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Abstract— In upstream vectored DSL transmission, the far-end
crosstalk (FEXT) can be completely cancelled by using zero-
forcing generalized decision-feedback equalizers (ZF-GDFE).
When the spatially correlated alien crosstalk is present, the
achievable data rates of DSL lines with ZF-GDFE depend on
their decoding orders at each DMT tone. Given a weighted sum-
rate maximization problem, the optimal orderings for all DMT
tones can be found by the Lagrange dual decomposition method.
However, the computational complexity of such approach grows
with the factorial of the number of users, which makes the
optimal search infeasible with a large number of vectored lines.

This paper presents a modified greedy algorithm (MGA) that
performs close to the optimal search of decoding orders. The
complexity of MGA is only proportional to the cube of the
number of users, which is the same as it of QR decomposition.
With a significant reduction of complexity, MGA is a promising
technique for practical DSL systems.

I. INTRODUCTION

It has been discovered that vectored transmission in Digital
Subscriber Line (DSL) systems can increase the achievable
data rates dramatically [1], [2]. In upstream vectored trans-
mission, the transmitters are distributed in different customer
premises equipments (CPE) while the receivers are collocated
at a central office (CO) or an optical network unit (ONU).
The channel can be modeled by a multiple-access channel
(MAC) and joint signal processing is allowed at the receiver.
On the other hand, in downstream vectored transmission, the
transmitters are collocated at a CO/ONU while the receivers
are scattered. Thus, a broadcast channel (BC) is the best
description of this situation.

By synchronizing the discrete multi-tone (DMT) symbols,
using long enough cyclic extension and adopting frequency
division duplex (FDD), near-end crosstalk (NEXT) can be
completely eliminated [1]. Thus, the dominant impairment in
DSL systems is FEXT that comes from the opposite end of
the affected receiver. In [1], FEXT cancellation techniques uti-
lizing QR decomposition are proposed for both upstream and
downstream. The CO/ONU successively decodes the received
upstream signals based on the QR decomposed channel and
previous decisions. This technique is a special case of zero-
forcing generalized decision-feedback equalizer (ZF-GDFE).
In this case, DSL upstream channels are column-wise diag-
onally dominant, which makes subchannel gains independent
of the orderings of the QR decompositions. Therefore, the
achievable rate tuple remains constant for any orderings of

QR decompositions, and the achievable rate region is a hyper-
rectangle. However, in practice, alien disturbers out of the
vectoring domain inject highly correlated noise among the
vectored lines [3]. Since the coordination at the receiver is
possible in the upstream case, data rates can be boosted further
by utilizing alien noise cancellation techniques [3]. Combining
with the noise whitening filter, the equivalent channel is no
longer column-wise diagonally dominant. As a result, different
QR orderings change subchannel gains, which further lead
to various data rate tuples. For a vectored DSL system with
K users and N tones, there are at most (K!)N achievable
rate tuples corresponding to different sets of decoding orders.
Therefore, to find the achievable rate region is a non-trivial
task.

Similarly, in the downstream case, a QR precoder is used at
the CO/ONU to cancel the FEXT, based on the decomposed
channel and precoded downstream symbols. Unfortunately,
alien noise cancellation is not possible at downstream receivers
since no coordination at the receiver is possible. This obser-
vation is consistent with the typical information theoretical
result of BC, where noise correlation does not change the
capacity region at all [4]. Therefore, the channel matrix is
row-wise diagonally dominant and the achievable rate region
hardly depends on QR orderings.

Although MMSE-GDFE is the canonical receiver struc-
ture [5] and the achievable rate region can be found by
solving optimization routines in [6], it requires tremendous
computational complexity to obtain the energy distributions
and the corresponding equalizer coefficients. Moreover, when
the SNR gap is non-zero in systems such as DSL, the optimal
resource allocation is still an open problem. Since the SNR
is usually high for DSL channels, ZF-GDFE causes very little
noise enhancement. In this paper, the achievable rate region of
vectored upstream DSL using ZF-GDFE is investigated. Due
to the convexity of achievable rate regions, the boundary points
can be characterized by solving weighted sum-rate maximiza-
tion (WSRmax) problems for all possible weight vectors. The
optimal orderings can be determined in the dual domain by us-
ing Lagrange dual decomposition, which is a direct extension
of [7]. Though this dual approach provides linear complexity
in the number of tones, the complexity still grows with K!,
which makes it computationally infeasible for systems with
a large number of users. Thus, a modified greedy algorithm
(MGA) is proposed, which provides good suboptimal solutions



