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a b s t r a c t

We analyze in this paper the asymptotic behavior of the specification test of Aït-Sahalia (1996) for the
stationary density of a diffusion process, but when the diffusion is not stationary. We consider integrated
and explosive processes, as well as nearly integrated ones in the spirit of the local to unity analysis in
classical unit root theory. We find that the behavior of the test predicted by the asymptotic distribution
under an integrated process provides a better approximation to the small sample distribution of the test
than that predicted by the asymptotic distribution under strict stationarity.
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1. Introduction

Consider a given parametrization for a diffusion

dXt = µ(Xt , θ) dt + σ(Xt , θ) dWt (1)

that is, a joint parametric family:

P ≡


µ (·, θ) , σ 2 (·, θ)


| θ ∈ Θ


(2)

where Θ is a compact subset of RK .
If we believe that the true process is a diffusion with drift

and diffusion functions

µ0 (·) , σ 2

0 (·)

, a specification test asks

whether there are values of the parameters in Θ for which
the parametric model P is an acceptable representation of the
true process, i.e., do the functions


µ0 (·) , σ 2

0 (·)


belong to
the parametric family P ? Formally, the null and alternative
hypotheses are:

H0 : ∃ θ0 ∈ Θ such that µ (·, θ0) = µ0 (·) and σ 2 (·, θ0)

= σ 2
0 (·)

H1 :

µ0 (·) , σ 2

0 (·)


∉ P .

(3)
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Because

µ0 (·) , σ 2

0 (·)

cannot easily be estimated directly

from discretely sampled data, Aït-Sahalia (1996) proposed to test
the parametric specification (2) using an indirect approach. Let
π(·, θ) denote the marginal density implied by the parametric
model (1), and p(∆, ·|·, θ) the transition density. Under regularity
assumptions,


µ (·, θ) , σ 2 (·, θ)


will uniquely characterize the

marginal and transition densities over discrete time intervals. For
example, the Ornstein–Uhlenbeck process dXt = β (α − Xt) dt +

γ dWt specified by Vasicek (1977) generates Gaussian marginal
and transitional densities. The square-root process dXt =

β (α − Xt) dt+γ X1/2
t dWt used by Cox et al. (1985) yields a Gamma

marginal and non-central chi-squared transitional densities.
More generally, any parametrizationP ofµ andσ 2 corresponds

to a parametrization of the marginal and transitional densities:

Π ≡

(π (·, θ) , p (∆, ·, |·, θ)) |


µ (·, θ) , σ 2 (·, θ)


∈ P , θ ∈ Θ} . (4)

While the direct estimation of µ and σ 2 with discrete data is
problematic, the estimation of the densities explicitly take into
account the discreteness of the data. The basic idea of Aït-Sahalia
(1996) is to use the mapping between the drift and diffusion
on the one hand, and the marginal and transitional densities on
the other, to test the model’s specification using densities at the
observed discrete frequency (π, p) instead of the infinitesimal
characteristics of the process (µ, σ 2). Aït-Sahalia (1996) proposed
two tests, one based on the marginal density π , the other on the
transition density p and derived their asymptotic distributions
under the assumption that the process is stationary.

Themarginal density test is based on comparing a nonparamet-
ric, kernel, estimator of the stationary or marginal density π(·) of
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the process to a parametric estimator of π(·, θ) derived under the
null hypothesis that the parametric model is correct. If the null is
true, both estimators are consistent for the true marginal density
and the test statistic, which is a distance measure between these
two estimates, will be small. If the parametric model is incorrect,
however, only the nonparametric estimator will be consistent and
the test statistic will be large. Throughout the analysis, the main-
tained hypothesis is that the data series is stationary, so that no-
tions such as a marginal stationary density are meaningful.

Following that work, Pritsker (1998) noted that, in small
samples, the near-nonstationarity of empirical interest rate data
can lead to an over-rejection of the null hypothesis when
critical values are computed based on the asymptotic distribution
derived under stationarity (see also Chapman and Pearson (2000),
and Chen and Gao (2004b) for a critique of the critique). Corradi
and Swanson (2005) proposed the use of the bootstrap in the
context of that test. Other important contributions to the literature
on testing the specification of diffusions include Hong and Li
(2005),whouse the fact that under the null hypothesis, the random
variables {P(Xi|Xi−∆, θ)} are a sequence of i.i.d. uniform random
variables, Fan and Zhang (2003), Chen and Gao (2004a), and Li and
Tkacz (2006).

In this paper, we examine what happens to the test above in
the misspecified situation where the diffusion process is, in fact,
non-stationary, or nearly non-stationary. The latter situation is a
good approximation for US interest rate time series. Of particular
interest is therefore the question of whether near non-stationarity
of the data can account for the over-rejection of the null hypothesis
that has been documented in small samples. Our purpose is not to
develop a new test; rather, we analyze the behavior of the existing
marginal density-based test when we get at or near the end of its
domain of application.

The types of non-stationarity we consider below relate
naturally to similar concepts in classical discrete time series
analysis such as unit root type behavior, or explosive behavior. The
near non-stationarity we consider is essentially a continuous-time
version of the ‘‘local to unity’’ analysis in the nearly integrated time
series situation, which will be no stranger to readers familiar with
P.C.B. Phillips’ work. We focus solely here on the marginal density-
based test because transition-based tests can be made to operate
on increments of the process and as such do not rely as much
on stationarity. (In fact, they can be designed to work perfectly
with unit root data since increments of the process then become
i.i.d.) For that reason, the nonstationarity or near-nonstationarity
problem we are addressing is specific to the marginal density.

The rest of the paper is organized as follows. In order to analyze
the behavior of the marginal-density test statistic, we will need
to examine what becomes of the kernel density estimator from
the diffusion’s discrete sample when the diffusion is no longer
stationary. Since there is no longer a stationary density, what does
the kernel estimator of the marginal density converge to? Its limit
involves the local time of the diffusion process and we start in
Section 2 by reviewing its relevant properties. Section 3 derives
the asymptotic behavior of the kernel density estimator. We can
then apply these results to study the consistency of the test when
the diffusion is non-stationary in Section 4, and its distribution
when the diffusion is nearly integrated in Section 5. Using a setup
that closely mimics the simulation design used by Pritsker (1998),
who simulated Ornstein–Uhlenbeck processes with small values
of mean reversion and diffusion parameters, we show that our
asymptotic theory can explain why the marginal density-based
test over-rejects in his simulations. Section 6 concludes. Proofs are
in the Appendix.
2. Local time preliminaries

We assume that the data is a discrete sample from a time-
homogeneous diffusion process X , solution of the stochastic
differential equation

dXt = µ(Xt) dt + σ(Xt) dWt (5)

where µ and σ 2 are, respectively, the drift and diffusion functions.
We let D = (x, x̄) denote the domain of the diffusion Xt . In general,
D = (−∞, +∞), but in many examples in finance, Xt is the price
of an assetwith limited liability (stock, foreign currency, bond, etc.)
or a nominal interest rate, in which case D = (0, +∞). We first
assume that:

Assumption 1 (Existence). The stochastic differential equation (5)
admits a weak solution which is unique in probability law. The
solution process {Xt , t ≥ 0} admits a transition density p(t, y|x)
which is continuously differentiable in t , infinitely differentiable
in y and x on D.

Standard sufficient conditions are available (see e.g., Karatzas
and Shreve (1991)) to guarantee that Assumption 1 is satisfied. Our
subsequent theory relies on evaluating howmuch time a diffusion
process spends near each possible value. This necessitates the use
of the following notions.

2.1. Hitting times, boundary behavior, recurrence and transience

For the sake of completeness, we start by reviewing some
relevant concepts pertaining to diffusions (and in some casesmore
general Markov processes) which we will use extensively in the
rest of the paper. For more details, we refer to standard treatments
such as Ethier and Kurtz (1986).

Define the hitting time of a point y in D as

Ty =


∞ if Xt ≠ y for all t ≥ 0
inf{t ≥ 0 | Xt = y} otherwise. (6)

That is, Ty is the first time, if any, that the process reaches the
value y.

Throughout, we assume that the process is regular in the
interior of D, i.e.,

Pr

Ty < ∞ | X0 = x


> 0 (7)

for all x and y in the interior of D. Consider the scale function S
whose derivative is given by

s(x) ≡ S ′(x) = exp


−2
 x µ(y)

σ 2(y)
dy


(8)

and the speed density

m(x) ≡
1

(σ 2s)(x)
(9)

on D.
For x < a < b < x̄, the probability of reaching b before a, when

starting from x in [a, b] is

Pr (Tb < Ta | X0 = x) =
S(x) − S(a)
S(b) − S(a)

.

