Skip over navigation

Groves Lab: Synthetic liver enzyme could result in more effective drugs with fewer side effects

Oct 9, 2012. Princeton, NJ. Medicines could be made to have fewer side effects and work in smaller doses with the help of a new technique that makes drug molecules more resistant to breakdown by the human liver.

Researchers based at Princeton University reported in the journal Science that they created a synthetic enzyme that acts as a catalyst to replace certain hydrogen atoms of a drug molecule with fluorine atoms. This swap stabilizes the molecule and makes it resistant to the liver enzymes that can inactivate a drug or create toxic byproducts.

"Putting fluorine in place of hydrogen in a molecule tends to result in higher potency and lower toxicity," said first author Wei Liu, a graduate student in the laboratory of John Groves, Princeton's Hugh Stott Taylor Chair of Chemistry. Wei worked with Groves and second author Xiongyi Huang, a Princeton chemistry graduate student, as well as with Professor William Goddard III, researcher and lab director Robert Nielsen, and graduate student Mu-Jeng Cheng, all of the California Institute of Technology's Materials and Process Simulation Center.

Read the full story at News at Princeton...