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Abstract— A class of optimal resource allocation problems in
linear Gaussian Multiple-access and Broadcast channels (MAC
and BC) can be summarized as weighted sum power minimiza-
tion problem. In this paper an iterative water-filling algorithm
is proposed to solve this problem efficiently. It is shown that
by formulating an explicit rate expression for MAC, though
non-convex of power spectral densities, the KKT conditions
demonstrate a strong water-filling flavor. By iteratively solving
the KKT conditions, whereas in each iteration a slightly modified
single-user Margin Adaptive Water-Filling(MAWF) algorithm is
applied to update the dual variable in a greedy manner, the
power spectral density of each user converges to the optimal
solution very fast. Simulations verify zero duality gap and fast
convergence. The problem in BC can be solved in its dual MAC.

I. I NTRODUCTION

The information theoretic characterization of the capacity
region of linear Gaussian Multiple-Access and Broadcast
Channels(MAC and BC)is very well understood (see [1] for
MAC, [2] for BC, and [3] for a general treatment of MAC
and BC). The extension of these results to general channel
conditions with fading or InterSymbol Interference (ISI), given
the assumption that all the transmitter(s) and reciever(s) have
complete Channel State Information(CSI) instantaneously, be-
came a problem of optimally allocating resources (power and
rate) across a set of parallel and independent dimensions
in frequency, time(fading state) and space(multiple antennas)
[4][8][9].

Two classes of optimal power allocation problems are of
fundamental interest: one is given power constraints, what is
optimal power and rate allocation to support the boundary
surface of the capacity region; the other is given a rate-
tuple, what is the optimal power and rate allocation to support
the boundary surface of the power region (see definitions
in [7]). The first problem can be casted as a weighted sum
rate maximization problem, and the second as a weighted
sum power minimization problem. Efficient greedy algorithms
were derived based on the polymatroid structure of the MAC
capacity region and the contra-polymatroid structure of the
MAC power region introduced by Tse and Hanley [4][7][9].
The resource allocation problem in BC can be solved in its
dual MAC by the celebrated MAC-BC duality [12][13][9].

The focus of this paper is the weighted sum power mini-
mization problem for SISO MAC and sum power minimization
problem for SISO BC, both with ISI. This problem was first

raised and answered by Tse and Hanley in [4], which is a
natural and crucial question to be addressed under scheduling
and Quality of Service (QoS) requirements in a cross-layer
design environment. Special cases in which only minimum
sum power is considered (equal power weight) have also been
studied in other works. In [10], Oh, Kim and Cioffi solved it
in two steps: first, assume the best decoding order, which is
the same for all frequency tones, is known; then a convex
transformation allows a ”power adaptive iterative waterfill-
ing” algorithm to apply. Michel and Wunder considered the
same problem and used a per-tone based optimal ordering to
transform the problem formulation into convex, and a similar
Lagrange dual method as in [10] was then developed.

All algorithms above are based on convex optimization
techniques, for they provide powerful analyzing and numerical
tools. The drawbacks are twofold: as powerful as the algorithm
is, it often requires powerful computing platform, which many
practical systems can not afford, e.g. the Access Point(AP)
of a wireless Lan only has embedded processor with limited
computing power; more importantly, although transforming a
non-convex problem into convex often relies on the structure
of the problem, it may also lose insight to the structure of
the solutions. Instead, in this paper we will utilize both the
structure of the problem and the structure of the optimal
solution to develop a simple and efficient algorithm to fully
characterize the boundary surface of any given MAC power
region. The algorithm can be easily extended to the sum power
minimization problem in BC by using MAC-BC duality.

This work is also motivated by the fact that the single user
Rate Adaptive Water-Filling algorithm (RAWF)[14], where
given a power constraint maximize the rate, can be directly ap-
plied to iteratively solve the sum rate maximization problem in
a Gaussian MAC with individual power constraints[6]. We ask
the following question: can the single user Margin Adaptive
Water-Filling algorithm (MAWF)(see thorough discussions in
[14]), where given a target rate minimize the power, be applied
to iteratively solve the sum power minimization problem
in a Gaussain MAC? The answer is yes, but with slight
modification of the single user MAWF algorithm. We will
show in this paper that a non-convex formulation of the sum
power minimization problem based on optimal decoding order
in each subchannel made this extension possible, and intuition
and insight can be drawn from the modified MAWF algorithm.

