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1. Introduction

Intertemporal consumption and portfolio choice is a daunting problem, requiring as input

a complete characterization of the joint distribution of returns across all states of the world

from the current date until the end of the investment horizon. Furthermore, professional

investment advice is often of limited help because it delivers mostly predictions about mean

returns at di¤erent horizons. For example, an analyst may give a stock a �near-term hold"

or a �long-term buy" recommendation. How can an investor make portfolio and consumption

decisions based on such a terse description of the investment opportunity set?

We propose a new empirical approach to address this question. We decompose the portfolio

and consumption choice into two separate problems and use di¤erent sources of information to

get a handle on each. Consider an economy in which the uncertainty is driven by the stochastic

movements of a stock and bond index that, in addition to a riskless money market asset, jointly

determine the investment opportunity set. At the most abstract level, the investor�s problem

consists of choosing how to allocate scarce resources to the di¤erent states of the world at all

future dates. We use the martingale representation theory of Cox and Huang (1989), Cox and

Huang (1991), Karatzas, Lehoczky, and Shreve (1987) and Pliska (1986) to turn this inherently

dynamic optimization problem into a static one. This static solution to the portfolio and

consumption problem requires two pieces of information. First, the investor has to �gure out

how expensive one unit of consumption will be in each future state of the world. Second, the

investor needs to determine how likely each state is to be realized.

To obtain the �rst piece of information, the price of a unit of consumption in each future

state, we use the market prices of traded options to infer the joint state price density q of stocks

and bonds.1 The resulting option-implied prices of state-contingent consumption bundles

allows the investor to determine in which states consumption is relatively cheap or expensive.

The investor then allocates consumption to each state in order to maximize expected utility

under the budget constraint.

The solution to the static optimization over state-contingent consumption bundles depends

1Our approach of evaluating the cost of prospective consumption bundle using option-implied information
di¤ers from that of Cox and Huang (1989), Cox and Huang (1991) and related theory papers that link the
optimal portfolio and consumption choices to the growth-optimal policies under log utility.
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on the second piece of information �the likelihood of each state occurring. While everyone

in the market is assumed to be a price-taker and hence faces the same state price density q,

di¤erent investors can have di¤erent views about the physical probability distribution of the

states, which we denote as p. We therefore present solutions corresponding to a variety of

di¤erent cases. First, we solve the problem for an investor who expresses beliefs about the

Sharpe ratio of stocks and bonds but takes the shape of the physical distribution p, including

its second moment, to be the same as that of the state price density q. Second, we consider an

investor who assumes a Gaussian shape for the physical density of log returns, corresponding

to a standard Geometric Brownian motion benchmark, with volatility matching that of the

state price density (i.e., option-implied volatility) and mean calibrated to the investor�s beliefs

about the Sharpe ratio of stocks and bonds. Finally, we consider the case in which the shape

of p is estimated nonparametrically from historical data.

By construction, the investment opportunity set in our approach is time-varying, as it

re�ects the variability in the state prices and the probability distributions of the stock and

bond index returns at di¤erent horizons. The investor�s optimal demand for the risky assets

therefore departs from the myopic solution and potentially includes hedging demands. A more

original feature of our approach is that it makes explicit the trade-o¤ that is the economic

essence of optimal portfolio and consumption choice. On one hand, the investor wants to

consume more in states in which the price of consumption is cheap relative to the probability

of realizing these states. This e¤ect tends to make the investor�s optimal consumption path

respond to changes in the asset prices, because as prices change, so do the state prices and

probabilities. On the other hand, deviations across states from a constant consumption path

are penalized by the investor�s risk aversion. The higher risk aversion, the more the investor

wants to smooth consumption across states, and the less sensitive the optimal consumption

becomes to variations in state prices and probabilities, despite the cost of maintaining a

constant consumption level across those states.

Option-implied information is naturally suited for the problem at hand because, like the

martingale representation approach, it maps out the set of future states of the world into

a cross-section of states for which state-contingent consumption can be purchased today.

Option markets reveal directly the cost of consumption in each state because, after possibly
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some interpolation, we observe market prices for Arrow Debreu securities covering a broad

range of future states and maturities.

We are not aware of previous empirical implementations of the martingale representation

approach or of the use of option-implied information in the portfolio choice context. There are,

however, important examples in the literature of the use of the martingale representation in

other theoretical portfolio choice problems. Cvitaníc and Karatzas (1995) solve for the optimal

portfolio and consumption choice under proportional transaction costs. Wachter (2002) solves

for the optimal choice between stocks and cash when the stock returns are predictable by the

dividend-to-price ratio in a complete markets setting. Detemple, Garcia, and Rindisbacher

(2003) propose a simulation-based approach for dynamic portfolio optimization that is based

on the martingale representation.

The remainder of the paper is organized as follows. We start in Section 2 with a description

of the theory underlying our approach. In Section 3, we explain how we infer the joint state

price density q from the market prices of Standard and Poors (S&P) 500 index and 10-year

Treasury bond futures options. In Section 4, we describe how we construct the p density

for the di¤erent investor�s beliefs we consider. In our empirical implementation, described

in Section 5, we consider a CRRA investor choosing between consumption and investment

in stocks, long-term bonds, and an instantaneously risk-free money market account. As is

clear from our theory section though, nothing in our methodology is speci�c to this particular

speci�cation of preferences. Of course, the empirical results would vary with the utility

function adopted, often dramatically so.2 Section 6 concludes.

2. Portfolio and Consumption Choice

We start with a description of the theoretical problem, focusing on the respective roles

played by the state-price density q and the physical density p in the context of an investor�s

optimal consumption and investment decision. As discussed above, we rely on the martingale

representation approach to reduce the dynamic optimization problem to a static one: indi-

2See Aït-Sahalia and Brandt (2001) for the impact of di¤erent utility functions on optimal portfolio and
consumption choice in a di¤erent methodological context.

3



vidual investors will implement their lifetime consumption and bequest programs through the

purchase at time 0 of individual Arrow-Debreu securities. The Arrow-Debreu allocation is

identical to that derived using the dynamic optimization method, where investors can trade

continuously in frictionless markets.

2.1 Physical and State-Price Densities

Assume that there are n + 1 non-redundant assets in the economy; an instantaneously

riskless asset with potentially stochastic rate of return rt and n risky assets whose prices Pt

follow an exogenous Markov process. For example, the asset prices could follow

dPt=Pt = �tdt+ �tdZt; (2.1)

where �t and �t denote functions of a vector of state variables Yt and time t, the matrix �t

has full rank, and Zt denotes a vector of n independent Brownian motions. But this is only an

example, as nothing in the analysis that follows requires continuity of the paths of the asset

prices. Any correlation between dPit and dPjt is introduced by the o¤-diagonal terms in the

matrix �t: Assuming dynamically complete markets, changes in the state variables driving the

uncertainty in the economy can be perfectly hedged using the n assets. We take the price

vector as the state variables, so that Yt � Pt.3

Corresponding to the dynamics (2.1), let pt(PtjP0) denote the physical transition density

of the state variables (i.e., the conditional density with respect to the Lebesgue measure of the

vector Pt at date t given its value P0 at date 0). The conditional expectation of a stochastic

payo¤Xt(Pt), which depends on the future realization of Pt, is then given by:

E0 [Xt(Pt)] =

Z 1

0

Xt(Pt)pt(PtjP0)dPt; (2.2)

where the integral is n-dimensional.

To rule out arbitrage opportunities among the assets, contingent claims on the assets, and

3There may be more traded assets in the economy than the dimensionality of Zt, but redundant assets can
be perfectly replicated using the n assets and hence do not expand the investment opportunity set.
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the money market account, Harrison and Kreps (1979) show that the pricing operator which

maps payo¤s at date t into prices at date 0 must be linear, continuous, and strictly positive.

The Riesz representation theorem characterizes this pricing operator as an expectation with

respect to some measure, which we denote as RN . The no-arbitrage cost M0 of purchasing at

date 0 a contingent claim which pays Xt(Pt) at date t is then given by the expected discounted

payo¤:

M0 = E
RN
0

�
exp

�
�
Z t

0

r�d�

�
Xt (Pt)

�
; (2.3)

where the expectation is taken with respect to the so-called risk-neutral measure RN and

the payo¤s are discounted at the riskfree rate. When the riskfree rate is time-varying but

non-stochastic, the discount factor exp(�
R t
0
r�d�) can be pulled outside the expectations, and

when the riskfree rate is constant, the discount factor simpli�es to exp(�rt).