with substantially lower computational complexity. Simulation
results show that the rate region obtained by MGA is quite
close to that with the optimal exhaustive search.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In upstream vectored transmission, each of the K loops
has one transmit spatial dimension. The transmitted signal
can be observed at all K receivers, either by direct channel
or crosstalk. Synchronized DMT symbols divide the whole
bandwidth into N parallel subchannels. The subchannel on
tone n can be represented by a K-by-K real matrix Hn, where
n ∈ {1, 2, · · · , N}. The relationship between input and output
signal vectors can be written as:

yn = Hnxn + zn, (1)

where xn and yn are K-dimensional vectors denoting trans-
mitted and received signals on tone n. zn is additive Gaussian
alien noise PSD with a non-singular covariance matrix Rn.
This alien noise can be cancelled by a noise whitening filter
at the receiver, which is information theoretically lossless.
After noise whitening, the equivalent channel becomes H̃n =
R

−1/2
n Hn and the channel model can be expressed as:

ỹn = R−1/2
n yn = H̃nxn + z̃n, (2)

where z̃n = R
−1/2
n zn ∼ N (0, I).

Since the equivalent channel matrix is square, the ZF-
GDFE can be obtained by applying a QR decomposition to
H̃n. Define πn = [πn1 πn2 · · · πnK ] as a K-dimensional
vector denoting the permutation on {1, 2, · · · ,K}. To be more
specific, πnk indicates the input dimension to be decoded
(K + 1 − k)-th in the order on tone n. Clearly, πnk ∈
{1, · · · ,K}, and πni �= πnj , for all i �= j. Also, each πn

defines a permutation matrix Mπn
, of which (i, j)-th element

M
(i,j)
πn

is equal to 1 if πnj = i. Otherwise M
(i,j)
πn

= 0. For
example, Mπn is an identity matrix if πn = [1 2 · · · K].

The QR decomposition given an order then becomes
H̃nMπn

= Qn,πn
Dn,πn

Gn,πn
, where Qn,πn

is an unitary
matrix, Dn,πn

is a diagonal matrix, and Gn,πn
is a monic up-

per triangular matrix. The QR decomposition can be computed
by a sequence of K−1 Householder transforms ([8]). In each
Householder transform, a symmetric and unitary Householder
matrix is found. To make the notations simple, we remove
the tone index and ordering from Householder matrices and
define them as Q1, · · · , QK−1. Each Qi is used to reflect
or to rotate the equivalent channel so that zero elements
are produced in the lower triangle. Therefore, the equivalent
channel matrix is iteratively transformed to an upper triangular
one. Consequently, the QR decomposition can be written as:

Qn,πn
= Q1Q2 · · ·QK−1,

Dn,πn
Gn,πn

= QK−1QK−2 · · ·Q1H̃nMπn
. (3)

It also should be noted that the complexity of computing QR
decomposition is O(K3).

With these representations, the overall feedforward fil-
ter becomes D−1

n,πn
Q∗

n,πn
R

−1/2
n , and the feedback filter is

Gn,πn
MT

πn
. (.)∗ and (.)T are notations for Hermitian and

transpose operations. Let g
(πn)
nk and pnk be the subchannel

gain and power spectral density (PSD) of user k on tone n

respectively, it can be shown that [g(πn)
n1 g

(πn)
n2 · · · g

(πn)
nK ] =

diag(D2
n,πn

)MT
πn

, where diag(.) represents a row vector that
extracts the diagonal elements from the input matrix.

Since the user decoded later has chances to see a cleaner
channel, the user index that appears former in πn indicates the
corresponding user has higher priority in decoding. Therefore,
the πn1-th user is given the highest priority on tone n, because
its signal is decoded after all FEXT is cancelled. Moreover, its
subchannel gain achieves its maximum possible value, which
is the same as the square of norm of the πn1-th column of
H̃n. If an SNR gap Γ is considered, the data rate of user k on
tone n is determined by log2(1 + pnkg

(πn)
nk /Γ) per complex

dimension. Note that for each user there is an individual power
constraint, i.e.