The boundary x (resp. x̄) is unattainable (in finite expected time) if
Pr

Tx = ∞


= 1 (resp. Pr (Tx̄ = ∞) = 1).

From Feller’s test for explosions (see e.g., Section 15.6 in Karlin
and Taylor (1981)), x is unattainable when Σ(x) = ∞, where

Σ(x) ≡

 x

x

 x

v

m (u) du

s (v) dv

=

 x

x

 u

x
s (v) dv


m (u) du.
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By contrast, x is attainable in finite expected time if Σ(x) < ∞.
Similarly, the boundary x̄ is unattainable if and only if Σ(x̄) = ∞,
where

Σ(x̄) ≡

 x̄

x

 v

x
m(u)du


s (v) dv

=

 x̄

x

 x̄

u
s(v)dv


m (u) du.

Among unattainable boundaries, natural boundaries can nei-
ther be reached in finite time nor can the diffusion be started there.
Entrance boundaries such as 0+, cannot be reached starting from
an interior point in D = (0, +∞), but it is possible for X to start
there in which case the process moves quickly away from 0 and
never returns. Assuming x̄ is unattainable, it is natural ifN(x̄) = ∞

and entrance if N(x̄) < ∞ (see e.g., Table 6.2 in Karlin and Taylor
(1981)), where

N(x̄) ≡

 x̄

x

 v

x
s (u) du


m (v) dv

=

 x̄

x

 x̄

u
m(v)dv


s (u) du.

Similarly, whether x is an entrance or a natural boundary depends
upon whether N(x) < ∞ or N(x) = ∞ respectively, where

N(x) ≡

 x

x

 x

v

s (u) du

m (v) dv

=

 x

x

 u

x
m (v) dv


s (u) du.

A diffusion is recurrent iff

Pr

Ty < ∞ | X0 = x


= 1 (10)

for all x and y in the interior of D. A simple necessary and sufficient
criterion for recurrence is as follows. Define the Green function

Gα(y|x) =


+∞

0
e−αtp (y|x, t) dt. (11)

A recurrent diffusion satisfies

lim
α↘0

Gα(y|x) = ∞. (12)

A diffusion which is not recurrent is said to be transient. Such a
diffusion satisfies

0 < Pr

Ty < ∞ | X0 = x


< 1 (13)

for at least some x and y in the interior of D. A necessary and
sufficient criterion for transience is

G0(y|x) < ∞. (14)

A recurrent diffusion is said to benull recurrent if E

Ty | X0 = x


= ∞ for all x and y in the interior of D, and positively recurrent if
E

Ty | X0 = x


< ∞ for all x and y in the interior of D. A recurrent

diffusion is positively recurrent iff the speed measure m is inte-
grable in x at both boundaries of D i.e.,

D
m(y)dy < ∞ (15)

and then

lim
α↘0

αGα(y|x) =
1

D m(y)dy
. (16)

When (15) is satisfied, let

π(x) ≡
m(x)

D m(y)dy
. (17)
If the initial value of the process, X0, has densityπ , then the process
is stationary and π(x) is its stationary density, i.e., the common
marginal density of each Xt .

Stationary diffusions are recurrent (with the proper initializa-
tion and support definition), but the converse is not necessarily
true. When both boundaries of the process are entrance bound-
aries, (15) is automatically satisfied. When at least one of the
boundaries is natural, stationarity is neither precluded nor implied
in that the (only) possible candidate for stationary density, π , or
equivalentlym, may or may not be integrable near the boundaries.
For instance, both a mean-reverting Ornstein–Uhlenbeck process,

dXt = −βXtdt + γ dWt (18)

with β > 0, and a Brownian motion have natural boundaries
at −∞ and +∞. Yet the former process is positively recurrent,
due to mean-reversion, while the latter is null recurrent and not
stationary.

2.2. The local time of a diffusion process

As will become apparent below, our analysis makes heavy uses
of the concept of local time. This is of course a classical concept
in the analysis of stochastic processes. For its use in situations
related to the present paper, see, e.g., Akonom (1993) and Bandi
and Phillips (2009). The local time L of X at an interior point x of D
is defined as

L(T , x) = lim
ε→0

1
2ε

 T

0
1{|Xt − x| < ε} dt (19)

(see e.g., Section 15.12.D of Karlin and Taylor (1981)). Intuitively,
L(T , x) denote the time spent by X in the neighborhood of point
x between time 0 and time T . For this reason, it is often called
the sojourn time. It is more common in the stochastic process
literature to define the local time to be the sojourn time measured
by the quadratic variation of the underlying process. However,
our definition is more appropriate for the theory developed in the
paper.

It is well known that the local time L exists with a version
continuous a.s. in both arguments for continuous semimartingales.
The local time L satisfies Tanaka’s occupation times formula T

0
f (Xt)dt =


∞

−∞

f (x)L(T , x)dx (20)

for any nonnegative function f on R, which allows us to switch
between time and space integrals.

The local time L is a random variable whose first two moments
are given by:

Lemma 1. The conditional expected value and variance of the local
time of the process are related to its transition density through

E [L(T , y) | X0 = x] =

 T

0
p(t, y|x)dt (21)

E

L(T , y)2 | X0 = x


= 2

 T

0

 t

0
p(s, y|x)p(t − s, y|y)dsdt. (22)

The expected local time and its variants for general semimartin-
gales are analyzed extensively in Park (2007), which shows in par-
ticular how we may estimate them nonparametrically from dis-
cretely observed samples and do inferences on them using their
nonparametric estimates.

Throughout the paper, we use the notation ‘‘=d’’ to denote
equality in distribution and ‘‘≈’’ to indicate equality of the leading
terms, i.e., P ≈ Q (P ≈ Q a.s.) means that P = Q (1 + op(1))
(P = Q (1+o(1)) a.s.), and ‘‘∼’’ to indicate equality of the stochastic
orders, i.e., P ∼ Q implies P/Q = Q/P = Op(1).
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2.3. Asymptotic behavior of the local time over the sampling horizon

Of critical importance in this paper will be the behavior of
the local time of the diffusion asymptotically in T . As we shall
see, it controls the asymptotic behavior of the test statistic under
consideration. We make the following assumption, and then show
that it is satisfied for many processes of interest:

Assumption 2. There exists κ ∈ [0, 1] such that for each x in D,
L(T , x) ∼ T κ as T → ∞.

The condition in Assumption 2 holds for all diffusions satisfying
the Darling–Kac condition; see Darling and Kac (1957) and the
discussions in Bandi and Moloche (2005) and Bandi and Phillips
(2009). In general, we have L(T , x) ∼ T κ l(T ) for 0 ≤ κ ≤ 1, where
l is varying slowly at infinity, i.e., l(λT )/l(T ) → 1 as T → ∞ for
all λ > 0. However, we ignore the slowly varying component to
simplify the presentation of the results in the paper. The reader
is referred to Höpfner and Löcherbach (2003) and the references
cited there for more details on the limit theory of local times for
general Markov processes.

As mentioned, L(T , x) measures how much time the process
spends near x between times 0 and T . For instance, a stationary
process should be expected to spend more time near any given
value x than an explosive process, which barely visits each point.
So the time order κ of the local time should be related to the
recurrence property of the underlying diffusion X . Indeed, we will
see that κ = 1 for stationary or positive recurrent diffusions,
and κ = 0 for transient processes. We will also give examples
illustrating the intermediary range 0 < κ < 1, including
Brownian motion for which κ = 1/2.

In the case of stationary diffusions, we have as T → ∞

L(T , x)
T

→ π(x) a.s. (23)

as shown in, e.g., Theorem 6.3 of Bosq (1998). Assumption 2 is thus
satisfied with κ = 1 for every x ∈ D.

As discussed, Brownianmotion is null recurrent (and Gα(y|x) =

exp(−
√
2α |y − x|)/

√
2α). For this process, the assumption holds

with κ = 1/2, since by invariance scaling we have in this case

L(T , x) =d T 1/2L(1, T−1/2x) (24)

(see e.g., Exercise VI.2.11 in Revuz and Yor (1994)), and for fixed x,
as T → ∞, we have

L(1, T−1/2x) → L(1, 0) a.s.,

due to the continuity of L(1, ·). The distribution of L(1, 0) or more
generally L(T , 0) is given by (see e.g., Exercise VI.2.18 in Revuz and
Yor (1994))

Pr (L(T , 0) ≥ u) =


2

πT


+∞

u
exp


−

y2

2T


dy

for u ≥ 0 (Paul Lévy showed that L(T , 0) and sup0≤t≤T Wt have the
same distribution.)