However, when the riskfree rate is stochastic, the discount factor inside the expectation

makes pricing with the standard risk-neutral measure cumbersome. For that reason, we change

this measure to a sequence of new ones, denoted Qt. Under Qt, the price of an asset expressed

in units of a maturity-matched zero-coupon bond price is a martingale. In contrast, under

the more standard risk-neutral measure RN , asset prices are martingales when expressed in

units of the money market account.

Let D0;t denote the price at date 0 of a zero-coupon bond with face value $1 and maturing

at date t. Using the measure Qt, the no-arbitrage cost M0 is equal to:

M0

D0;t

= EQt0

�
Xt (Pt)

Dt;t

�
: (2.4)

Since Dt;t = 1; it follows that:

M0 = D0;t E
Qt
0 [Xt (Pt)] = D0;t

Z 1

0

Xt (Pt) qt (PtjP0) dPt; (2.5)

where we assume the measure Qt admits a so-called state-price density (with respect to the

Lebesgue measure) denoted as qt(PtjP0): If rt is non-stochastic, the two measures RN and

Qt are identical, with D0;t = exp(�
R t
0
r�d�). In general, however, the discounting under RN

takes place inside the expectation operator, whereas it takes place outside the expectation
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operator under Qt. In exchange for this simpli�cation, we have a sequence of measures Qt, a

di¤erent one for each maturity date t, instead of a single measure RN for all dates.

2.2 Assumptions

Inevitably, translating the theoretical martingale representation into an approach that can

be implemented in practice requires some simplifying assumptions, which can be viewed as

limitations of the present analysis:

� We take the state variables to be the asset prices Pt directly. This is a fairly common

assumption in an exchange economy. In our empirical implementation below, we will

have two state variables, an equity and a bond index.

� As we will see below, a particular portfolio plays a special role in the martingale rep-

resentation formulation: this portfolio, with price denoted Gt; is known as the growth

optimum portfolio. It is constructed from the assets available to the investor and is such

that it maximizes the investor�s expected return. We assume that the growth optimal

portfolio�s price is a function of the asset prices, Gt = G(Pt; t): This is the same as-

sumption as in Theorem 16.1 of Merton (1992), for instance. In general, the function

G will be determined as part of an intertemporal general equilibrium solution for the

economy, which is outside the scope of this paper. Under this assumption, the growth

optimal portfolio is not a separate state variable. Otherwise, this portfolio being an

unobservable dynamic trading strategy, any empirical implementation of the martingale

representation becomes practically infeasible.

� Traded prices of options provide us with the marginal distributions of the future asset

price distributions for the indices. But no derivatives are currently traded with payo¤s

that link equity and bond returns the way quantos link equity and currency returns, for

instance. So, to construct joint distributions for equity and bond indices, we link the

options-implied marginal distributions through a copula function. The copula function

introduces a correlation parameter between the state variables. We estimate this para-

meter under the physical distribution �i.e., using the time series of the state variables.
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Girsanov�s Theorem implies that the correlation parameter is, instantaneously, identical

under both the physical and risk neutral distributions. Here, we carry the correlation

parameter forward in time. An alternative is to simulate the instantaneous risk neu-

tral dynamics, obtained from the instantaneous estimates, as in Aït-Sahalia, Wang, and

Yared (2001), to eliminate the resulting approximation. Comparing the two reveals that

the e¤ect of that approximation in the present context is small.

While these assumptions are restrictive, on the other hand, our approach is largely model-

free beyond these assumptions. By construction, the state variables are Markovian. But

we do not restrict their dynamics further: for instance, they can jump, have a continuous

semimartingale part in addition to a jump part, exhibit stochastic volatility, etc.

2.3 The Investor�s Problem

Cox and Huang show that in a dynamically complete market, an investor with period t

utility function ut, terminal date T bequest function bT , and initial wealth W0 chooses an

optimal consumption path fCt; 0 � t � Tg and bequests WT to maximize:

E0

�Z T

0

ut (Ct (Pt)) dt+ bT (WT (PT ))

�
(2.6)

subject to the budget constraint

W0

G0
�
Z T

0

D0;t

Gt
E0 [Ct (Pt)] dt+

D0;T

GT
E0 [WT (PT )] (2.7)

and the feasibility constraints that consumption and bequest amounts remain non-negative.

Under the assumption that Gt = G(Pt; t); we have that

G0pt (PtjP0) = Gtqt (PtjP0) (2.8)
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as shown in Theorem 16.1 of Merton (1992). Therefore, the investor�s problem becomes

E0

�Z T

0

ut (Ct (Pt)) dt+ bT (WT (PT ))

�
=

Z T

0

Z 1

0

ut (Ct (Pt)) pt (PtjP0) dPtdt+
Z +1

0

bT (WT (PT )) pT (PT jP0) dPT ;
(2.9)

subject to the budget constraint

W0 �
Z T

0

D0;t E
Qt
0 [Ct (Pt)] dt+D0;T E

QT
0 [WT (PT )]

=

Z T

0

D0;t

Z 1

0

Ct (Pt) qt (PtjP0) dPtdt+D0;T

Z 1

0

WT (PT ) qT (PT jP0) dPT
(2.10)

and the feasibility constraints

Ct (Pt) � 0 for all 0 � t � T and Pt > 0 (2.11)

WT (PT ) � 0 for PT > 0: (2.12)

In words, the investor chooses how much to consume in each possible state Pt at each future

date 0 � t � T and how much to bequest in each terminal state PT , subject to the no-arbitrage

cost of the state-contingent consumption path and bequests being less than or equal to the

current wealth W0. The integrals in the budget constraint re�ect the fact that, due to the

linearity of the pricing operator, the no-arbitrage cost of any portfolio of contingent claims

(including state-contingent consumption and bequest choices) is simply equal to the sum of

the costs of the individual components of the portfolio. The sum here is taken across states

(
R1
0
::: dPt) and through time (

R T
0
::: dt). The individual costs are evaluated using the separate

measures Qt for each date.

2.4 Optimal Policies

The main appeal of this complete markets formulation is that the optimal state-contingent

consumption and bequest policies, denoted C�t (Pt) and W
�
T (PT ), do not involve feedback be-

cause the dynamics of Mt and Pt are una¤ected by the investor�s choices. Nevertheless, it is
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known from the work of Cox and Huang (1989), Cox and Huang (1991) that the solution is

identical to that of the standard Merton (1971) problem where the maximization of the objec-

tive (2.9) occurs over consumption fCt; 0 � t � Tg and the portfolio weights f!t; 0 � t � Tg,

subject in the example (2.1) to the wealth dynamics:

dWt = �Ctdt+Wt [(rt + !
0
t (�t � rt)) dt+ !0t�tdZt] ; (2.13)

with the constraints Ct � 0 and Wt � t. At date t, the investor consumes Ct and allocates

fractions !t to the risky asset and the remainder 1 �
Pn

i=1 !it to the riskless asset. In the

Merton setting, the dynamic evolution of one of the state variables, the investor�s wealth Wt,

is endogenously determined. As a result, the solution is recursive and must be solved using

dynamic programming.