The remaining of this paper is organized as follows: Sec-



tion II introduces the system model for OFDM MAC , and
the sum power minization problem is formulated by optimal
orders in each subchannel. The iterative water-filling algorithm
based on single user MAWF is developed and verified in
Section III. Section IV explains how to use this algorithm
to fully characterize the power region and how to use MAC-
BC duality to solve sum power minimization problem in BC.
Conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

The basic channel model considered in this paper is a SISO
Gaussian multiple access linear channel with intersymbol
interference. The channel response from each independent
transmitter to a common receiver has finite length. The additive
Gaussian noise process at the common receiver is stationary,
has zero mean, and its autocorrelation function has finite
support (two noise samples are independent if sample time
is sufficiently apart). Then conventional OFDM scheme with
sufficiently large block length decomposes the channel into a
set of parallel independent subchannels. The OFDM scheme
is asymptotically optimal as its block length goes to infinity.
We define such a channel model as a OFDM MAC. Gaussian
signaling is optimal for this channel model.

Consider a OFDM MAC withK transmitters(users),N
parallel independent subchannels, and white Gaussian noise
with varianceσ2

n, wheren denotes subchannel index. In each
subchanneln, the inputs and output are related as follows:

Yn =
K∑

k=1

Hk,nXk,n + Nn

where Yn is the received signal,Hk,n is user k’s channel
gain,Xk,nis userk’s transmitted symbol, andNn is the noise
sample. Power constraint can be imposed on each user:

1
N

N∑
n=1

E(|Xk,n|2) ≤ Pk, ∀k

Notations will be used in this model: for each userk,
rk,n and pk,n denote its rate allocation and power allocation
in subchanneln, respectively.Pk =

∑N
n=1 pk,n is userk’s

power constraint andRk =
∑N

n=1 rk,n is its rate. Given
power constraintP = [P1, P2, · · · , PK ], any rate-tupleR =
[R1, R2, · · · , RK ] is achievable with arbitrarily low probabil-
ity of error if R ∈ CMAC(H, P), the capacity region of the
OFDM MAC, whereH represents the channel model depicted
above.

B. Problem Formulation

A general formulation of the weighted sum power mini-
mization problem is as follows. Given a target rate-tupleR
and a weighting vectorλ = [λ1, λ2, · · · , λK ],

minimize
K∑

k=1

λkPk

subject to R ∈ CMAC(H, P) (1)

It is instructive to study the special case of equal weighting
factors, i.e. the sum power minimization problem. The insight
gained and numerical algorithm developed from this special
case can be easily extended to the general problem (1). A
restatement of the sum power minimization problem is:

minimize
K∑

k=1

Pk

subject to R ∈ CMAC(H, P) (2)

Given the optimal solutionP∗, it is not hard to see thatR
lies on the boundary surface ofCMAC(H, P∗) [4], implying an
optimal global decoding order(though may not be unique) that
is the same across all subchannels. Not knowing the optimal
decoding order beforehand (there areK! possible orders), it
is difficult to form an explicit expression betweenR and P ,
an necessary step to solve (2). In [10], the optimal decoding
order is assumed known presumably, while in [4] the contra-
polymatroid structure of the power region allows searching
for the optimal order in a greedy manner. The optimality
of successive decoding can be seen as follows. SinceP∗

minimizes the sum power that achievesR, R must also lie on
the boundary surface ofCSUM

MAC(H,
∑K

k=1 P ∗k ), the capacity
region with sum power constraint. ThusCMAC(H, P∗) and
CSUM

MAC(H,
∑K

k=1 P ∗k ) coincide at this target rate-tupleR. It is
well known that contrary to individual power constraints, with
sum power constraint successive decoding always achieves
every point on the boundary surface of a SISO MAC [12].
An easy way to see this is through the dual BC of each
subchannel. Since the dual BC is degraded, superposition
encoding and successive decoding with a fixed decoding order,
which is solely determined by the channel gains, achieves all
the boundary point. Thus by duality successive decoding with
a fixed decoding order that is the reverse of the dual BC’s
decoding order in each subchannel is also optimal to achieve
the boundary surface of MAC with sum power constraint.

The argument above is also a proof for that per-subchannel
based ordering that is solely based on channel gains in each
sub-channel is optimal. Since there is only one global optimal
decoding order, these two seemingly contradicting decoding
orders suggest that many subchannels will be assigned to
less thanK users. A thorough discussion on this interesting
ordering issue can be found in [11].

The optimal decoding order in each subchannel allows
explicit expressions to link power allocation to rate allocation.
The following lemma, which was first stated in [5], is the
foundation for many weighted sum power minimization algo-
rithms that are developed based on the per-subchannel (called
per-”tone” or per-”channel realization” in other works) optimal
orders.