As an example of other nonstationary processes, we consider
martingale diffusions

dXt = c|Xt |
−r/2dWt (25)

with r > −1 and some constant c > 0. They yield a class of
processes with κ ranging from 0 to 1 as shown below:

Lemma 2. If X is generated as in (25), then we have

L(T , x) =d T κL(1, T−(1−κ)x)

for all x ∈ D, where κ = (r + 1)/(r + 2) with r > −1.
For the martingale diffusion given by (25), κ ranges from 0 to 1
as r increases from −1 to infinity. Of course, Brownian motion can
be considered as a special case with κ = 1/2, which yields (24). As
in the case of Brownian motion, L(1, ·) is continuous and we have

L(1, T−(1−κ)x) → L(1, 0) a.s., (26)

as T → ∞.
In the transient case, we have κ = 0 and from (21) and (14):

E [L(∞, y) | X0 = x] = G0 (y|x) .

For example, for Brownian motion with drift, dXt = µdt + dWt ,
µ > 0, we have

G0 (y|x) =


1/µ if y ≥ x
exp(2µ (y − x))/µ if y ≤ x (27)

and furthermore

Pr (L(∞, y) > u | X0 = x)

=


exp (−µu) if y ≥ x
exp (−µ exp(−2µ(y − x))u) if y ≤ x. (28)

Other examples of transient processes include the Ornstein–
Uhlenbeck process with negative coefficient of mean reversion
(β < 0 in (18)), and Bessel processes

dXt =
δ − 1
2Xt

dt + dWt (29)

with dimension parameter δ > 2. Next, we assume:

Assumption 3. Let κ be defined as in Assumption 2. Moreover, let
ap be homogeneous of degree p for p = 0, 1, 2, and let b be a
bounded integrable function. Assume for q = 1, 2, 3, 4

∞

−∞

ap(x)Lq(T , x) dx ∼ T (p+1)(1−κ)+qκ (30)
∞

−∞

b(x)Lq(T , x) dx ∼ T qκ (31)

as T → ∞.

It is possible to establish (instead of assuming) Assumption 3
rigorously from first principles, at least in some special cases, and
we will do so below. But attempting this in general does not seem
desirable, since our main focus is not to establish this result but
rather to use it. Roughly speaking, Assumption 3 requires that the
divergence rate of L(T , x) as T → ∞ be the same for all x’s. In this
case, we may write

L(T , x) = T κℓT (x). (32)

But we must also have
∞

−∞

L(T , x)dx ≡ T ,

since the total time spent between 0 and T in the neighborhood of
all points in D is T (this is of course consistent with applying (20)
to f ≡ 1), or equivalently

∞

−∞

ℓT (x)dx ≡ T 1−κ , (33)

where ℓT is neither exploding nor vanishing on its support in light
of Assumption 2 and (32); for that to happen together with (33),
we expect the support of ℓT to expand at rate T 1−κ as T → ∞. On
its support, ℓq

T (x) ∼ 1 and we then have T1−κ

−T1−κ

xpℓq
T (x)dx ∼

 T1−κ

−T1−κ

xpdx ∼ T (p+1)(1−κ).
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Wemay therefore expect to have
∞

−∞

ap(x)Lq(T , x) dx ∼ T qκ
 T1−κ

−T1−κ

xpℓq
T (x)dx ∼ T (p+1)(1−κ)+qκ

and similarly
∞

−∞

b(x)Lq(T , x) dx ∼ T qκ


∞

−∞

b(x)ℓq
T (x)dx ∼ T qκ

as we assume in Assumption 3.
We can verify that Assumption 3 is satisfied using a direct

calculation in some cases. For a stationary diffusion, we have
κ = 1 and (30)–(31) are satisfied as long as the diffusion has
a stationary distribution π that has bounded density and finite
variance. Indeed, if we write for f = ap or b, then from (23) we
have

∞

−∞

f (x)Lq(T , x) dx = T qκ


∞

−∞

f (x)

L(T , x)

T

q
dx

∼ T qκ


∞

−∞

f (x)π q(x)dx

and limπ(x) = 0 as x → ∞ implies convergence of the integral
above for all values of q ≥ 1 provided that the density π admits a
finite variance (since p ≤ 2).

For the martingale diffusion given by (25), we have 0 < κ < 1
and it follows from Lemma 2 that

∞

−∞

ap(x)Lq(T , x) dx =d T qκ


∞

−∞

ap(x)Lq(1, T−(1−κ)x)dx

= T (p+1)(1−κ)+qκ


∞

−∞

ap(y)Lq(1, y)dy (34)

using the change of variable y = T−(1−κ)x. Similarly, we have from
Lemma 2 and (26)

∞

−∞

b(x)Lq(T , x) dx =d T qκ


∞

−∞

b(x)Lq(1, T−(1−κ)x) dx

≈ T qκLq(1, 0)


∞

−∞

b(x) dx a.s. (35)

by dominated convergence. The conditions in Assumption 3 are
thus satisfied by the martingale diffusion including, of course,
Brownian motion with κ = 1/2.

For Brownian motion with drift, we have κ = 0 and we can
compute directly

E


∞

−∞

ap(y)Lq(T , y) dy
 X0 = x


=


∞

−∞

ap(y)E

Lq(T , y) | X0 = y


dy

and use Lemma 1; for instance when q = 1, we have
∞

−∞

ypE [L(T , y) | X0 = x] dy

=


∞

−∞

yp
 T

0
p(t, y|x)dtdy

=

 T

0


∞

−∞

ypp(t, y|x)dydt

=


T if p = 0
xT +

µ

2
T 2 if p = 1

x2T +
(1 + 2xµ)

3
T 2

+
µ2

3
T 3 if p = 2
since p(t, y|x) is the Gaussian density with mean x + µt and
variance t. When q = 2,

∞

−∞

ypE

L2(T , y) | X0 = x


dy

= 2


∞

−∞

yp
 T

0

 t

0
p(s, y|x)p(t − s, y|y)dsdtdy

= 2
 T

0

 t

0


∞

−∞

ypp(s, y|x)p(t − s, y|y)dydsdt

=



2 erf
√

Tµ
√
2


µ

T + O(1) if p = 0

erf

√
Tµ

√
2


T 2

+ O(T ) if p = 1

2µ erf
√

Tµ
√
2


3

T 3
+ O


T 2 if p = 2

where erf designates the normal error function, which tends to 1
exponentially fast as T tends to infinity. The perhaps more familiar
normal c.d.f. N is related to erf by

N(x) =
1
2


1 + erf


x

√
2


.

The verification for q > 2 proceeds similarly. Since by Chebyshev’s
Inequality, E [|AT |] = O(aT ) implies that AT ∼ aT , the conditions
in Assumption 3 follow for Brownian motion with drift.

3. Asymptotics for the kernel density and local time estimators

We now have the tools we need to understand what is
estimated by the kernel marginal density estimator that enters the
test statistic. Recall that the process X is assumed to be observed
at intervals of length ∆ over time [0, T ]. The sample size n is,
therefore, given by n = T/∆. Here we assume that the observation
intervals are equispaced. However, this is just for expositional
simplicity. All of our subsequent results can easily be extended
to more general cases where X are observed irregularly, i.e., at
∆1, ∆1 + ∆2, . . . and so on, as long as the maximum of the
observation intervals,max1≤i≤n ∆i, decreases down to zero. For the
development of our asymptotics, we let T → ∞ and ∆ → 0
so that n → ∞. The reliance on asymptotics where ∆ → 0 is
dictated by theneed to allow for stationary aswell as nonstationary
dynamics; this is consistentwith earlier approaches as discussed in
the review paper by Bandi and Phillips (2009).

We first consider the asymptotics of the sample momentsn
i=1 f (Xi∆) for a real valued function f on R. The following result

is fairly general and may potentially be useful beyond the specific
scope of its application here to the test statistic of interest:

Lemma 3. Let f = ap or b, where ap and b are defined
in Assumption 3. Suppose that f is twice continuously differentiable,
and assume either

(a) f = ap and |µ(x)| ≤ c1|x|r , |σ 2(x)| ≤ c2|x|r+1 for some
constants c1 and c2 with r satisfying ∆T (r−1)(1−κ)

→ 0, or
(b) f = b has derivatives b′ and b′′ such that µb′, σb′ and σ 2b′′

are bounded and integrable.
Then we have

∆

n
i=1

f (Xi∆) ≈

 T

0
f (Xt) dt a.s. (36)

uniformly in T .
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For a wide class of f , Lemma 3 provides the precise conditions
sufficient to have the continuous approximation in (36) for
the sample moments given by the discrete observations of the
underlying diffusions. Of course, here we require ∆ → 0, i.e., the
infills should take place to have the continuous approximation. The
required rates of infills are, however, different depending upon
the class of functions f and the explosiveness of the drift and
diffusion functions. If f is a homogeneous function and if the drift
function µ or the diffusion function σ is more explosive than the
linear specification with r > 1, then ∆ must decrease faster than
T−(r−1)(1−κ). The required rate increases, as the drift or diffusion
function becomes more explosive and/or the underlying diffusion
becomes more transient. On the other hand, required is no extra
condition other than ∆ → 0 if µ and σ are bounded by a linear
function, and/or the underlying diffusion is stationary with κ =

1. For integrable and bounded f , ∆ → 0 alone is sufficient for
the continuous approximation if it has derivatives vanishing fast
enough at infinity, compared to the rates at which the drift and
diffusion functions explode.

