variance sðxÞD. From Theorem 1, we
recall that (A.1) and thus, at y ¼ xþ zD1=2, we have u ¼ buð1Þ þOð1Þ with
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ûð1Þ ¼ z=ðs2ðxÞD1=2Þ. Furthermore, qð1Þ coincides with the density from the
saddlepoint approximation, and the claim is true.

Now, consider the case n2 ¼ 2. We have

qð2ÞðD;xþ zD1=2jX 0 ¼ xÞ ¼ Re
1

2pi

Z buþi1
bu�i1 eK ðn2ÞðuÞ�uðxþzD1=2Þ du

" #

¼ Re
1

2p

Z 1
�1

eK ðn2 ÞðbuþiwÞ�ðbuþiwÞðxþzD1=2Þ dw

� �
.

It can then be calculated that

½K ðn2Þðbuþ iwÞ � ðbuþ iwÞðxþ zD1=2Þ� � ½K ðn2ÞðbuÞ � buðxþ zD1=2Þ�

¼ �iwðzD1=2 � mðxÞD� s2ðxÞbuDÞ � 1

2
s2ðxÞDw2

þ ln
1þ 1=2ðf 2;3ðbuþ iwÞ3 þ f 2;2ðbuþ iwÞ2 þ f 2;1ðbuþ iwÞÞD2

1þ 1=2ðf 2;3bu3
þ f 2;2bu2

þ f 2;1buÞD2

 !
.

Therefore,

qð2ÞðD;xþ zD1=2jX 0 ¼ xÞ

¼ eK ðn2ÞðbuÞ�buðxþzD1=2ÞRe
1

2p

Z 1
�1

exp �iwðzD1=2 � mðxÞD� s2ðxÞbuDÞ � 1

2
s2ðxÞDw2

� �"

�
1þ 1=2ðf 2;3ðbuþ iwÞ3 þ f 2;2ðbuþ iwÞ2 þ f 2;1ðbuþ iwÞÞD2

1þ 1=2ðf 2;3bu3
þ f 2;2bu2

þ f 2;1buÞD2
dw

#
.

For k even,

Re
1

2p

Z 1
�1

exp �iwðzD1=2 � mðxÞD� s2ðxÞbuDÞ � 1

2
s2ðxÞDw2

� �
ðiwÞk dw

� �
¼
ð�1Þk=2

2p

Z 1
�1

cos½wðzD1=2 � mðxÞD� s2ðxÞbuDÞ�
� exp �

1

2
s2ðxÞDw2

� �
wk dw ðC:7Þ

while for k odd,

Re
1

2p

Z 1
�1

exp �iwðzD1=2 � mðxÞD� s2ðxÞbuDÞ � 1

2
s2ðxÞDw2

� �
ðiwÞk dw

� �
¼
ð�1Þðk�1Þ=2

2p

Z 1
�1

sin½wðzD1=2 � mðxÞD� s2ðxÞbuDÞ�
� exp �

1

2
s2ðxÞDw2

� �
wk dw. ðC:8Þ
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Now (B.3) implies

zD1=2 � mðxÞD� s2ðxÞbuD ¼ 3s
0

ðxÞz2D
2sðxÞ

ð1þOðD1=2ÞÞ.

From the proof of step (i), recall that (C.7) and (C.8) have closed-form
expressions. In particular, it follows thatZ 1

�1

sin½wðzD1=2 � mðxÞD� s2ðxÞbuDÞ� exp � 1

2
s2ðxÞDw2

� �
wk dw

¼
0 if k even;

OðD�k=2Þ if k odd;

(
Z 1
�1

cos½wðzD1=2 � mðxÞD� s2ðxÞbuDÞ� exp � 1

2
s2ðxÞDw2

� �
wk dw

¼
OðD�ðkþ1Þ=2Þ if k even;

0 if k odd:

(

For example,Z 1
�1

sin½wðzD1=2 � mðxÞD� s2ðxÞbuDÞ� exp � 1

2
s2ðxÞDw2

� �
wdw ¼

3
ffiffiffiffiffiffi
2p
p

z2s0ðxÞ

2
ffiffiffiffi
D
p

s4ðxÞ
,Z 1

�1

cos½wðzD1=2 � mðxÞD� s2ðxÞbuDÞ� exp � 1

2
s2ðxÞDw2

� �
dw ¼

ffiffiffiffiffiffi
2p
pffiffiffiffi
D
p

sðxÞ
.

It can then be calculated that

qð2ÞðD; xþ zD1=2jxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2ðxÞD
p eK ð2ÞðbuÞ�buðxþzD1=2Þ 1�

3s0ðxÞz
2sðxÞ

ffiffiffiffi
D
p
þOðDÞ

� �
.