Lemma 1: For a scalar Gaussian MAC with channel gain
H = [H1,H2, · · · ,HK ] and noise varianceσ2, the optimal
decoding order to solve (1) is a permutationπ such that:

H2
π(1)

λπ(1)
≥

H2
π(2)

λπ(2)
≥ · · · ≥

H2
π(K)

λπ(K)



and userπ(1) decodes first while userπ(K) decodes last. The
users who decode earlier treat the un-decoded received signals
as noise. Therefore for the scalar case(1) can be reformulated
as follows:

minimize
K∑

k=1

λkPk

subject to log2(1 +
|Hπ(k)|2Pπ(k)

σ2 +
∑K

j=k+1 |Hπ(j)|2Pπ(j)

)

≥ Rπ(k),∀k; (3)

(3) in Lemma 1actually has close form solution because for
the optimal solution the inequalities degenerate into equalities.
However, for general OFDM MAC the rate allocation among
subchannels is what to be solved and close form solution does
not exist. Note that sum power minimization is a special case
of Lemma 1when equal weights are applied.

With Lemma 1, (2) can be reformulated with explicit rate
constraints. Letπn be the optimal decoding order byLemma
1 in subchanneln, andπ−1

n (k) denote the location of userk
in the permutation ofπn. (2) can be recast as follows:

minimize
K∑

k=1

N∑
n=1

Pk,n

subject to
N∑

n=1

log2

(
1 +

|Hk,n|2Pk,n

σ2
n + σ2

k,n

)

≥ Rk,∀k; (4)

Pk,n ≥ 0,∀k, n;

where σ2
k,n =

∑K

j=π−1
n (k)+1

|Hπn(j),n|2Pπn(j),n is the

noise contributed by un-decoded signals in subchanneln.
The rate function of the inequality constraints in (4) are

not convex. A key step in [10] and [11] is to convert the
constraints to convex functions. Instead, in this paper we will
directly exploit the structure of the optimal solution provided
by this non-convex formulation.

III. I TERATIVE MARGIN ADAPTIVE WATER-FILLING

ALGORITHM

A. The Lagrangian

the Lagrangian associated with the optimization problem (4)
is defined over the domainD = {pk,n : pk,n ≥ 0, ∀k, n} as

L({pk,n}, {µk}, {πn}) =
K∑

k=1

N∑
n=1

Pk,n −
K∑

k=1

µk ·
(

N∑
n=1

log2(1 +
|Hk,n|2Pk,n

σ2
n +

∑K
j=k′ |Hπn(j),n|2Pπn(j),n

)

)

+
K∑

k=1

µkRk. (5)

whereµk ’s are Lagrange multipliers with non-negative values,
andk′ = π−1

n (k) + 1.

Assuming zero duality, which is verified later in this section,
the Karush-Kuhn-Tucker (KKT) conditions[15] are summa-
rized by the following theorem:

Theorem 1: The KKT conditions of (5) are

Pk,n +
σ2

n +
∑K

j=π−1
n (k)+1

|Hπn(j),n|2Pπn(j),n

H2
k,n

= µk −
π−1

n (k)−1∑

j=1

Pπn(j),n,∀k, n; (6)

Again π−1
n (k) represents the location of userk in the permu-

tation of πn

Proof: Though tedious, the proof basically involves two
steps. First, note that the Lagrangian can be decomposed
to separate Lagrangian’s for each subchanneln. For each
Lagrangian, take derivative of eachPk,n for all k, then term
collection and rearrangement followed by simple induction
lead to equation (6).¤

Equation (6) reveals the structure of the optimal solu-
tions to the optimization problem (4): for each userk, the
optimal power and rate allocation reduces to single user
margin adaptive water-filling with water level reduction in each
subchannel. To see this, definegk,n as

1
gk,n

=
σ2

n +
∑K

j=π−1
n (k)+1

|Hπn(j),n|2Pπn(j),n

H2
k,n

; (7)

and defineµadj(k,n) as

µadj(k,n) =
π−1

n (k)−1∑

j=1

Pπn(j),n; (8)

whereadj denotes ”water-level adjustment”. From the succes-
sive decoding scheme userk’s rate in subchanneln is

rk,n = log2((µk − µadj(k,n))gk,n); (9)

Thus the target rate constraint for userk is satisfied with

N∗∏
n=1

(µk − µ̃adj(k,n)) =
2Rk

∏N∗
n=1 g̃n

(10)

whereN∗ denotes the number of subchannels that have rate
allocation, and̃ represents sorting operation overN∗ (??).
It is now obvious that equation (10) is a single user margin
adaptive water-filling equation with water level reduction in
each subchannel.