In light of the occupation times formula (20), the stochastic
order of the continuous sample moment in (36) can now be
obtaineddirectly fromAssumption 3. Indeed, in some special cases,
we may deduce more explicit asymptotics using the local time
asymptotics in (23), (26) and Lemma 2. For stationary ergodic
diffusions, we have

∆

T

n
i=1

f (Xi∆) =
1
T

 T

0
f (Xt) dt + o(1) a.s.

=


∞

−∞

f (x)
L(T , x)

T
dx + o(1) a.s.

→


∞

−∞

f (x)π(x) dx a.s.

for any f if the underlying density π admits the finite expectation
of f . Likewise, for the martingale diffusion (25), we have for f = ap

∆

T p(1−κ)+1

n
i=1

ap(Xi∆)

=
1

T p(1−κ)+1

 T

0
ap(Xt) dt + o(1) a.s.

=
1

T p(1−κ)+1


∞

−∞

ap(x)L(T , x) dx + o(1) a.s.

→d


∞

−∞

ap(x)L(1, x) dx

and for f = b

∆

T κ

n
i=1

b(Xi∆) =
1
T κ

 T

0
b(Xt) dt + o(1) a.s.

=
1
T κ


∞

−∞

b(x)L(T , x) dx + o(1) a.s.

→d L(1, 0)


∞

−∞

b(x) dx

due, respectively, to the results in (34) and (35).
We now consider the asymptotics for the kernel density

estimator. Strictly speaking, the kernel density estimator would
make sense only for stationary processes, since the time invariant
marginal density does not exist for nonstationary processes. But
we may look more generally at the kernel estimator for the local
time L(T , x), which is given by

L̂(T , x) =
∆

h

n
i=1

K

Xi∆ − x

h


, (37)
where K is the kernel function and h is the bandwidth parameter.
As we show below, the local time estimator in (37) provides
a consistent estimator of local time for both stationary and
nonstationary processes.

The kernel estimator for the local time is indeed nothing but the
T -multiple of the usual kernel density estimator

π̂(x) =
1
nh

n
i=1

K

Xi∆ − x

h


(38)

which is commonly used to estimate the time invariant marginal
density under stationarity, and constitutes the nonparametric
estimator in the test statistic whose behavior we would like to
investigate. Under stationarity and ergodicity, we may deduce in
particular that

π̂(x) =
L̂(T , x)

T
=

L(T , x)
T

+ o(1)a.s. → π(x) a.s.

from Lemma 4 and the local time asymptotics in (23) introduced
earlier.

For the kernel function K , we impose the usual conditions.

Assumption 4. We assume that K is bounded and twice continu-
ously differentiable, and that


∞

−∞
K(x) dx = 1,


∞

−∞
xK(x) dx = 0,

and


∞

−∞
x2|K(x)| dx < ∞.

For the local time estimator L̂(T , x) in (37), we may well expect
to have continuous approximation similar to (36), if we choose
h appropriately as a function of ∆ and T . Once we establish the
required continuous approximation, we may easily deduce the
consistency of L̂(T , x), since

L̂(T , x) ≈
1
h

 T

0
K

Xt − x

h


dt

=
1
h


∞

−∞

K

u − x
h


L(T , u) du

=


∞

−∞

K(u)L(T , x + hu) du ≈ L(T , x)

by successively applying occupation times formula and change of
variable, and using the continuity of L(T , ·).

Lemma 4. Let h be chosen such that h → 0 and ∆/h2
→ 0 as

∆ → 0. Then we have

L̂(T , x) ≈ L(T , x) a.s.

for every T and x. Moreover, we let f = ap or b with ap and b defined
in Assumption 3, and define m = [(µ/σ 2)′ + (µ/σ 2)2][(1/σ 2) +

(1/σ 2)′′]. Suppose that we set hL(T , x)1/3−δ
→ ∞ a.s. for some

δ > 0 and assume either
(a) f = ap and |m(x)| ≤ c1|x|r1 , |µ(x)| ≤ c2|x|r2 and |σ 2(x)| ≤

c3|x|r3 for some constants c1, c2 and c3 with r1, r2 and r3 satisfying
h2T r1(1−κ)

→ 0, ∆h−1T r2(1−κ)
→ 0, ∆h−2T r3(1−κ)

→ 0 for h → 0,
or

(b) f = b with mb, µb and σ 2b bounded and integrable, and
h → 0 such that ∆/h2

→ 0.
Then we have

∞

−∞

f (x)L̂q(T , x) dx ≈


∞

−∞

f (x)Lq(T , x) dx a.s.

uniformly in T .

The consistency of the kernel estimator for local time in
(37) was established earlier in Bandi and Phillips (2003) under
comparable conditions, and later by Aït-Sahalia and Park (2009)
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under the same conditions imposed here. In this paper, we
extend their results to the functionals that involve the powers of
local time. Our result here can be used to analyze the statistics
given, under the assumption of stationarity, as functionals of the
estimated density. This will be clearly seen in the next section.

We may use the results in Lemma 4 to establish more explicit
asymptotics in the special cases that we considered following
Lemma 3. For instance, if we have stationary diffusions, then

1
T q


∞

−∞

f (x)L̂q(T , x) dx

=
1
T q


∞

−∞

f (x)Lq(T , x) dx + o(1) a.s.

=


∞

−∞

f (x)

L(T , x)

T

q
dx + o(1) a.s.

→


∞

−∞

f (x)π q(x) dx a.s.

if for instanceπ is bounded and f admits finite expectation. For the
martingale diffusion (25), we have for f = ap

1
T (p+1)(1−κ)+qκ


∞

−∞

ap(x)L̂q(T , x) dx

=
1

T (p+1)(1−κ)+qκ


∞

−∞

ap(x)Lq(T , x) dx + o(1) a.s.

→d


∞

−∞

ap(x)Lq(1, x) dx

and for f = b

1
T qκ


∞

−∞

b(x)L̂q(T , x) dx

=
1
T qκ


∞

−∞

b(x)Lq(T , x) dx + o(1) a.s.

→d Lq(1, 0)


∞

−∞

b(x) dx

using the results in (34) and (35).

4. Consistency of the marginal specification test when the
diffusion is nonstationary

We now consider the marginal density-based specification test
proposed by Aït-Sahalia (1996). Let

ΠM ≡

π (·, θ) |


µ (·, θ) , σ 2 (·, θ)


∈ P , θ ∈ Θ


denote the parametric family of marginal densities implied by
the specification of the parametric model (1). This family is
characterized by the fact that the density π (·, θ) corresponding
to the pair


µ (·, θ) , σ 2 (·, θ)


is:

π (x, θ) =
ξ (θ)

σ 2 (x, θ)
exp

 x 2µ (u, θ)

σ 2 (u, θ)
du


(39)

where the choice of the lower bound of integration in the interior
of the domain of the diffusion is irrelevant, and is absorbed in the
normalization constant ξ (θ) determined to insure that the density
integrates to one. If we let the true marginal density of the process
be

π0 (x) =
ξ0

σ 2
0 (x)

exp
 x 2µ0 (u)

σ 2
0 (u)

du


(40)

we can then test

HM0 : ∃ θ0 ∈ Θ such that π (·, θ0) = π0 (·)

HM1 : π0 (·) ∉ ΠM .
(41)
It is necessary that HM0 be true for H0 to be true. If the
true density π0 (·) were known, we could simply check to
see if it belonged to the proposed parametric class. Since it is
unknown, we must estimate it, and do so with an estimator
that does not already assume that the null hypothesis is correct
(otherwise there is obviously no way of testing it). We use for
that purpose a nonparametric estimator – that is, free of all
parametric assumptions regardingµ and σ 2 –whichwill converge
to the true density whether or not the parametric model (1) is
correctly specified. Now consider a parametric estimator of the
implied density π (·, θ0). It will converge to the true density only
if the model is correctly specified. Therefore the parametric and
nonparametric density estimators should be close together if the
parametric model is correct, and far from each other otherwise. A
measure of distanceM between the twodensity estimates provides
a natural statistic to test the null hypothesis of correct parametric
specification. Aït-Sahalia (1996) suggested to test HM0 using the
distance measure between the densities:

M ≡ min
θ∈Θ

 x̄

x
(π (x, θ) − π0 (x))2 π0 (x) w(x)dx (42)

where w is a weight (or trimming) function. Here we consider
w(x) = 1{|x| ≤ c} for some constant c or w(x) = 1. The
former is used to analyze the fixed-point trimming, and the second
no trimming or the fixed-percentage trimming. (When D has finite
boundaries, trimming can be advisable.)