Because of the absence of feedback in the complete markets formulation, the investor�s

problem, although dynamic, can be solved as a static optimization using the constrained

Lagrangian method of Kuhn and Tucker. With the single multiplier �B0 and the continuum

of multipliers �Ct (Pt) and �
W
T (PT ), representing the budget constraint (2.10), consumption

nonnegativity constraint (2.11), and wealth nonnegativity constraint (2.12), the Lagrangian

for maximizing the expression (2.9) is:

Z T

0

Z 1

0

ut (Ct (Pt)) pt (PtjP0) dPtdt+
Z 1

0

bT (WT (PT )) pT (PT jP0) dPT

+ �B0

�
W0 �

Z T

0

D0;t

Z 1

0

Ct (Pt) qt (PtjP0) dPtdt�D0;T

Z 1

0

WT (PT ) qT (PT jP0) dPT
�

+

Z T

0

�Ct (Pt)Ct (Pt) dt+ �
W
T (PT )WT (PT ) :

(2.14)

The �rst-order conditions with respect to the controls Ct and WT , obtained by setting to zero

the partial derivatives of the Lagrangian, are:

@ut (C
�
t (Pt))

@C
pt (PtjP0) + �Ct (Pt)� �B0 D0;t qt (PtjP0) = 0 (2.15)

@bT (W
�
T (PT ))

@W
pT (PT jP0) + �WT (PT )� �B0 D0;t qt (PtjP0) = 0 (2.16)
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and the �rst-order conditions with respect to the multipliers are:

�Ct (Pt)C
�
t (Pt) = 0

�WT (PT )W
�
T (PT ) = 0 (2.17)

�B0

�
W0 �

Z T

0

D0;t

Z 1

0

C�t (Pt) qt (PtjP0) dPtdt�D0;T

Z 1

0

W �
T (PT ) qT (PT jP0) dPT

�
= 0:

Since @ut=@C > 0 and @bT=@W > 0; the investor is unsatiated for both consumption and

bequests. As a result, �B0 > 0 and the budget constraint (2.10) is binding. Solving the �rst

order conditions (2.15)-(2.16) for the multipliers �Ct and �
W
t yields:

�Ct (Pt) = max

�
0; �B0 D0;t qt (PtjP0)�

@ut (0)

@C
pt (PtjP0)

�
(2.18)

�WT (PT ) = max

�
0; �B0 D0;t qt (PtjP0)�

@bT (0)

@W
pT (PT jP0)

�
; (2.19)

where the max operators re�ect the fact that the multipliers are non-zero only when the

corresponding choice variables are zero.

Since @2ut=@C2 < 0 and @2bT=@W 2 < 0; the inverse functions (@ut=@C)�1(@ut=@C) =

C and (@bT=@W )�1(@bT=@W ) = W are well-de�ned for all C � 0 and W � 0 and are

strictly decreasing. Solving the �rst order conditions (2.15)-(2.16), given the budget constraint

multiplier �B0 ; yields the optimal policies:

C�t (Pt) = max

"
0;

�
@ut
@C

��1�
�B0 D0;t

qt (PtjP0)
pt (PtjP0)

�#
(2.20)

W �
T (PT ) = max

"
0;

�
@bT
@W

��1�
�B0 D0;T

qT (PT jP0)
pT (PT jP0)

�#
; (2.21)

where here the max operators re�ect the fact that either C�t (Pt) = 0 or C
�
t (Pt) > 0; but in

the latter case �Ct (Pt) = 0, and similarly for W
�
T (PT ) and �

W
T (PT ).

From equations (2.20)-(2.21), the optimal policies are fully characterized once the (scalar)

budget constraint multiplier �B0 is determined. Since non-satiation implies that the budget
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constraint is binding, plugging the optimal policies (2.20)-(2.21) into equation (2.10) yields:

W0 =

Z T

0

D0;t

Z 1

0

max

"
0;

�
@ut
@C

��1�
�B0 D0;t

qt (PtjP0)
pt (PtjP0)

�#
qt (PtjP0) dPtdt

+D0;T

Z 1

0

max

"
0;

�
@bT
@W

��1�
�B0 D0;T

qT (PT jP0)
pT (PT jP0)

�#
qT (PT jP0) dPT

; (2.22)

which determines �B0 : Replacing �
B
0 by its value in equations (2.20)-(2.21) completes the

characterization of the investor�s optimal policies.

In the special but popular case of constant relative risk aversion (CRRA) utility with

ut(C) = �
tC1�=(1� ) and bT (W ) = �TW 1�=(1� ), the inverse functions are:

�
@ut
@C

��1
(u) =

�
�t

u

�1=
and

�
@ut
@C

��1
(b) =

�
�t

b

�1=
: (2.23)

The budget constraint (2.22) therefore reduces to W0 =
�
�B0
��1=

I0 with:

I0 �
Z T

0

D0;t

Z 1

0

max

"
0;

�
@ut
@C

��1�
D0;t

qt (PtjP0)
pt (PtjP0)

�#
qt (PtjP0) dPtdt

+D0;T

Z 1

0

max

"
0;

�
@bT
@W

��1�
D0;T

qT (PT jP0)
pT (PT jP0)

�#
qT (PT jP0) dPT :

(2.24)

Moreover, the optimal policies can be written in terms of the consumption to initial wealth

and terminal wealth to initial wealth ratios as:

C�t (Pt)

W0

=
1

I0
max

"
0; �t=

�
D0;t

qt (PtjP0)
pt (PtjP0)

��1=#
(2.25)

W �
T (PT )

W0

=
1

I0
max

"
0; �t=

�
D0;T

qT (PT jP0)
pT (PT jP0)

��1=#
: (2.26)

2.5 Relative Price Di¤erences vs. Consumption Smoothing

Equations (2.25)-(2.26), or their more general versions (2.20)-(2.21), illustrate the trade-o¤

that is the economic essence of optimal portfolio and consumption choice. On one hand, the

investor wants to consume more in states in which the price of consumption is cheap relative
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to the probability of realizing these states (choose a higher C�t when the ratio qt=pt is low).

This e¤ect tends to make the investor�s optimal consumption path respond to changes in the

asset prices, because as Pt changes, so does qt=pt: On the other hand, deviations across states

from a constant value C�t = C
� are penalized by the investor�s risk aversion. The higher ,

the more the investor wants to smooth consumption across states and the less sensitive C�t

becomes to variations in qt=pt: In the limit as  !1; the optimal policy becomes C�t = C�,

irrespectively of the price of consumption in di¤erent states.

2.6 Portfolio Implementation of the Optimal Investment Policy

Once the optimal state contingent consumption and bequest plan has been determined, this

plan can be implemented at date 0 by purchasing pure Arrow-Debreu securities. Speci�cally,

to implement the optimal consumption plan, the investor purchases for every state P at each

future date t a quantity C�t (P ) dt of Arrow-Debreu securities paying $1 if Pt = P and 0

otherwise. In addition, the investor buys quantities W �
T (P ) of Arrow-Debreu securities for

states P at the terminal date T , to implement the optimal bequest plan.

Arrow-Debreu securities can be synthesized or at least approximated closely by butter�y

strategies involving plain vanilla European call options on the underlying assets. Consider the

following butter�y strategy payo¤:

Xt (Pt;K; ") =
max [0; Pt �K + "] + max [0; Pt �K � "]� 2max [0; Pt �K]

"2
; (2.27)

formed using European call options with strike prices K � " < K < K + ". A security with

this payo¤ converges to an Arrow-Debreu security at P = K in the limit as "! 0. It follows

immediately that the optimal consumption and bequest plan can be implemented by trading

a basket of European call options on the underlying assets.

In case the required call options are not directly available in a liquid market, they can

themselves be replicated by a dynamic trading strategy in the underlying assets. It is precisely

this replicating strategy in the underlying assets which most of the portfolio choice literature

focuses on. The economic point of the preceding discussion is that, in our complete markets

framework, the optimal portfolio choice is fully characterized by the optimal state contingent
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consumption and bequest plan. As a result, the remainder of the paper focuses on the latter

economic decision.

3. Option-Implied State Price Density q

The previous section showed that the optimal state contingent consumption and bequest

plan as well as its trading implementation are fully determined by functions of the state-

price densities qt(PtjP0) and the physical transition densities pt(PtjP0). We now discuss how

to characterize empirically these two objects, starting with the state-price densities qt. In a

nutshell, we use data on exchange traded European put and call options to infer the state-

price densities using a parametric multivariate counterpart to the nonparametric univariate

method described in Aït-Sahalia and Lo (1998).

3.1 Marginal SPD for Each Asset Class

Consider �rst the case of a single risky asset and assume initially that the asset price Pt

is distributed log-normal under the measure Qt with a mean of E
Qt
0 [Pt] and a volatility of

log returns ln(Pt)� ln(P0) equal to �0;t
p
t. We refer to this model as the Black-Scholes case,

although in the standard Black-Scholes model Pt is log-normal under the single risk-neutral

measure RN , as opposed to the sequence of measures Qt.4 De�ne the yield of a zero-coupon

bond with maturity date t to be Y0;t; so that D0;t = exp(�Y0;tt):

Let H denote the price of a European call option with maturity date t and strike price K,

given by equation (2.5) evaluated for the payo¤ function Xt(Pt) = max (Pt �K; 0). Under

the Black-Scholes assumptions, we have:

HBS(P0; K; t; �0;t) = D0;t E
Qt
0 [max (Pt �K; 0)]

= D0;t (F0;t�(d1)�K�(d2)) ;
(3.1)

4Under the Black-Scholes assumption of a constant interest rate, rt = r, which we do not adopt here, the
two sets of measures are identical.
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with

d1 �
ln (F0;t=K)

�0;t
p
t

+
1

2
�0;t
p
t and d2 � d1 � �0;t

p
t: (3.2)

F0;t denotes the price of a forward contract for delivery of the asset at time t, which, using

equation (2.5), equals the expected future spot price under the measure Qt. If the asset pays

income at a rate of �0;t, this forward price is F0;t = E
Qt
0 [Pt] = P0 exp((Y0;t � �0;t)t).