∑N
n=1 pnk ≤ Pk for all k.

The number of possible decoding orders for each tone is
K!, resulting in K! different receiver realizations. After QR
decomposition and successive decoding, each user’s channel is
completely decoupled. Thus, once the orderings πn are fixed,
the weighted sum rate is maximized by simply doing single-
user rate-adaptive waterfilling for each user. The achievable
rate region of ZF-GDFE can be characterized by all the
possible (K!)N rate tuples together with the time-sharing
concept. Since the rate region is convex, it is sufficient to
solve the maximum weighted sum-rate for all possible weight
µ = [µ1, µ2, · · · , µK ]. This problem can be formulated as:

maximize max
π1,π2,··· ,πn

K∑
k=1

N∑
n=1

µk log2

(
1 +

pnkg
(πn)
nk

Γ

)

subject to
N∑

n=1

pnk ≤ Pk, ∀k

pnk ≥ 0 ∀n, k. (4)

(4) is not a convex optimization problem because taking the
maximum of concave functions is not necessarily concave. The
complexity of an exhaustive search of the optimal orderings
is O((K!)N ). A more efficient search using Lagrange dual
decomposition is shown in the next section.

III. OPTIMAL AND MODIFIED GREEDY ALGORITHMS VIA

LAGRANGE DUAL DECOMPOSITION

A. Optimal Ordering

In [7], an efficient algorithm applying Lagrange dual de-
composition is developed to maximize the sum rate of the
downstream vectored DSL. The WSRmax problem for MAC
can also be solved by extending this approach. First, the
Lagrangian associated with the optimization problem (4) is
defined over the domain D = {pnk : pnk ≥ 0,∀n, k} as

L({pnk},λ, {πn}) =
K∑

k=1

N∑
n=1

µk log2

(
1 +

pnkg
(πn)
nk

Γ

)

−
K∑

k=1

λk

(
N∑

n=1

pnk − Pk

)
, (5)



where λ = [λ1, · · · , λK ] denotes the Lagrange multipliers
with non-negative values. The Lagrange dual function is:

f(λ) = max
{pnk},πn

L({pnk},λ, {πn}) =
N∑

n=1

fn(λ)+
K∑

k=1

λkPk,

(6)
where

fn(λ) = max
{pnk},πn

K∑
k=1

(
µk log2

(
1 +

pnkg
(πn)
nk

Γ

)
− λkpnk

)
.

(7)
(6) provides upper bounds on the weighted sum-rate for any
λk ≥ 0. For a fixed λ, the maximization of (6) is equivalent
to optimizing N subproblems in (7) separately. Given an
ordering πn, the objective in (7) is concave in {pnk}. Thus,
the PSD allocation on user k’s tone n can be represented as
the following waterfilling equation.

pnk =

(
γk − Γ

g
(πn)
nk

)+

, (8)

where γk = µk/(log 2 · λk) denotes the water-level for the
k-th user and (x)+ = max(x, 0). By assigning this power
distribution, the solution to (7) can be obtained by searching
all K! orderings. That is,

fn(λ) = max
πn




K∑
k=1


µk

(
log2

(
γkg

(πn)
nk

Γ

))+

−λk

(
γk − Γ

g
(πn)
nk

)+



 . (9)

Therefore, the optimal ordering on tone n for a fixed λ is

πn,opt = arg max
πn




K∑
k=1


µk

(
log2

(
γkg

(πn)
nk

Γ

))+

−λk

(
γk − Γ

g
(πn)
nk

)+



 . (10)

After solving (9) for all n, f(λ) can be derived from (6).
Finally, the dual optimal solution is obtained by minimizing
f(λ) over non-negative λk’s. Though f(λ) is convex, a search
method based on gradient is infeasible since the dual function
is not differentiable. However, the search direction for non-
differentiable functions can be found by using subgradient-
type methods. A vector d is a subgradient of f(λ) at λ if for
any λ′ � 0, f(λ′) ≥ f(λ) +

∑K
k=1 dk(λ′

k − λk). Suppose λ∗

minimize f(λ), the sub-gradient at any λ indicates that λ∗ can
not lie in the half-space {λ′ :

∑K
k=1 dk(λ′

k − λk) ≥ 0}. The
next proposition shows a sub-gradient for the above problem.