The test statistic is based on

M̂ = nhmin
θ∈Θ


D


π(x, θ) − π̂(x)

2
π̂(x)w(x)dx, (43)

where π̂ is the nonparametric density estimate of π0, computed
with bandwidth h. The null hypothesis is therefore rejected when
the test statistic M̂ is large enough. The test evaluates the distance
between the densities at the ‘‘best possible’’ parametric estimator:

θ̂M ≡ argmin
θ∈Θ


D


π(x, θ) − π̂(x)

2
π̂(x)w(x)dx. (44)

The test rejects the parametric specification π(·, θ) if M̂ takes a
large value. The intuition for the test is straightforward. If π(·, θ)

is the correct specification, M̂ should be small.
Under stationarity, M̂ is shown in Aït-Sahalia (1996) to be

asymptotically normally distributed and the critical value c(α) of
the size α test is given by

ĉ(α) = ÊM + z1−αh1/2V̂−1/2
M ,

where z1−α is the one-sided normal cutoff for α, and

ÊM = c1


∞

−∞

π̂2(x)w(x) dx and

V̂M = c2


∞

−∞

π̂4(x)w(x) dx (45)

for constants c1 and c2 dependent upon the kernel function only,
and given by

c1 =


+∞

−∞

K 2 (x) dx

c2 = 2


+∞

−∞


+∞

−∞

K (u) K (u + x) du
2

dx.

It was then suggested that h be chosen satisfying

h = c σ̂n−2/9/ ln(n), (46)

where σ̂ is the standard deviation of the data, and c is a constant.
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In this paper, we investigate the test consistency under
nonstationarity. For nonstationary diffusions, the time invariant
marginal distribution does not exist. Naturally, any parametric
family of probability densities cannot correctly specify the
marginal distribution that changes over time. The test therefore
must be able to reject the null of correct specification against
any parametric family of probability densities in this case. Though
our subsequent analysis will mainly be focused on nonstationary
diffusions, we do not exclude stationary diffusions. In fact, we
allow for stationary, as well as nonstationary, diffusions, and
our subsequent results are applicable for both stationary and
nonstationary diffusions. We first concentrate exclusively on the
consistency of the test. Therefore, we will maintain that the
models are misspecified also for stationary diffusions, i.e., the true
marginal distribution is not represented by amember of the family
of probability densities π(·, θ) with some θ ∈ Θ .

Assumption 5. We assume that Θ is compact, π(x, θ) is contin-
uous in θ ∈ Θ for all x ∈ D, and supθ∈Θ π(·, θ) is bounded and
integrable.

The conditions introduced in Assumption 5 are standard, and
necessary to warrant the uniform convergence of the objective
function in (43). In the following propositions, we let h, ∆ and T
satisfy the conditions introduced in Lemmas 3 and 4.

Proposition 1. Let w(x) ≡ 1. Then the test becomes consistent if

∆ = o(hT + h1/2T (5κ−3)/2),

which in turn holds if, for some δ > 0,

∆ = o(T (9κ−5)/4−δ),

when h is selected according to (46) and ∆T r
→ ∞ for some r > 0.

Proposition 2. Let w(x) = 1{|x| ≤ c} for some constant c. Then the
test becomes consistent if

∆ = o(hT 2−κ
+ h1/2T 3κ−2),

which in turn holds if, for some δ > 0,

∆ = o(T (45κ−29)/16−δ),

when h is selected according to (46) and ∆T r
→ ∞ for some r > 0.

In both cases, the test becomes consistent also for nonstationary
diffusions, as long as ∆ is sufficiently small relative to T . It is clear,
however, from the results in Propositions 1 and 2 that we may
expect more powers of the test as ∆ gets smaller compared to
T . This seems very natural especially for nonstationary diffusions.
Note that the discrete samples provide more information on
nonstationary diffusions as ∆ decreases, while the underlying
diffusions necessarily exhibit more nonstationary characteristics
as T increases. Propositions 1 and 2 specify explicitly the relative
magnitudes of T and ∆, for which we have enough information
about the underlying nonstationary diffusions to reject any
incorrect specifications of them as stationary diffusions. Of the
tests relying on two different trimming schemes, we require more
stringent conditions for the ‘fixed-point’ trimming than for no
trimming or the ‘fixed-percentage’ trimming.

For stationary diffusions, both Propositions 1 and 2 imply
that the misspecified models are rejected asymptotically with
probability one under the minimal condition T → ∞ or ∆ → 0.
No extra conditions are required for stationary diffusions. Indeed,
we have in this case κ = 1, and the conditions required for the test
consistency in both Propositions 1 and 2 reduce to ∆ = o(T δ) for
some δ > 0.

As κ decreases down from unity, we need more stringent
conditions for the test consistency. This might be well expected
since as κ becomes smaller the marginal density, which is just
a scaled local time, generally becomes less informative on the
marginal distribution of the underlying diffusion. For Brownian
motions, we have κ = 1/2 and the required condition for the test
consistency becomes

∆ = o(T−1/8−δ) or ∆ = o(T−13/32−δ)

depending upon whether which of the two weight functions is
used. In most of practical applications, we have the value of the
observation interval ∆ much smaller than the reciprocal of any
fractional power of the time span T . If we use daily observation,
for instance, then ∆ ≈ 1/250 = 0.004. However, even for one
hundred years of time span T , we have T−1/8

≈ 0.5623, which is
relatively much bigger. For the usual values of T and ∆, the test is
likely to have the asymptotic power close to one against Brownian
motions.

The condition becomes most stringent for the transient
diffusions with κ = 0. In this case, we must have

∆ = o(T−5/4−δ) or ∆ = o(T−29/16−δ)

for each of the tests with two different weight functions.
These results can also be useful to predict the performance of

the test for stationary diffusions which are nearly nonstationary.
For instance, an Ornstein–Uhlenbeck process with small mean-
reversion parameter would certainly behave similarly as a
Brownianmotion. Therefore, it is expected to reject the null against
any parametric specification. This point is well illustrated in
Pritsker (1998). He shows through simulations that the test rejects
the correct specification too often when the underlying diffusion
process becomes highly persistent. He used in his simulation
22 years of daily data, assuming 250 business days per year,
generated by highly persistent Ornstein–Uhlenbeck processes.

5. Asymptotic distribution of the test if the diffusion is nearly
integrated

We now consider the situation where the diffusion, while still
formally stationary, is nearly integrated. The idea is similar towhat
happens in the unit root literature in time series: when studying
an AR(1) model with autoregressive parameter ρ, in the nearly-
integrated situation where ρ is close to one, it is often the case
that the small sample distribution of the parameter estimate of ρ is
better approximated by assuming that the process has a unit root
(the discrete equivalent to our Brownianmotion) than by assuming
that the process has ρ close to but strictly smaller than one (in
which case the process is stationary).

Here, we derive the asymptotic distribution of the test statistic
M̂ when the data generating process is nearly integrated, and
investigate the ability of that limiting distribution to approximate
the small sample behavior of the test when in fact the data
generating process is stationary but exhibits very low speeds of
mean reversion—as is the case for US interest rates, for instance.
More specifically, we consider two interesting classes of diffusions,
which are Ornstein–Uhlenbeck processes with T -dependent mean
reversion and diffusion parameters. The first class has the mean
reversion parameter given as a reciprocal of T , and it approaches
Brownian motion as T → ∞. The second class has both the mean
reversion and volatility parameters set to be the reciprocals of T ,
so that its marginal density is stable though it becomes strongly
persistent as T → ∞. In what follows, we assume that they have
zero means for simplicity, since the presence of non-zero means
only introduces a trivial shift effect.
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5.1. Near Brownian motion

We let X be generated as

dXt = −
a
T
Xtdt + γ dWt , (47)

i.e., an Ornstein–Uhlenbeck process with mean reversion param-
eter β = a/T for some a ≥ 0 and diffusion parameter γ > 0.
Clearly, X reduces to a Brownian motion if a = 0. Therefore, our
analysis here includes the case for which X is a Brownian motion.
We easily see that

Xt = e−(a/T )tX0 + γ

 t

0
exp [−(a/T )(t − s)] dWs

=d e−a(t/T )X0 + γ
√
T
 t/T

0
exp [−a(t/T − s)] dWs,

and therefore,

Xt =d
√
TV a

t/T , (48)

where V a is the Ornstein–Uhlenbeck process with the mean
reversion parameter a > 0 and diffusion parameter γ . The result
in (48) follows in particular from the scale invariant property of the
Brownian motion W , i.e., WTs =d

√
TWs. Clearly, V a reduces to the

Brownian motion γW if we set a = 0.
We call the diffusion X introduced in (47) the near Brownian

motion, since it approaches to a Brownian motion as T increases.
For the near Brownianmotion,wemayobtain the limit distribution
of the test statistic M̂ more explicitly. This is given in the
following proposition. We denote by La the local time of the
Ornstein–Uhlenbeck process V a.