The state price density qt in the Black-Scholes case is given by:

qBS;t(PtjP0) =
1

Pt
p
2�t�0;t

exp

 
�
�
ln (Pt=P0)� (Y0;t � �0;t � �20;t=2)t

�2
2 t �20;t

!
(3.3)

and the corresponding physical transition density pt is:

pBS;t(PtjP0) =
1

Pt
p
2�t�0;t

exp

 
�
�
ln (Pt=P0)� (�0;t � �20;t=2)t

�2
2 t �20;t

!
; (3.4)

where �0;t denotes the expected rate of return on the asset between times 0 and t. This

expected rate of return is de�ned indirectly by the equation E0 [Pt] = P0 exp(�0;t t):

Suppose now, as is the overwhelmingly common assumption in practice, that the call

pricing function is given by the Black-Scholes formula (3.1), except that the volatility para-

meter for a given option is determined by a function �0;t = �0(K=F0;t; t) of the moneyness

M0;t � K=F0;t and time-to-maturity t of the option:

H(P0; K; t) = HBS(P0; K; t; �0(K=F0;t; t)): (3.5)

Applying the basic pricing equation (2.5) to this far more general case yields:

H(P0; K; t) = D0;t E
Qt
0 [max (Pt �K; 0)] = D0;t

Z +1

K

(Pt �K) qt (PtjP0) dPt: (3.6)

Following Banz and Miller (1978) and Breeden and Litzenberger (1978), the state price density

can then be recovered by direct di¤erentiation:

qt (KjP0) =
1

D0;t

@2H

@K2
(P0; K; t); (3.7)
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where the total derivatives account for the dependence of the function �0(K=F0;t; t) on K:

@H

@K
=
@HBS
@K

+
1

F

@�0
@M

@HBS
@�

@2H

@K2
=
@2HBS
@K2

+
2

F

@�0
@M

@2HBS
@K@�

+
1

F 2

�
@�0
@M

�2
@2HBS
@�2

+
1

F 2
@2�

@M2

@HBS
@�

:

(3.8)

Aït-Sahalia and Lo (1998) exploit this equation to infer an estimate of qt from a non-parametric

estimate of the second partial derivative of the call pricing function with respect to the strike

price. We follow a similar approach, except that we parametrically model the volatility func-

tion �0(K=F0;t; t). We discuss our speci�c modelling choice in the context of the empirical

application.

3.2 Joint SPD for Two Asset Classes

We now extend this idea to two assets, say stocks and bonds, with price vector Pt =

(P1t; P2t)
0: The price of a call option written on the �rst asset is, again from equation (2.5):

H1(P0; K; t) = D0;t

Z +1

0

Z +1

K

(P1t �K) qt (PtjP0) dP1tdP2t

= D0;t

Z +1

K

(P1t �K) q1t (P1tjP0) dP1t;
(3.9)

where we denote by q1t (P1tjP0) the marginal state price density:

q1t (P1tjP0) =
Z +1

0

qt (P1t; P2tjP0) dP2t: (3.10)

Applying the univariate procedure described in the previous section to options on the �rst

asset alone therefore allows us to estimate q1t (P1tjP0). Similarly, the marginal state price

density q2t (P2tjP0) can be estimated from options on the second asset alone.

To obtain a joint distribution from the two marginal densities, it is convenient to �rst

transform variables from prices to log returns. Let Rt denote the annualized log return implied

by the prices Pt. The two are related by the deterministic change of variable Pt = P0 exp(t Rt),
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so that the density of returns is given by the Jacobian formula:

qt (RtjP0) = t P0 exp(Rt) qt (PtjP0) : (3.11)

Since there is no risk of confusing the densities of prices and returns, we do not distinguish

the notation between the two. The argument (Pt or Rt) indicates which is which.

We assume that the joint state price density qt (RtjP0) implied by the two marginal state

price densities is of the Plackett (1965) form.5 Speci�cally, we assume that the joint cumulative

distribution function (CDF):

Qt (RtjP0) =
Z Rt

qt (RtjP0) dRt (3.12)

is given by:

Qt (RtjP0) =
�
At (RtjP0)2 + 4� (1� �)Q1t (R1tjP0)Q2t (R2tjP0)

	1=2 � At (RtjP0)
2 (1� �) ; (3.13)

where Q1t and Q2t are the CDFs corresponding to the marginal densities q1t and q2t; and:

At (RtjP0) = 1� (1� �) fQ1t (R1tjP0) +Q2t (R2tjP0)g : (3.14)

The Plackett family is parameterized by �, which controls the correlation between the two

variables R1t and R2t: In particular, � = 0 corresponds to a correlation � = �1, � = 1 to a

correlation � = 0, and lim�!+1 to a correlation � = 1: In the special case of � = 1; which

yields uncorrelated variables, equation (3.13) turns into:

Qt (RtjP0) = Q1t (R1tjP0)Q2t (R2tjP0) : (3.15)

In our empirical application, we calibrate the parameter � to the historical correlation of log

returns over horizon t.6 Finally, given the joint CDF (3.12) from the Plackett formula, we

5See Rosenberg (2003) for another use of the Plackett family of densities with given marginal densities.
6By Girsanov�s Theorem, the second moments are una¤ected by the change of measure in the continuous-

time limit, and approximately so at �nite horizons. This justi�es using the empirical correlation as a proxy
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recover the corresponding joint density using:

qt (RtjP0) =
@2Qt

@R1t@R2t
(RtjP0) : (3.16)

4. Physical State Density p

While the state price densities qt(Pt; P0) can be inferred objectively from the prices of

traded options, the corresponding physical densities pt(Pt; P0) are by nature dependent on the

subjective views of a particular investor. We discuss here three di¤erent ways of constructing

pt, which di¤er primarily in the weight placed on historical market data, current market data,

and subjective beliefs.

4.1 Belief-Induced Shifts of the SPD

We �rst consider an investor who, in light of Girsanov�s Theorem, takes the shapes of the

physical densities pt to be the same as the shapes of the corresponding state price densities qt,

inferred from option prices as described above, and only expresses a view about the Sharpe

ratios or risk premia (given second moments from the state price densities �recall the argument

in footnote 6) of the two assets. Speci�cally, given a vector of annualized risk premia �t for

horizon t, we set:

pt (RtjP0) = qt (Rt � �ttjP0) : (4.1)

Since the option-implied state price density is forward-looking and conditional on current infor-

mation, this speci�cation of pt incorporates heteroscedasticity and time-variation in higher-

order moments. It does so, however, using the information contained in option prices, as

opposed to requiring the investor to build a sophisticated statistical model for returns. This

simpli�cation is one of the key advantages of our general approach.

The investor can shift the state-price density either by historical risk premia estimates

or impose a subjective belief about future expected returns. This subjective belief could

for the risk-neutral correlation. See Aït-Sahalia, Wang, and Yared (2001) for a di¤erent use of this argument
to construct a test of the hypothesis that the state price density qt accurately prices cross-sectional options
given the time series evidence on the underlying asset.
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be formed through a forecasting model, professional investment advice, introspection, or a

combination thereof.7 Notice that in the limiting case where the investor believes that the

risk premia are zero (so pt = qt), the optimal policies are state-independent, since equations

(2.20)-(2.21) reduce to:

C�t (Pt) = max

"
0;

�
@ut
@C

��1 �
�B0 D0;t

�#
(4.2)

W �
T (PT ) = max

"
0;

�
@bT
@W

��1 �
�B0 D0;T

�#
: (4.3)

4.2 Gaussian Density

We also consider the case of Gaussian physical densities:

pt (RtjP0) = N [(Y0;t + �t) t;�tt] (4.4)

where the vector of annualized risk premia �t and the annualized return covariance matrix �t

for horizon t are both speci�ed by the investor, and whereN [a; b] denotes the Gaussian density

with mean a and variance b. One possible justi�cation for this relatively simple speci�cation

of pt is that a typical investor, already �nding it challenging to form views about the �rst

two moments of returns, is unlikely to be willing or able to express strong beliefs about

the skewness, kurtosis, and higher order moments of the (log) return density. The investor

therefore defaults to the intuitive and theoretically appealing Black-Scholes benchmark case

discussed above.