From the general saddlepoint formula (3.6), it follows that

pð0;2ÞðD;xþ zD1=2jxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2ðxÞD
p eK ð2ÞðbuÞ�buðxþzD1=2Þ 1�

3s0ðxÞz
2sðxÞ

ffiffiffiffi
D
p
þOðDÞ

� �
.

Therefore,

pð0;2ÞðD;xþ zD1=2jxÞ ¼ qð2ÞðD;xþ zD1=2jxÞð1þOðDÞÞ

¼ pðD;xþ zD1=2jxÞð1þOðDÞÞ.

Higher-order saddlepoint approximations (n140) can be constructed, using again
(B.4).
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Appendix D. Proof of Lemma 1

Fix u. With f ðyÞ � expðuyÞ, we have

jðD; ujxÞ ¼ E½expðuXDÞjX 0 ¼ x�.

At order 1 in D, we obtain the first-order term in the expansion of j:

jð1ÞðD; ujxÞ ¼ f ðxÞ þ DA � f ðxÞ

¼ euxf1þ D½mðxÞuþ 1
2
s2ðxÞu2 þ lðyðuÞ � 1Þ�g

and by taking the log at order 1 in D:

K ð1ÞðD; ujxÞ ¼ uxþ mðxÞuDþ 1
2
s2ðxÞu2Dþ DlðyðuÞ � 1Þ,

qK ð1ÞðD; ujxÞ
qu

¼ xþ mðxÞDþ s2ðxÞuDþ Dly0ðuÞ,

q2K ð1ÞðD; ujxÞ
qu2

¼ s2ðxÞDþ Dly00ðuÞ.

The first-order saddlepoint ûð1Þ solves qK ð1ÞðD; ujxÞ=qu ¼ y, that is,

s2ðxÞûð1ÞDþ Dly0ðûð1ÞÞ ¼ y� x� mðxÞD,

ûð1Þ ¼
y� x� mðxÞD

s2ðxÞD
�

ly0ðûð1ÞÞ
s2ðxÞ

.

Then, evaluating at ûð1Þ, we have

K ð1ÞðD; ûð1ÞjxÞ � ûð1Þy

¼ ûð1Þðx� yÞ þ mðxÞûð1ÞDþ 1
2
s2ðxÞûð1Þ2Dþ Dlðyðûð1ÞÞ � 1Þ

¼ ûð1Þð�s2ðxÞuD� Dly0ðûð1ÞÞÞ þ 1
2
s2ðxÞûð1Þ2Dþ Dlðyðûð1ÞÞ � 1Þ

¼ �1
2
s2ðxÞûð1Þ2Dþ Dlðyðûð1ÞÞ � ûð1Þy0ðûð1ÞÞ � 1Þ.

We now have the saddlepoint approximation

pð0;1ÞðD; yjxÞ ¼ ð2pÞ�1=2
q2K ð1ÞðD; ûð1ÞjxÞ

qu2

 !�1=2
expðK ð1ÞðD; ûð1ÞjxÞ � ûð1ÞyÞ

¼
expð�ð1=2Þs2ðxÞûð1Þ2DÞ

ð2pðs2ðxÞDþ Dly00ðûð1ÞÞÞÞ1=2
expðDlðyðûð1ÞÞ � ûð1Þy0ðûð1ÞÞ � 1ÞÞ.

References

Aı̈t-Sahalia, Y., 1999. Transition densities for interest rate and other nonlinear diffusions. Journal of

Finance 54, 1361–1395.

Aı̈t-Sahalia, Y., 2001. Closed-form likelihood expansions for multivariate diffusions. Technical Report,

Princeton University.



ARTICLE IN PRESS

Y. Aı̈t-Sahalia, J. Yu / Journal of Econometrics 134 (2006) 507–551 551
Aı̈t-Sahalia, Y., 2002. Maximum-likelihood estimation of discretely-sampled diffusions: a closed-form

approximation approach. Econometrica 70, 223–262.

Aı̈t-Sahalia, Y., Hansen, L.P., Scheinkman, J.A., 2002. Operator methods for continuous-time Markov

processes. In: Aı̈t-Sahalia, Y., Hansen, L.P. (Eds.), Handbook of Financial Econometrics. North

Holland, Amsterdam, The Netherlands, forthcoming.

Bakshi, G.S., Yu, N., 2005. A refinement to Aı̈t-Sahalia’s (2002) ‘‘Maximum likelihood estimation of

discretely sampled diffusions: a closed-form approximation approach’’. Journal of Business 78,

forthcoming.
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