Proposition 3. For the near Brownian motion in (47), we have

∆

h
√
T
M̂ →d La(1, 0) min

θ∈Θ


∞

−∞

π2(x, θ)w(x) dx

as h → 0, ∆/h2
→ 0 and T → ∞.

Of course, the constant term in the limiting distribution of M̂
can be computed for a given null parametric family π(·, θ). For
example, if we consider the family of normal distributions with
parameter θ = (µ, σ 2)′ corresponding to the Ornstein–Uhlenbeck
process, then we have that (for w(x) ≡ 1)

∞

−∞

π2(x, θ) dx =
1

2
√

π σ
.

Therefore, if we set the parameter space for σ 2 to be [σ 2, σ̄ 2
], then

it follows that

min
θ∈Θ


∞

−∞

π2(x, θ) dx =
1

2
√

π σ̄
.

In the Gaussian case, we thus have

M̂ ≈d
h
√
TLa(1, 0)

2
√

π σ̄∆
, (49)

and M̂ →p ∞ as h → 0, ∆/h2
→ 0 and T → ∞.

For the near Brownian motion, the variance of the marginal
distribution increases and explodes without a bound as T → ∞.
Therefore, the density that most closely approximates the (non-
existing) limiting marginal density of near Brownian motion is
naturally given by the most diffuse distribution in the family, i.e.,
the distribution with the largest variance σ̄ 2 in the case of the
normal family. Themeanbecomes unimportant in this case. In light
of this, it is somewhat intuitive that the distribution of M̂ given in
(49) involves the maximal variance and no mean parameter. For
the consistency of the test, the results in Propositions 1 and 2 are
applicable with κ = 1/2 for the near Brownian motion.
5.2. Persistent Ornstein–Uhlenbeck process

Now we consider the diffusion X given by

dXt = −
a
T
Xtdt +

b
√
T
dWt , (50)

i.e., an Ornstein–Uhlenbeck process with mean reversion parame-
ter β = a/T and diffusion parameter γ = b/

√
T for some a, b > 0.

Both diffusions introduced in (47) and (50) are nearly integrated, in
the sense that their associated autoregressive coefficients converge
to unity as T → ∞. However, we may easily see that the diffusion
X generated as in (50) has the time invariant stationary distribution
that is given by normalwithmean zero and variance b2/2a for all T .
This is in sharp contrast with the diffusion in (47), whose marginal
distribution has variance γ T/2a increasing with T . We call the dif-
fusion X generated by (50) the persistent Ornstein–Uhlenbeck pro-
cess, since it is highly persistent and yet has the time invariant
marginal distribution of a ‘‘regular’’ Ornstein–Uhlenbeck process.

We may use the persistent Ornstein–Uhlenbeck process to
describe a diffusion whose marginal distribution is relatively
stable though the process is highly persistent. Such a process was
investigated extensively by simulation in Pritsker (1998) for his
study ofUS interest ratemodels. Belowwe show that our theory for
the persistent Ornstein–Uhlenbeck process is indeed quite useful
to understand some of his main simulation findings.

To further analyze the persistent Ornstein–Uhlenbeck process,
we note that

Xt = e−(a/T )tX0 +
b

√
T

 t

0
exp [−(a/T )(t − s)] dWs

=d e−a(t/T )X0 + b
 t/T

0
exp [−a(t/T − s)] dWs,

from which it follows that

Xt =d V
a,b
t/T , (51)

where V a,b is the Ornstein–Uhlenbeck process with mean rever-
sion parameter a > 0 and diffusion parameter b > 0. The result
in (51) corresponds to and can be derived similarly as (48). In what
follows, we signify by La,b the local time of the Ornstein–Uhlenbeck
process V a,b.

Lemma 5. For the persistent Ornstein–Uhlenbeck process in (50), we
have

π̂(x) →d La,b(1, x)

as h → 0, ∆/h2
→ 0 and T → ∞.

For the persistent Ornstein–Uhlenbeck process, the kernel
density estimator π̂ is not consistent for its time invariantmarginal
density. This is due to the adverse effect of strong persistence
on the kernel estimation. The observations from the persistence
Ornstein–Uhlenbeck process do not provide sufficient information
about the existing time invariant marginal distribution. As we
mentioned above, the persistent Ornstein–Uhlenbeck process has
the time invariant marginal distribution given by normal with
mean zero and variance b2/2a. As a result, π̂ remains to be random
even in the limit as T → ∞. Needless to say, we may well expect
the variance of π̂ to be excessively large, i.e.,much larger thanwhat
the asymptotic theory based on stationarity predicts.

However, π̂ has no asymptotic bias. The limiting distribution
of π̂ is rightfully centered at the true marginal density of the
persistent Ornstein–Uhlenbeck process. Note that La,b(1, ·) is a
random function, whose expectation is the density of normal
distribution with mean zero and variance b2/2a, i.e.,

E

La,b(1, x)


=

√
2a

b
√
2π

exp(−ax2/b2)
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for all−∞ < x < ∞. Any bias of π̂ in finite T will therefore vanish
as we increase T up to infinity.

Proposition 4. For the persistent Ornstein–Uhlenbeck process in (50),
we have
∆

hT
M̂ →d min

θ∈Θ


∞

−∞

(π(x, θ) − La,b(1, x))2La,b(1, x)w(x) dx

and

ĉ(α) →d c1


∞

−∞

L2a,b(1, x)w(x) dx

with the constant c1 defined in (45), as h → 0, ∆/h2
→ 0 and

T → ∞.

If the bandwidth h is selected according to (46), we have
M̂ →p ∞ and ĉ(α) = Op(1) for the persistent Ornstein–Uhlenbeck
process. Therefore, the test based on M̂ rejects the null of the
correct specification with probability approaching to unity as n =

T/∆ → ∞. This implies that the asymptotic size of the test is
unity. Recall that the persistent Ornstein–Uhlenbeck process has
a proper time invariant marginal distribution, and that the null
hypothesis should not be rejected as long as we correctly specify
the parametric family π of densities as normal. Here again it is the
strong persistency of the persistent Ornstein–Uhlenbeck process,
which makes the test reject its true marginal density. Now it
becomes rather clear that the test would have excessive empirical
sizes for Ornstein–Uhlenbeck processeswith smallmean reversion
and diffusion parameters, which explains the earlier findings on
excessive rejection rates observed earlier by Pritsker (1998).

6. Conclusions

The paper explains the behavior of the test statistic of Aït-
Sahalia (1996) for diffusions based on the stationary distribution
of the process, when the diffusion is either nonstationary or
nearly integrated. Because of the key role played by the kernel
density estimator, the asymptotic distribution derived under the
assumption that the process is mixing is identical to that obtained
if the processwere i.i.d. As a result, as in the classical near-unit root
situation in time series analysis, that distribution can be inaccurate
in small samples if the process, while mixing, is close to a unit
root. Using a setup that closely mimics the simulation design used
by Pritsker (1998), who simulated Ornstein–Uhlenbeck processes
with small values of mean reversion and diffusion parameters, we
show that our asymptotic theory can explain why the test over-
rejects in his simulations.

In the process of analyzing the behavior of that test statistic,
we were led to study the asymptotic behavior of the local time,
both pointwise and global, and derive results thatmayhopefully be
useful beyond the narrow scope of their application here to analyze
the behavior of the marginal density-based test statistic.

Appendix. Proofs

See Appendices A–I.

Appendix A. Proof of Lemma 1

E [L(T , y) | X0 = x]

= E

lim
ε→0

1
2ε

 T

0
1{|Xs − y| < ε}ds|X0 = x


= lim

ε→0

 T

0

1
2ε

E [1{|Xs − y| < ε} | X0 = x] ds
= lim
ε→0

 T

0

1
2ε

 y+ε

y−ε

p(t, z|x)dz ds

=

 T

0
p(t, y|x)dt

and

E

L(T , y)2 | X0 = x


= E


lim
ε→0

1
2ε

 T

0
1{|Xs − y| < ε}ds

2
 X0 = x



= E


lim
ε→0

1
2ε

 T

0
1{|Xs − y| < ε}ds


×


lim
ε→0

1
2ε

 T

0
1{|Xt − y| < ε}dt

 X0 = x


= lim
ε→0

1
4ε2

 T

0

 T

0
E [1{|Xs − y| < ε}1

× {|Xt − y| < ε} | X0 = x] dsdt.