As in the case of belief-induced shifts of the state price density, the moments �t and

�t of the Gaussian density can be based on a forecasting model, professional investment

advice, introspection, or a combination thereof. Alternatively, the covariance matrix �t can

be calibrated, again in light of Girsanov�s Theorem, to the second moments of the state price

density, which leaves only the risk premia to be speci�ed by investor. In the tables and �gures

below, we will express views directly on the Sharpe ratios of the two assets.

7For instance, risk premia can be calibrated to the consensus forecasts by the academic �nance profession
or by Chief Financial O¢ cers, as reported in Welch (2000) and Graham and Harvey (2002), respectively.
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4.3 Empirical Density

Finally, an obvious case can be made for using historical data as the basis for constructing

the physical density pt. Given a time series of realized log returns over horizon t, R1;t;s and

R2;t;s, for s = 1; :::; S, we construct for each asset a histogram of the marginal physical distri-

bution pit (PitjPi0) or a smoothed version of it in the form of a kernel density estimator.8 We

then obtain the joint physical density pt (PtjP0) by combining the two marginal densities using

the Plackett formula described in the previous section. The parameter � is again calibrated

to the historical correlation of log returns at horizon t.

In order to focus on the shape of the physical densities, we rescale in our application the

empirical densities to have the same second moments as the state-price densities and shift

them according to views on the Sharpe ratios of the two assets. The only di¤erence between

using empirical densities and the other two cases discussed above is that the shape of the

empirical densities is by construction backward-looking and unconditional. In contrast, the

shape of the state-price densities is forward-looking and conditional on current information.

5. Empirical Implementation

We now implement our approach empirically. We use option prices to infer the state price

densities qt; and then examine the optimal consumption policies corresponding to the di¤erent

choices of the physical state densities pt described above. Besides illustrating the mechanics of

our approach, the contribution of this application is two-fold. First, we investigate empirically

the trade-o¤ between exploiting di¤erences in the prices of consumption in di¤erent states

and smoothing consumption across states, for di¤erent choices of the physical state density.

Second, we illustrate the tension between the state prices inferred from option prices and the

beliefs expressed in the risk premium surveys mentioned above. One can view this tension as

another take on the equity premium puzzle.

We consider an individual who can invest in two risky securities, a stock fund that tracks

the S&P 500 index and a bond fund with duration equal to that of a 10-year Treasury note

8See, for example, Wand and Jones (1995) for a description of kernel density estimation techniques.
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futures, in addition to the risk-free money market account. We solve for the optimal con-

sumption policies assuming the investor has CRRA preferences with  = 5 and � = 0:98. For

simplicity, we abstract from the bequest motive by assuming bT (WT ) = 0.

Although we focus on CRRA preferences in this application, it is clear from the theory

that our approach can be applied just as easily to any other choice of preferences. Given

estimates of qt and pt, the optimal consumption choice is characterized by equation (2.20),

which simpli�es to equation (2.25) in the case of CRRA preferences. The estimation of the

densities is independent of the investor�s preferences. It follows that the relative prices of

consumption in di¤erent states, which depend only on the ratio qt=pt, are also una¤ected

by the preferences. The only role played by the utility function (its inverse actually) is the

relative desire of the investor to smooth consumption across dates and states.

5.1 Data

We collect options data for the S&P 500 index (SPX) and the 10-year Treasury note futures

(TY). The SPX options are traded at the Chicago Board Options Exchange (CBOE) and the

TY options are traded at the Chicago Board of Trade (CBOT). Both are extremely liquid,

with aggregate daily volumes well in excess of 100,000 contracts each. For 10 consecutive days

(January 6�17, 2003) we obtain the bid and ask quotes of all listed SPX and TY options at

11:30 am. We then take the price of each option to be the midpoint between the bid and

ask quotes. Finally, we compute implied volatilities from these mid-point prices using the

prevailing term structure of Eurodollar interest rates. Table 1 describes the options data.

We also collect daily closing prices of the S&P 500 index and the on-the-run 10-year

Treasury note from January 2, 1962 through January 17, 2003. We use this data to compute

the historical moments and the joint empirical densities of the stock and bond returns at

di¤erent horizons. Table 2 describes the underlying asset data.

5.2 Density Estimation

We use the raw options data to infer �rst the marginal and ultimately the joint state

price densities for the S&P 500 index and 10-year Treasury bond. The SPX option contract
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is European style, as required by our econometric approach. The TY option contract, in

contrast, is American style, allowing for early exercise prior to expiration. The underlying

asset of the TY contrast is a 10-year Treasury note futures contract; see Fama and French

(1988) for an adjustment for the early exercise premium, and the construction of an equivalent

European option.

In-the-money options are notoriously illiquid and their prices can be unreliable. We there-

fore replace the in-the-money option prices with ones implied by put-call-parity and more

liquid out-of-the-money options. Given a European call option price H(Pi0; K; t), put-call-

parity yields the European put option price L(Pi0; K; t) for the same strike price and maturity

date:

H(Pi0; K; t)� L(Pi0; K; t) = D0;t

�
EQt0 [Pit]�K

�
: (5.1)

We �rst evaluate put-call parity at the money (K ' Pi0), where both the call and put are

the most liquid, to obtain a common implied forward price Fi0 = E
Qt
0 [Pit].

9 We then apply

this option-implied forward price to put-call-parity for all away-from-the-money strike prices

to replace the illiquid in-the-money option prices with liquid out-the-money ones.

We next invert each option price to an implied volatility, using the at-the-money option-

implied forward price of the underlying asset, and �t a standard parametric implied volatil-

ity surface (the so-called �practitioner Black-Scholes model") by constrained ordinary least

squares. Speci�cally, we model the implied volatilities for the S&P 500 index as:

�0(K=F10;t; t) = 0:696� 0:308 (K=F10;t)� 0:175 t+ 0:132 (K=F10;t) t if t � 2:5

= 0:259 (the �tted value for t = 2:5) if t > 2:5;
(5.2)

and the implied volatilities for the 10-year Treasury note futures as:

�0(K=F20;t; t) = 0:356� 0:265 (K=F20;t)� 0:158 t+ 0:265 (K=F20;t) t if t � 1:0

= 0:197 (the �tted value for t = 1:0) if t > 1:0:
(5.3)

The implied volatility surface is constrained to be �at, with continuous �rst and second deriv-

9The forward price is the value Fi0;t that solves D0;t E
Qt

0 [Pit � Fi0;t] = 0:
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atives, at a horizon of 2.5 years for the S&P 500 index and one year for the 10-year Treasury

note futures. The reason for these constraints is that liquid options are not available beyond

these maturities. The constraints e¤ectively set the implied volatilities for longer horizons

equal to the implied volatilities of the longest available at-the-money options. The model

speci�cations �t the data well, with multiple R2 equal to 95.5% for the S&P 500 index and

79.5% for the 10-year Treasury note futures options.

The advantage of these simple parametric models is that the partial derivatives needed for

equation (3.8) can be evaluated analytically.10 Figure 1 plots the resulting marginal SPDs qt

for horizons t ranging from one to 10 quarters (2.5 years). The �gure also shows deviations of

the SPDs from Gaussian densities with the same mean and variance (i.e., their Black-Scholes

counterparts). All densities are plotted in terms of standardized (log) returns. By now it

is well understood that options data with negatively sloped implied volatility surfaces, as

in equations (5.2) and (5.3), correspond to negatively skewed and leptokurtic SPDs qt (see

Aït-Sahalia and Lo (1998)).

For comparison, we compute kernel estimates of the empirical marginal densities pt using

the historical returns data. Figure 2 presents the results for the same horizons as in Figure 1

above. Just as we constrained the option-implied SPDs for the log-returns to be Gaussian at

long horizons, we constrain the empirical densities to also be Gaussian at the same horizons of

2:5 and one year for stocks and bonds, respectively. Since the optimal solution for a horizon

t depends on the ratio qt=pt at that horizon, the impact of this constraint is limited to the

constant of proportionality I0, which in turn does not distort the optimal choice because it

a¤ects all states and dates equally.

