Skip over navigation

In Pursuit of Mechanically Strong, Conducting Polymer Electrolytes

Speaker: Venkat Ganesan, University of Texas at Austin
Series: CBE Departmental Seminars
Location: Elgin Room (E-Quad A224)
Date/Time: Wednesday, February 28, 2018, 4:00 p.m. - 5:00 p.m.

The design of polymer electrolytes often revolve around the goal of achieving simultaneously enhanced conductivities and mechanical strengths in the same material. Indeed, electrolytes possessing high conductivities but low mechanical strengths, exhibit undesirable features such as dendrite formation of the metallic lithium anode which leads to short circuit of the electrodes. Unfortunately however, factors that enhance the mechanical strength of a material often leads to a deterioration of the conductivity and vice versa.  Hence, there is an outstanding interest in strategies which can simultaneous enhance both the conductivity and mechanical strength of the electrolyte material. In this talk, I will discuss some results emerging out of our research in using computational techniques to study three strategies which have been examined in this regard: (i) Addition of ceramic nanoparticles to the polymer electrolytes; (ii) Creating block copolymer versions of the polymeric electrolyte; (iii) Use of ionic liquids (either directly or in polymerized form) in the polymer electrolyte. In each case, a short overview of the new insights which emerged from computer simulations will be discussed.