By symmetry, focus on s < t: T

0

 T

0
E [1{|Xs − y| < ε}1{|Xt − y| < ε} | X0 = x] dsdt

= 2
 T

0

 t

0
E [1{|Xs − y| < ε}1{|Xt − y| < ε} | X0 = x] dsdt.

Then by the law of iterated expectations and the Markov property,
we have

E [1{|Xs − y| < ε}1{|Xt − y| < ε} | X0 = x]
= E [1{|Xs − y| < ε}E [1{|Xt − y| < ε} | Xs] | X0 = x]

=

 y+ε

y−ε

p(s, z|x)
 y+ε

y−ε

p(t − s, w|z)dwdz

so that

E

L(T , y)2 | X0 = x


= 2 lim

ε→0

 T

0

 t

0


1

4ε2

 y+ε

y−ε

p(s, z|x)

×

 y+ε

y−ε

p(t − s, w|z)dwdz

dsdt

= 2
 T

0

 t

0
p(s, y|x)p(t − s, y|y)dsdt.

Appendix B. Proof of Lemma 2

Let CT = T 1/(r+2)
= T 1−κ , and define

XT
t = C−1

T XTt and W T
t = T−1/2WTt .

Then we may easily deduce that

dXT
t = c |XT

t |
−r/2dW T

t .

Therefore, it follows that
XT
t


=d

C−1
T XTt


(B.1)

for all T > 0.
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Consequently, we have

1
2ε

 T

0
1{|Xt − x| < ε} dx

=
T
2ε

 1

0
1{|XTt − x| < ε} dx

=d
T
2ε

 1

0
1{CT |Xt − C−1

T x| < ε} dx

=
T
CT

CT

2ε

 1

0
1{|Xt − C−1

T x| < C−1
T ε} dx (B.2)

due in particular to (B.1). The stated result now follows immedi-
ately from (B.2) by taking the limit ε → 0 and noting T/CT = T κ .

Appendix C. Proof of Lemma 3

Let

∆

n
i=1

f (Xi∆) = ∆

n
i=1

f (X(i−1)∆) + R(T , ∆)

with R(T , ∆) = ∆[f (XT ) − f (X0)], and subsequently

∆

n
i=1

f (X(i−1)∆) =

 T

0
f (Xt) dt − S(T , ∆)

with

S(T , ∆) =

n
i=1

 i∆

(i−1)∆
[f (Xt) − f (X(i−1)∆)] dt. (C.3)

Now it suffices to show that R(T , ∆) and S(T , ∆) are of order
smaller than

 T
0 f (Xt) dt . It is trivial to see that this is true for

R(T , ∆).
To analyze S(T , ∆) in (C.3), we first let D be the differential

operator, and define the infinitesimal generator of the diffusion X
as the operator

A = µD +
1
2
σ 2D2, B = σD.

If we define fA = Af and fB = Bf for a twice continuously
differentiable function f , then

 t
0 fA(Xs) ds and

 t
0 fB(Xs) dWs

represent, respectively, the bounded variation and martingale
parts of f (Xt) − f (X0), or in differential notation

df (Xt) = fA(Xt) dt + fB(Xt) dWt , (C.4)

which follows from Itô’s formula.
We now write using (C.4)

f (Xt) − f (X(i−1)∆) =

 t

(i−1)∆
fA(Xs) ds +

 t

(i−1)∆
fB(Xs) dWs,

and deduce that i∆

(i−1)∆
[f (Xt) − f (X(i−1)∆)] dt

=

 i∆

(i−1)∆

 t

(i−1)∆
fA(Xs) ds dt +

 i∆

(i−1)∆

 t

(i−1)∆
fB(Xs) dWs dt

=

 i∆

(i−1)∆
(i∆ − t)fA(Xt) dt +

 i∆

(i−1)∆
(i∆ − t)fB(Xt) dWt

by changing the order of integration. It follows that

S(T , ∆) = S1(T , ∆) + S2(T , ∆),
where

S1(T , ∆) =

n
i=1

 i∆

(i−1)∆
(i∆ − t)fA(Xt) dt and

S2(T , ∆) =

n
i=1

 i∆

(i−1)∆
(i∆ − t)fB(Xt) dWt .

Clearly,

|S1(T , ∆)| ≤ ∆

 T

0
|fA(Xt)| dt. (C.5)

Moreover, if we denote by [S2](T , ∆) the quadratic variation of
S2(T , ∆), we have

[S2](T , ∆) ≤ ∆2
 T

0
f 2B (Xt) dt. (C.6)

The order of S2(T , ∆) in probability is given by the square root of
[S2](T , ∆).

First, we let f = ap. Under the given conditions, we have
|fA(x)| ≤ c|x|r+p−1 for some constant c . We therefore have from
(C.5)

S1(T , ∆) ∼ ∆T (r+p)(1−κ)+κ
∼ ∆T (r−1)(1−κ)

 T

0
f (Xt) dt.

Moreover, it follows from (C.6) that

S2(T , ∆) ∼ ∆T [(r+2p)(1−κ)+κ]/2,

which is of order smaller than S1(T , ∆) in probability. Next, we let
f = b. Under the given conditions, both fA and fB are bounded and
integrable. We may therefore easily deduce that

S1(T , ∆), S2(T , ∆) ∼ ∆

 T

0
f (Xt) dt

due to (C.5) and (C.6). The proof is therefore complete.

Appendix D. Proof of Lemma 4

The proof heavily relies on the results in Aït-Sahalia and Park
(2009), which will be referred to as AP hereafter. The proof of the
first part is given by Theorem 1 in AP. To derive the second part,
we define

L̃(T , x) =
1
h

 T

0
K

Xt − x

h


dt

=
1
h


∞

−∞

K

u − x
h


L(T , u) du

=


∞

−∞

K(u)L(T , x + hu) du

and write

L̂(T , x) − L(T , x) = [L̂(T , x) − L̃(T , x)] + [L̃(T , x) − L(T , x)],
(D.7)

each of which will be looked at subsequently below.
Due to Lemma A2 in AP, we may bound

L̃(T , x) − L(T , x) =


∞

−∞

K(u)[L(T , x + hu) − L(T , x)] du
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by a constant multiple of m(x)h2L(T , x) uniformly in x ∈ D.
Consequently, we have

∞

−∞

ap(x)[L̃q(T , x) − Lq(T , x)] dx

≈ cqh2


∞

−∞

ap(x)m(x)Lq(T , x) dx

∼ h2T r1(1−κ)


∞

−∞

ap(x)Lq(T , x) dx = o(1)

×


∞

−∞

ap(x)Lq(T , x) dx a.s.

and
∞

−∞

b(x)[L̃q(T , x) − Lq(T , x)] dx

≈ cqh2


∞

−∞

b(x)m(x)Lq(T , x) dx

∼ h2


∞

−∞

b(x)Lq(T , x) dx = o(1)


∞

−∞

b(x)Lq(T , x) dx a.s.,

where cq is a constant depending only upon q. We may therefore
easily deduce that

∞

−∞

f (x)L̃q(T , x) dx ≈


∞

−∞

f (x)Lq(T , x) dx (D.8)

for both f = ap and f = b.
We may similarly analyze

L̂(T , x) − L̃(T , x) =
∆

h

n
i=1

K

Xi∆ − x

h


−

1
h

 T

0
K

Xt − x

h


dt,

which is bounded uniformly in x ∈ D by a constant multiple of
∆h−1

|µ(x)| + ∆h−2
|σ 2

|

L(T , x),

as shown in LemmaA3 of AP. Indeed, wemay easily showprecisely
as above that

∞

−∞

f (x)[L̂q(T , x) − L̃q(T , x)] dx ∼ o(1)


∞

−∞

f (x)Lq(T , x) dx a.s.

(D.9)

for both f = ap and f = b. The stated result now follows
immediately from (D.7) to (D.9).