There are two striking di¤erences between the two sets of densities. First, while both

exhibit pronounced di¤erences from normal distributions (see the second row of plots), the

non-normalities of the empirical densities are much more concentrated toward short horizons

than for the SPDs. This is especially the case for stocks, where the distribution of one-year

returns is roughly as non-normal as the distribution of one-month returns. Empirically, in

contrast, one-year returns are nearly Gaussian. Second, consistent with the literature, both

10Alternatively, a fully nonparametric �t is possible even with a single day�s worth of option data if the
appropriate model-free no-arbitrage shape restrictions are imposed, see Aït-Sahalia and Duarte (2003).
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SPDs are considerably more negatively skewed than the empirical densities.

The next step is to use the Plackett formula to combine the marginal densities into joint

densities. This requires that we �rst calibrate the coe¢ cient � in equation (3.13) to the

estimated correlation of the stock and bond returns at di¤erent horizons t for each set of

marginal densities. Table 3 gives details on this calibration. The second column of the table

reports the empirical correlation between stock at bond returns at horizons ranging from one

day to one year. The remaining columns provide the values of the coe¢ cient � for which

the correlation implied by the resulting Plackett density matches the empirical correlation.

Columns three, four, and �ve correspond to the option-implied SPDs q; the empirical densities

p; and Gaussian densities p, respectively.

Figure 3 illustrates the relationship between the coe¢ cient � of the Plackett copula and

the implied correlation � of stock and bond returns. The four lines in each plot correspond

to return horizons of one month (solid), one quarter (dashed), one year (dashed-dotted), 2.5

years (dotted). The left plot is for the option-implied densities and the right plot is for the

historical empirical densities. Since the marginal densities in both cases are constrained to

be Gaussian at the 2.5-year horizon, the relationship between � and � for Gaussian returns

(at any horizon) is illustrated by the dotted line in either plot. The main message of this

�gure is that the calibrated values of � are remarkably stable across di¤erent shapes of the

marginal densities. As a result, our empirical results below are relatively insensitive to this

intermediate calibration of the Plackett formula.

We can now combine these inputs to produce, at last, the objects of economic interest.

Figures 4 and 5 present contour plots at horizons of one month, one quarter, one year, and

2.5 years of the joint option-implied and historical empirical densities, respectively. The joint

densities are constructed by combining the marginal densities through the Plackett formula.

Each contour corresponds to 10 percent cumulative probability. As expected from the marginal

densities in Figure 1 and 2, the joint option-implied densities in Figure 4 exhibit substantially

more non-normality than the empirical ones in Figure 5.
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5.3 Relative Prices of Consumption

Given estimates of the option-implied SPDs qt at di¤erent horizons, shown in Figure 4, we

can use equation (2.25) to compute the consumption and portfolio rules of a CRRA investor for

the various choices of the physical state density pt, one of them being the historical empirical

density in Figure 5. As we discussed in Section 2.4, the solution can interpreted in two

parts. First, the investor wants to consume more in states in which the price of consumption

is cheap relative to the probability of realizing these states. Second, the investor wants to

smooth consumption across states. In this section, we �rst examine the relative price e¤ect,

which is independent of the investor�s preferences and is captured by the ratio qt=pt. In Section

5.4, we then examine the smoothing e¤ect, which for CRRA preferences depends also on the

coe¢ cient of relative risk aversion .

Before exploring other possibilities, we present in Figure 6 as benchmark the ratio qt=pt

under log-normality, corresponding to the Black-Scholes economy discussed above. The four

plots show the relative prices of consumption in one month, one quarter, one year, and 2.5

years into the future. The SPD qt is log-normal with moments matching the option-implied

SPD. The physical distribution pt is equal to the log-normal SPD shifted by risk premia that

imply annualized Sharpe ratios of 0.5 for stocks and 0.05 for bonds (roughly in line with the

historical moments reported in Table 2). We use these particular risk premia beliefs here and

below not to advocate them as the best forecasts of future excess returns, but rather in order

to focus the comparison between di¤erent cases on the shapes of the densities, rather than on

their location.11 In this �gure and the following, we classify states (i.e., the joint realizations of

returns for stocks and bonds) in terms of number of standard deviations from their respective

SPD means.

The shading in the plot signi�es the relative prices of consumption, with the black area

as the most expensive states and the white area as the cheapest states. The legends next

to each plot provide a rough scale of the relative price di¤erences. For example, at the one

month horizon, consumption in the black states is approximately 1:16=0:86 = 1:34 times as

11In fact, most estimates of the current equity risk premium are well below the historical equity risk premium.
Fama and French (2001) estimate the equity risk premium to lie between 2.5% and 4.3%. Ibbotson and Chen
(2003) estimate it to be between 4.0% and 6.0% at long horizons.
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expensive as consumption in the white states.

To get a more precise reading of the relative prices of consumption, we tabulate in Table

4 the ratio qt=pt for nine states (all permutations of the bond and stock returns equal to their

means and to their means plus or minus 1.5 standard deviations). For each state, the table

shows a block of four numbers. The results for the benchmark case of log-normality are shown

in the �rst row of each block.

At least three broad patterns emerge from Figure 6 and Table 4. First, consumption is

most expensive in states associated with negative bond and stock returns, and it is cheapest

in states associated with positive bond and stock returns. This pattern is consistent with the

fact that both assets demand a positive risk premium. Second, the relative price gradient is

considerably steeper across stock return states than bond return states, in line with the equity

risk premium being substantially higher than the bond risk premium. Third, the spread be-

tween the cheapest and most expensive consumption states increases with the return horizon.

This pattern is generated by the fact that both risk premiums increase approximately linearly

with the return horizon (the e¤ect is not exactly linear because of the di¤erent annualized

risk premiums across horizons shown in Table 2).

Instead of assuming log-normality, we now combine the option-implied SPD qt with each

of the three di¤erent physical state densities pt discussed in Section 4. We �rst construct pt

by shifting the option-implied SPD by risk premia that imply annualized Sharpe ratios of 0.5

for stocks and 0.05 for bonds. Figure 7 and the second row in each block of numbers in Table

4 report the ratios of the two densities, qt=pt, for this case. Notice that the results for the 2.5

year horizon are the same as for log-normality since we force the option-implied state price

density to be log-normal beyond horizons for which options data is available.

The three broad patterns we discussed for the log-normal benchmark case are also clearly

apparent with the option-implied distributions. There are, however, at least two important

di¤erences in the results. First, with the option-implied distributions the ratio qt=pt is lower

for extreme stock return states and higher for extreme bond return states. The di¤erence

in qt=pt for the option implied distribution relative to log-normality is most pronounced for

extreme positive stock return states, which means that the di¤erences between extreme states

increases considerably.
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The second important di¤erence is that with the option-implied distributions the relative

prices of consumption for extreme positive stock return states (e.g., states beyond 1.5 standard

deviations above the mean) become virtually insensitive to the realization of the bond return

state, especially at intermediate horizons of one quarter to one year. This e¤ect is best seen

through the virtually horizontal contours toward the top of the quarterly and annual plots in

Figure 7, as compared to the same plots in Figure 6.

Figures 8 and 9 present the density ratios qt=pt when pt is either the empirical distribution

of log-returns, scaled to match the option-implied volatility of qt, or a log-normal distribution

with the same moments, respectively. To illustrate the role of the risk premia, we consider

in the �rst row risk premia that set the Sharpe ratios of stocks to 0.25 and that of bonds to

0.025. The second row corresponds to our benchmark Sharpe ratios of 0.5 and 0.05. Finally,

in the third row of the �gures the risk premia are such that the Sharpe ratios of stocks is 0.75

and that of bonds is 0.075. The third and forth rows of Table 4 report the ratios qt=pt for

our benchmark Sharpe ratios (0.5 for stocks and 0.05 for bonds).

Two important insights can be drawn from �gures 8 and 9. First, the relative prices of

state-contingent consumption are far less regular when the shape of the physical density is

di¤erent from that of the state-price density. Since the physical densities all have the same

�rst and second moments, the di¤erences in results across �gure 7-9 are entirely driven by

higher-order moments. This means that the skewness and kurtosis of the investor�s subjective

beliefs about the likelihood of futures states have �rst-order implications for intertemporal

consumption and portfolio choice. Given the di¢ culties a typical investor has in forming

beliefs about even the �rst two moments of returns, this result demonstrates the bene�ts of

inferring the shape of the physical densities directly from options market data.