The intuition drawn fromTheorem 1is also interesting:
in each subchannel, a user treats the sum of received signal
powers of weaker users as noise, while the sum power of
stronger users serves as a water level reduction factor. This
says that each user suffers from both the weaker and the
stronger users’ power in different ways and it really makes
sense. Note also the equation of (6) actually provides a
geometric view of how powers are related to minimize the
sum power.



B. The IWF Algorithm

The optimal solution of (4) must satisfy the KKT
conditions (6) when duality gap is zero. The structure
of the optimal solution revealed in equation (9) and
(10) allows us to solve the KKT conditions (6) by
applying single user margin adaptive water-filling algorithm
iteratively. The algorithm is proposed as the following:

Algorithm 1:
Initialize theK ×N power allocation matrixP = 0
Sort Hk,n in each tone n; store index in aK ×N matrix;

Iterate until stopping criterion satisfied:
Inner Loop

for i=1 to K (users)
for j=1 to N (subchannels)

compute gi,j ;
computeµadji,j ;

end
Call Margin Adaptive Subroutine
to updatePi,j by computingµi

End
End Inner Loop

The stopping criterion is typically the vanishing difference
between the sum powers in each iteration.

The margin adaptive waterfilling subroutine is summarized
in Fig. 1, which is very similar with Fig.4.9 in [14].

In single user case, the computation ofµk at each iteration
in Fig. 1 is simple while in multiuser case, to computeµk

involves solving the root of polynomial (10), thus it appears
computation intensive. However, a close examination of (10)
shows that the largest positive root of polynomial (10) is the
right solution for µk, which enables a simple binary search
method to computeµk.

C. Experimental Results

Extensive simulations are used to verify the convergence
of Algorithm 1 and the optimality of the solutions found
by this algorithm. For every simulation result, the solution
is compared against the optimal solution found by known
algorithm based on convex optimization techniques which
guarantees convergence and optimality. We choose the al-
gorithm provided in [9] as reference. Simulation shows the
duality gap of problem formulation (4) is indeed zero, and
Algorithm 1 exhibits fast convergence and converges to the
optimal solution. Fig. 2 illustrates typical converging behavior
by Algorithm 1.

IV. CHARACTERIZATION OF FULL POWER REGION

Algorithm 1can be easily extended to characterize the full
power region of a given target rate-tuple in an OFDM MAC.
By Lemma 1, the general weighted sum power minimization
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problem can be formulated as:

minimize
K∑

k=1

λk

N∑
n=1

Pk,n

subject to
N∑

n=1

log2


1 +

|Hk,n|2Pk,n

σ2
n +

∑K

j=π−1
n (k)+1

|Hπn(j),n|2Pπn(j),n




≥ Rk, ∀k;
Pk,n ≥ 0, ∀k, n; (11)

Now a simple ”change variable” trick can turn (11) into the
form of (4) to whichAlgorithm 1 is readily applied:

Let P ′k,n = λkPk,n andH ′
k,n = Hk,n√

λk
, (11) becomes

minimize
K∑

k=1

N∑
n=1

P ′k,n

subject to
N∑

n=1

log2


1 +

|H ′
k,n|2P ′k,n

σ2
n +

∑K

j=π−1
n (k)+1

|H ′
πn(j),n|2P ′πn(j),n




≥ Rk, ∀k;
P ′k,n ≥ 0, ∀k, n; (12)

The solution of (12) can be scaled back to find the solution
for (11).

The extension ofAlgorithm 1 to solving sum power mini-
mization problem in BC is also trivial by applying the MAC-
BC duality [12]. The dual MAC of each subchannel of the BC
is first formulated, and the minimum sum power of the same
given rate-tuple as imposed to BC can be found by applying
Algorithm 1 to this equivalent OFDM MAC. This minimum
sum power is the optimal value for the BC by duality. Also by
duality, each individualPk,n can be mapped from the values
found in its dual MAC. It is worth pointing out that the KKT
conditions of a direct formulation in BC does not exhibit the
elegance shown in (6).

V. CONCLUSION

It is shown in this paper that the single user margin
adaptive water-filling algorithm can be extended to multiuser
environment by introducing a water level reduction term to
each user’s water level in each subchannel. This extended
margin adaptive water-filling algorithm not only exhibits fast
convergence provided by the greedy method in updating the
water-level of each user, but also converges to the optimal
solution. The operations involved in this algorithm only in-
cludes basic arithmetics in addition to thelog function, which
can be implemented as a table lookup. The data structures
are also as simple as maintaining two tables: a matrix to hold
intermediatePk,n’s as well as its final optimal value; a second
matrix to hold the index of sorted channel gains. This data
structure also allows simple tracking algorithm to address slow
fading channels: keep updating the channel gain matrix while
iterating the inner loop ofAlgorithm 1.
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