Appendix E. Proof of Proposition 1

Due to Assumption 3 and Lemma 3, we have
∞

−∞

π̂ r(x) dx ∼ T−r


∞

−∞

Lr(T , x) dx ∼ T−(1−κ)(r−1) (E.10)

and
∞

−∞

f (x)π̂ r(x) dx ∼ T−r


∞

−∞

f (x)Lr(T , x) dx ∼ T−(1−κ)r (E.11)

for any bounded integrable f . Moreover, we have

σ̂ 2
=

1
n

n
i=1

X2
i∆ ≈ T−1

 T

0
X2
t dt = T−1

×


∞

−∞

x2L(T , x) dx ∼ T 2(1−κ), (E.12)

due to Assumption 3.
Letw(x) ≡ 1.Wemay now easily deduce from (E.10) and (E.11)
that

∞

−∞

(π(x, θ) − π̂(x))2π̂(x) dx =


∞

−∞

π2(x, θ)π̂(x) dx

− 2


∞

−∞

π(x, θ)π̂2(x) dx +


∞

−∞

π̂3(x) dx

is of order in probability

T−(1−κ)
+ T−2(1−κ)

+ T−2(1−κ)
∼ T−(1−κ).

In particular, the order is given uniformly in θ ∈ Θ , due to
Assumption 5 and continuity of

∞

−∞

π2(x, θ)L(T , x) dx and


∞

−∞

π(x, θ)L2(T , x) dx

with respect to θ ∈ Θ . This can be shown using the standard
argument to establish the uniform convergence for a sequence
of continuous random functions defined on a compact set, based
on constructing localized supremum and infimum functions
supθ∈N(θ) π(·, θ) and infθ∈N(θ) π(·, θ) for each point θ ∈ Θ with
a neighborhood N(θ), and extracting using compactness a finite
number of such pairs of functions which collapse down to π(·, θ)

in the limit for all θ ∈ Θ .
Consequently, we have

M̂ ∼ nhT−(1−κ)
∼ h∆−1T κ . (E.13)

On the other hand,

ÊM ∼ T−(1−κ) and V̂M ∼ T−3(1−κ).

Therefore,

ĉ(α) ∼ T−(1−κ)
+ h1/2T 3(1−κ)/2, (E.14)

as one may easily see.
The test rejects the correct specification if

ĉ(α) = op(M̂),

which holds if

T−(1−κ)
+ h1/2T 3(1−κ)/2

= o(h∆−1T κ),

due to (E.13) and (E.14). This is in turn satisfied if the stated
condition holds. Furthermore, if h is selected as in (46) and given
by

h ∼ T 7/9−κ∆2/9(ln(T/∆))−1 (E.15)

due in particular to (E.12), then we have

hT ∼ T 16/9−κ∆2/9(ln(T/∆))−1 and

h1/2T (5κ−3)/2
∼ T 2κ−10/9∆1/9(ln(T/∆))−1/2.

Therefore, the condition given in the first part is equivalent to

∆7/9
= o(T 16/9−κ(ln(T/∆))−1) and

∆8/9
= o(T 2κ−10/9(ln(T/∆))−1/2),

i.e.,

∆ = o(T (16−9κ)/7(ln(T/∆))−9/7) and

∆ = o(T (9κ−5)/4(ln(T/∆))−9/16),

which would obviously hold if we have the condition stated in the
proposition. Note that (16 − 9κ)/7 ≥ (9κ − 5)/4 for all κ ≤ 1.
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Appendix F. Proof of Proposition 2

If we set w(x) = 1{|x| ≤ c} for some constant c , then we have
from (E.11)

M̂ ∼ nhT−(1−κ)
∼ h∆−1T κ , (F.16)

as in the proof of Proposition 1. However, we have

ÊM ∼ T−2(1−κ) and V̂M ∼ T−4(1−κ).

Therefore,

ĉ(α) ∼ T−2(1−κ)
+ h1/2T 2(1−κ), (F.17)

which differs from the previous case.
Now the test rejects the correct specification if

T−2(1−κ)
+ h1/2T 2(1−κ)

= o(h∆−1T κ),

as follow from (F.16) and (F.17), which in turn holds when the
stated condition holds. If h is selected as in (46), thenwe have from
(E.15)
hT 2−κ

∼ T 25/9−2κ∆2/9(ln(T/∆))−1 and
h1/2T 3κ−2

∼ T 5κ/2−29/18∆1/9(ln(T/∆))−1/2.

Therefore, the condition given in the first part is equivalent to
∆7/9

= o(T 25/9−2κ(ln(T/∆))−1) and
∆8/9

= o(T 5κ/2−29/18(ln(T/∆))−1/2),

i.e.,
∆ = o(T (25−18κ)/7(ln(T/∆))−9/7) and

∆ = o(T (45κ−29)/16(ln(T/∆))−9/16),

which would obviously hold if we have the condition stated in the
proposition. Note that (25−18κ)/7 ≥ (45κ−29)/16 for all κ ≤ 1.

Appendix G. Proof of Proposition 3

As earlier, we let L be the local time of X . We have

1
2ε

 T

0
1{|Xt − x| < ε}dt

=d
1
2ε

 T

0
1
√TV a

t/T − x
 < ε


dt

=
T
2ε

 1

0
1
√TV a

t − x
 < ε


dt

=
√
T

√
T

2ε

 1

0
1
V a

t −
x

√
T

 <
ε

√
T


dt.

Therefore, we obtain

L(T , x) =d
√
TLa


1,

x
√
T


(G.18)

by taking the limit ε → 0.
Since L(T , x) = Op(T 1/2), it follows from Theorem 1 in AP that

L̂(T , x) = L(T , x) + Op(∆h−2T 1/2) + Op(h1/2T 1/4) + Op(h2T 1/2).

Therefore we have, due to (G.18),
√
T π̂(x) =

L̂(T , x)
√
T

=
L(T , x)
√
T

+ Op(∆h−2)

+Op(h1/2T−1/4) + Op(h2)

=d La


1,

x
√
T


+ op(1),

if h → 0, ∆/h2
→ 0 and T → ∞.
Now we may easily deduce that
√
T


∞

−∞

π2(x, θ)π̂(x)w(x) dx→d La(1, 0)


∞

−∞

π2(x, θ)w(x) dx

(G.19)

uniformly in θ ∈ Θ . Likewise, we have

T


∞

−∞

π(x, θ)π̂2(x)w(x) dx→d L2a(1, 0)


∞

−∞

π(x, θ)w(x) dx

(G.20)

uniformly in θ ∈ Θ . Finally, it follows that

T


∞

−∞

π̂3(x) dx =d
1

√
T


∞

−∞

L3a


1,

x
√
T


dx

+ op(1) →p


∞

−∞

L3a(1, x) dx (G.21)

and

T 3/2


∞

−∞

π̂3(x)1{|x| ≤ c} dx→d L3a(1, 0)

×


∞

−∞

1{|x| ≤ c} dx = 2cL3a(1, 0), (G.22)

respectively for the cases of w(x) ≡ 1 and w(x) = 1{|x| ≤ c} for
some c > 0. The asymptotics for M̂ can now be derived readily
from (G.19)–(G.22).

Appendix H. Proof of Lemma 5

The proof is analogous to that of Proposition 3. We have

1
2ε

 T

0
1{|Xt − x| < ε}dt =d

1
2ε

 T

0
1{|V a,b

t/T − x| < ε}dt

=
T
2ε

 1

0
1{|V a,b

t − x| < ε}dt,

and therefore, we obtain

L(T , x) =d TLa,b(1, x) (H.23)

by taking the limit ε → 0. Now we have L(T , x) = Op(T ), and may
deduce from Theorem 1 in AP that

L̂(T , x) = L(T , x) + Op(∆h−2T ) + Op(h1/2T 1/2) + Op(h2T ).

(H.24)

Consequently, it follows from (H.23) and (H.24) that

π̂(x) =
L̂(T , x)

T

=
L(T , x)

T
+ Op(∆h−2) + Op(h1/2T−1/2) + Op(h2)

=d La,b(1, x) + op(1),

if h → 0, ∆/h2
→ 0 and T → ∞. This was to be shown.

Appendix I. Proof of Proposition 4

Wemay readily deduce from Lemma 5 that
∞

−∞

(π(x, θ) − π̂(x))2π̂(x)w(x) dx

→d


∞

−∞

(π(x, θ) − La,b(1, x))2La,b(1, x)w(x) dx (I.25)
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uniformly in θ ∈ Θ , and that

ÊM →d c1


∞

−∞

L2a,b(1, x)w(x) dx (I.26)

V̂M →d c2


∞

−∞

L4a,b(1, x)w(x) dx. (I.27)

Moreover, we have

σ̂ 2
=

1
n

n
i=1

X2
i∆ ≈ T−1

 T

0
X2
t dt

= T−1


∞

−∞

x2L(T , x) dx=d


∞

−∞

x2La,b(1, x) dx, (I.28)

due in particular to (H.23). The stated results now follow
immediately from (I.25) to (I.28).
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