The second insight is that the prices of state-contingent consumption are relatively in-

sensitive to variation in the subjective Sharpe ratios of stocks and bonds, especially at short

horizons of one month or one quarter. This can be seen from the similarities of the shaded

areas across rows of each �gure. The shaded areas in the top row, corresponding to Sharpe

ratios of 0.25 for stocks and 0.025 for bonds, are remarkably similar to those in the bottom

row, corresponding instead to Sharpe ratios of 0.75 for stocks and 0.075 for bonds. This result

is particularly striking in light of the sensitivity of the state prices to the higher moments of
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the physical densities (comparing Figure 7 to the middle rows of �gures 7-9).

5.4 Optimal Consumption Policies for Di¤erent p

Given the ratio qt=pt determined above, we now compute the optimal consumption plan,

according to equation (2.25), across di¤erent realizations of the joint returns on stocks and

bonds. Once the optimal consumption plan is determined, the investor�s optimal portfolio

strategy consists of purchasing a continuum of pure Arrow-Debreu securities. At date 0, the

investor purchases for each state P and each date t a quantity C�t (P ) dt of the Arrow-Debreu

security paying $1 if Pt = P and 0 otherwise. While not directly traded on exchanges, such

Arrow-Debreu securities can be synthesized exactly using traded European call options on the

underlying assets, or simply approximated in the form of butter�y payo¤s (which converge to

the Arrow-Debreu payo¤ if the strikes used to form the butter�y converge), as described in

Section 2.6. In other words, the optimal investment strategy is fully characterized once we

have determined the optimal consumption path.

As a benchmark for comparison, Figure 10 plots the optimal consumption of a CRRA

investor under log-normal state-price and physical densities (the Black-Scholes case) with a

risk aversion coe¢ cient  ranging from 2 to 10: The plot is constructed by applying equation

(2.25) to the ratio qt=pt plotted in Figure 6. Figure 11 reports the same results when qt is

option-implied and pt is mean-shifted from qt by risk premia that imply a Sharpe ratio of 0.5

for stocks and 0.05 for bonds, corresponding to the ratio qt=pt plotted in Figure 7.

Figures 10 and 11 illustrate the trade-o¤ between exploiting di¤erences, across states, in

the relative cost of state-contingent consumption and the desire to smooth consumption across

states induced by risk aversion. As our formulation of the intertemporal problem makes clear,

this trade-o¤ is the economic essence of optimal consumption and portfolio choice. Other

things equal, the investor likes to consume more in states in which the price of consumption

is cheap relative to the (subjective) probability of realizing those states. That is, the optimal

solution selects a higher C�t when the ratio qt=pt is low. Counteracting this e¤ect, however,

deviations across states from a constant value C�t = C� are penalized by the investor�s risk

aversion. The higher ; the less sensitive C�t becomes to variations in qt=pt: In the limit,
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as  ! 1; the optimal policy becomes C�t = C� irrespectively of the relative prices of

consumption across states.

The smoothing e¤ect is quite apparent as we move in either �gure from the left column

with  = 2 to the right one with  = 10. As the investor�s risk aversion increases, the

regions of (approximate) constancy of consumption across states, represented by the same

shade of gray, increase. At the same time, the di¤erence in shades of gray, from lightest to

darkest, decreases Combined, these patterns imply that as risk aversion increases, more

states are associated with the same level of consumption and that the di¤erences between

consumption in the most extreme states diminishes. Risk aversion induces the investor to

smooth consumption across states.

6. Conclusions

We developed an empirical approach to solving the intertemporal consumption and portfo-

lio choice problem using option-implied information to determine the cost of consuming in, or

equivalently betting against, future states of the world. Using the martingale representation

method, we reduced the dynamic problem to a static one, in which the investor simply deter-

mines the level of state-contigent consumption in each state and at each date in the future.

Our method gives a direct role to the investor�s beliefs about the likelihood of future states,

and we proposed di¤erent ways of implementing this subjective aspect of the problem.

Our results illustrate explicitly the inherent tension between, on the one hand, the in-

vestor�s desire to exploit cross-sectional di¤erences in state prices by consuming more in states

in which the price of consumption is cheap relative to the probability of realizing these states

and, one the other hand, the desire to smooth consumption across states induced by risk

aversion. We argued that, as our formulation of the intertemporal problem makes clear, this

trade-o¤ is the economic essence of optimal consumption and portfolio choice.

Our method is potentially quite general. Unlike the dynamic programming approach to

the intertemporal consumption and portfolio choice problem, our solution is always obtained

explicitly so the numerical aspects of �nding the solution are straightforward. One limita-

tion of our method, however, is the need to be able to map future states of the world into
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today�s cross-section of option-implied state prices. This requires that we have access to the

corresponding options data, which is a de�nite limitation especially for less standard asset

classes. That said, while we have implemented the method for the typical cash/stocks/bonds

asset allocation problem, with states of the world de�ned by the stochastic variation in the

stock and bond indices, it is certainly possible to consider more complex asset allocation prob-

lems in which the investment opportunity set further varies due randomness in the interest

rate and/or stochastic volatility. Readily available data on interest rate options and variance

swaps, respectively, make it possible to do so with our method.
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Table 1: Options data

Mean Std Dev Min 10% 50% 90% Max

Stocks:
Years to Maturity 0.8934 0.6108 0.0959 0.1753 0.7014 1.9260 1.9479
Moneyness 0.9506 0.1719 0.5367 0.7535 0.9481 1.1647 1.4970
Implied Volatility 0.2677 0.0426 0.1683 0.2167 0.2597 0.3284 0.4110

Bonds:
Years to Maturity 0.3156 0.1837 0.0959 0.1178 0.2548 0.6767 0.7014
Moneyness 1.0507 0.0621 0.9080 0.9719 1.0446 1.1375 1.2249
Implied Volatility 0.1056 0.0318 0.0289 0.0616 0.1074 0.1389 0.2479

The table shows sample statistics for the options data on the S&P 500 index (stocks) and 10-year
Treasury futures (bonds). The sample period is January 6, 2003 through January 17, 2003. The
options prices are bid-ask midpoints recorded each day at 11:30am. There are 1093 observations for
the stock options and 600 observations for the bond options.
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Table 2: Underlying asset data

Daily Weekly Monthly Quarterly Annual

Stocks:
Mean 0.0793 0.0791 0.0794 0.0813 0.0829
Volatility 0.1462 0.1586 0.1494 0.1466 0.1447
Skewness -1.6958 -1.6090 -0.7071 -0.6098 -0.5969
Kurtosis 47.7739 27.6679 7.1456 5.3098 3.5901

Bonds:
Mean 0.0055 0.0050 0.0051 0.0062 0.0097
Volatility 0.1266 0.1385 0.1487 0.1531 0.1562
Skewness -0.1132 -0.2310 -0.3242 -0.3297 -0.3094
Kurtosis 8.0242 6.7049 4.6273 3.6884 2.7549

Correlation -0.2262 -0.2469 -0.2526 -0.2892 -0.4004

The table shows sample statistics for the excess returns on stocks and bonds over horizons ranging
from one day to one year. Stocks and bonds represent the S&P 500 index and the on-the-run 10-
year Treasury note, respectively. Returns are measured in excess of a maturity-matched risk-free
zero-coupon yield. The sample period is January 2, 1962 through January 17, 2003.
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Table 3: Calibrating the Plackett formula to historical correlations

Calibrated �

Historical Option-Implied Physical Density pt
Horizon Correlation SPD qt Empirical Gaussian

Daily -0.226 0.580 0.583 0.561
Weekly -0.247 0.550 0.551 0.530
Monthly -0.253 0.531 0.540 0.522
Quarterly -0.289 0.446 0.473 0.464
Annual -0.400 0.245 0.275 0.280

This table shows the historical correlations between stock and bond returns at di¤erent horizons. It
also shows the values of the parameter � for which the correlation implied by the Plackett formula
for the option-implied SPDs and for the empirical or Gaussian physical distributions match the
corresponding historical correlations.
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Table 4: Relative prices of state-contingent consumption

Bond Stock Return Stock Return
Return �1:5 StdDev Mean +1:5 StdDev �1:5 StdDev Mean +1:5 StdDev

1 Month Horizon 1 Quarter Horizon

�1:5 2.480 0.818 0.254 1.984 1.119 0.559
StdDev 3.233 1.699 0.208 1.898 1.595 0.284

0.817 1.003 0.422 0.791 0.975 0.367
1.202 1.035 0.650 1.094 0.923 0.478

Mean 1.343 0.414 0.166 1.581 0.745 0.428
2.368 0.869 0.135 1.711 1.105 0.223
0.960 1.162 0.488 0.936 1.159 0.399
0.933 0.895 0.568 1.079 0.930 0.444

+1:5 0.696 0.283 0.123 1.056 0.568 0.370
StdDev 1.036 0.405 0.084 1.013 0.637 0.169

0.800 0.953 0.402 0.806 0.925 0.314
1.088 1.077 0.649 1.133 0.987 0.465

1 Year Horizon 2.5 Year Horizon

�1:5 1.488 1.261 0.810 1.457 1.254 0.900
StdDev 1.361 1.417 0.319 � � �

1.185 1.143 0.368 � � �
1.171 1.096 0.350 � � �

Mean 1.445 0.969 0.678 1.433 1.098 0.744
1.326 1.097 0.277 � � �
1.251 1.047 0.214 � � �
1.322 1.055 0.212 � � �

+1:5 1.178 0.556 0.659 1.283 0.854 0.728
StdDev 1.073 0.846 0.271 � � �

0.954 0.830 0.206 � � �
1.010 0.797 0.201 � � �

This table shows the relative prices of state-contingent consumption, measured as the ratio of the
SPD and physical distribution qt=pt, for a one month, one quarter, one year, and 2.5 year horizon.
There are nine states comprised of stock and bond returns equal to their mean or their mean plus
or minus 1.5 standard deviations (StdDev). For each state, the table shows four rows of numbers.
In the �rst row, the SPD is log-normal with moments matching the option-implied SPD and the
physical distribution is the log-normal SPD shifted by the historical risk premia. In the second
row, the SPD is inferred from option prices and the physical distribution is the option-implied SPD
shifted by the historical risk premia. In the third row, the SPD is inferred from option prices and the
physical distribution is log-normal with moments matching the option-implied SPD but shifted by
the historical risk premia. In the fourth row, the SPD is inferred from option prices and the physical
distribution is the empirical distribution scaled to have the same moments as the option-implied SPD
but shifted by the historical risk premia.
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Figure 1
Marginal option-implied SPDs.

The �rst row of each plot shows the marginal option-implied SPDs of stock and bond returns. The
second row shows the di¤erence between these distributions and normal distributions with the same
mean and variance.
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Figure 2
Marginal empirical distributions.

The �rst row of each plot shows the marginal empirical distributions of stock and bond returns. The
second row shows the di¤erence between these distributions and normal distributions with the same
mean and variance.
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Figure 3
Calibrating the Plackett formula to correlations.

The plots show the relationship between the parameter � of the Plackett formula and the implied
correlation of stock and bond returns. The left plot is for the option-implied SPDs and the right
plot is for the empirical distributions. The solid, dashed, dashed-dotted, and dotted lines correspond
to a one month, one quarter, one year, and 2.5 year horizon, respectively. In the case of Gaussian
densities, the relationship between � and � is independent of the horizon and is equal to the 2.5
year case for either the option-implied or empirical distribution (since the 2.5-year distributions are
constrained to be Gaussian in all cases).
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Figure 4
Joint option-implied SPDs.

The plots show the bivariate option-implied SPDs of stock and bond returns for a one month, one
quarter, one year, and 2.5 year horizon. Each contour corresponds to 10% cumulative probability.
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Figure 5
Joint empirical distribution.

The plots show the bivariate option-implied SPDs of stock and bond returns for a one month, one
quarter, one year, and 2.5 year horizon. Each contour corresponds to 10% cumulative probability.
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Figure 6
Relative prices of state-contingent consumption under log-normality.

The plots show the relative prices of state-contingent consumption, measured as the ratio of the SPD
and physical distribution qT =pT , for a one month, one quarter, one year, and 2.5 year horizon. The
SPD is log-normal with moments matching the option-implied SPD. The physical distribution is the
log-normal SPD shifted by risk premia that imply an annualized Sharpe ratio of 0.5 for stocks and
0.05 for bonds.
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Figure 7
Relative prices of state-contingent consumption with option-implied

distributions.

The plots show the relative prices of state-contingent consumption, measured as the ratio of the SPD
and physical distribution qT =pT , for a one month, one quarter, one year, and 2.5 year horizon. The
SPD is inferred from option prices. The physical distribution is the option-implied SPD shifted by
risk premia that imply an annualized Sharpe ratio of 0.5 for stocks and 0.05 for bonds.
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Figure 8
Relative prices of state-contingent consumption with option-implied SPD and

empirical physical distribution.

The plots show the relative prices of state-contingent consumption, measured as the ratio of the SPD
and physical distribution qT =pT , for a one month, one quarter, and one year horizon. The SPD is
inferred from option prices. The physical distribution is the empirical distribution scaled to have the
same second moment as the option-implied SPD. The three rows of plots correspond to di¤erent
beliefs about the Sharpe ratio of stocks and bonds. The means of the physical distribution are set
to imply Sharpe ratios of 0.25 and 0.025 in the �rst row, 0.5 and 0.05 in the second row, and 0.75
and 0.075 in the third row.
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Figure 9
Relative prices of state-contingent consumption with option-implied SPD and

log-normal physical distribution.

The plots show the relative prices of state-contingent consumption, measured as the ratio of the SPD
and physical distribution qT =pT , for a one month, one quarter, one year, and 2.5 year horizon. The
SPD is inferred from option prices. The physical distribution is a log-normal density scaled to have
the same second moment as the option-implied SPD. The three rows of plots correspond to di¤erent
beliefs about the Sharpe ratio of stocks and bonds. The means of the physical distribution are set
to imply Sharpe ratios of 0.25 and 0.025 in the �rst row, 0.5 and 0.05 in the second row, and 0.75
and 0.075 in the third row.

44



St
oc

k

γ=2

2

1

 0

+1

+2

2.63

1.72

1.12

0.73
γ=5

2.63

1.72

1.12

0.73
γ=10

2.63

1.72

1.12

0.73

St
oc

k

2

1

 0

+1

+2

1.58

1.23

0.96

0.75

1.58

1.23

0.96

0.75

1.58

1.23

0.96

0.75

Bond

St
oc

k

2 1  0 +1 +2
2

1

 0

+1

+2

1.22

1.07

0.94

0.83

Bond
2 1  0 +1 +2

1.22

1.07

0.94

0.83

Bond
2 1  0 +1 +2

1.22

1.07

0.94

0.83

Figure 10
Smoothing state-contingent consumption across states under log-normality.

The plots show the exponentially scaled ratio of the SPD and physical distribution (qT =pT )�1= for a
one month (�rst row), one quarter (second row), and one year horizons (third row). This scaled ratio
is proportional to the optimal state-contingent consumption for an investor with CRRA utility and
relative risk aversion . The SPD is log-normal with moments matching the option-implied SPD.
The physical distribution is the log-normal SPD shifted by risk premia that imply an annualized
Sharpe ratio of 0.5 for stocks and 0.05 for bonds.

45



St
oc

k

γ=2

2

1

 0

+1

+2

3.35

1.88

1.06

0.6
γ=5

3.35

1.88

1.06

0.6
γ=10

3.35

1.88

1.06

0.6

St
oc

k

2

1

 0

+1

+2

2.95

1.86

1.17

0.74

2.95

1.86

1.17

0.74

2.95

1.86

1.17

0.74

Bond

St
oc

k

2 1  0 +1 +2
2

1

 0

+1

+2

3.12

2.02

1.31

0.85

Bond
2 1  0 +1 +2

3.12

2.02

1.31

0.85

Bond
2 1  0 +1 +2

3.12

2.02

1.31

0.85

Figure 11
Smoothing state-contingent consumption across states with option-implied

distributions.

The plots show the exponentially scaled ratio of the SPD and physical distribution (qT =pT )�1= for
a one month (�rst row), one quarter (second row), and one year horizons (third row). This scaled
ratio is proportional to the optimal state-contingent consumption for an investor with CRRA utility
and relative risk aversion . The SPD is inferred from option prices. The physical distribution is the
option-implied SPD shifted by risk premia that imply an annualized Sharpe ratio of 0.5 for stocks
and 0.05 for bonds.
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