Proposition 1: For WSRmax with a dual objective f(λ) in
(6), the following choice of d is a subgradient for f(λ):

dk = Pk −
N∑

n=1

p∗nk k = 1, · · · ,K, (11)

where {p∗nk} and {π∗
n} optimize the maximization problem

in the definition of f(λ).
Proof: Since {p∗nk} and {π∗

n} are already in D, for any
λ′ � 0,

f(λ′) ≥ L({p∗nk},λ′, {π∗
n})

= f(λ) +
K∑

k=1

(
Pk −

N∑
n=1

p∗nk

)
(λ′

k − λk). (12)

The ellipsoid method is one of efficient sub-gradient search
methods for updating λ. This method is shown to converge
in O(m2) iterations where m is the number of variables [9].
If each user’s converged sum power is equal to individual
power constraint, the duality gap is zero and the obtained dual
solution is in fact globally optimal. According to Theorem 1
in [10], in multi-tone applications, as the number of tones
goes to infinity, many resource allocation problems such as
WSRmax satisfy the time-sharing property and the duality gap
converges to zero. [11] corroborates this argument by showing
that for the downlink orthogonal frequency division multiple
access (OFDMA) systems, the duality gap for WSRmax is vir-
tually zero with only tens of tones. Thus, in DSL systems with
hundreds or thousands of tones, the duality gap is expected to
completely vanish, which validates the dual approach.

B. Modified Greedy Algorithm

[12] presents a greedy search algorithm for sum-rate maxi-
mization in MIMO BC using precoding based on zero-forcing
dirty paper coding (ZF-DPC). ZF-DPC is also based on QR
decomposition of the channel matrix and can be considered
as the dual of ZF-GDFE for MAC. To efficiently find order-
ings maximizing the sum-rate, greedy algorithm reduces the
search domain by successively selecting the user with the best
channel SNR. However, the extension of greedy algorithm
to the general weighted sum-rate maximization problem is
a nontrivial open problem. In this subsection, we propose
a modified greedy algorithm (MGA), which very efficiently
finds a good suboptimal solution to WSRmax in upstream
vectored DSL systems using ZF-GDFE. By combining the
greedy algorithm with Lagrange dual decomposition, MGA
significantly reduces complexity of the subproblem (7).

In MGA, the ordering is determined successively, i.e. from
πn1,MGA to πnK,MGA, based on which user can help the maxi-
mization of (7) most. At the beginning of MGA, the user with
highest priority (last in decoding) in the QR decomposition
is selected. The criterion is to find the user with the largest
µk log2

(
1 + pnkg

(πn)
nk /Γ

)
− λkpnk. Since the waterfilling

solution (8) is also applicable, the selection becomes:

πn1,MGA = arg max
k


µk


log2


γk

(
g
(πn)
nk |πn1=k

)
Γ






+

−λk


γk − Γ(

g
(πn)
nk |πn1=k

)



+
 . (13)



Note that g
(πn)
nk |πn1=k is completely determined by knowing

πn1 = k and is equal to the square of norm of the k-th column
of the equivalent channel matrix H̃n.

After finding the user with the highest priority, the House-
holder matrix Q1 corresponding to this user can be computed.
The subchannel gains for all the users become the square of
the norm of Q1 times the equivalent channel. The user with
the second highest priority is then determined by the similar
argument. In general, at the i-th step, Qi−1 and the following
subchannel gains have to be calculated before πni,MGA is
determined:

g
MGA(i)
nk = g

(πn)
nk | πni=k

πnj=πnj,MGA∀j<i
,

=
∣∣∣∣∣∣A(i:K,k)

∣∣∣∣∣∣2
∀ k /∈ {πn1,MGA, · · · , πn(i−1),MGA}, (14)

where A = Qi−1 · · ·Q1H̃n and A(i:K,k) represents the vector
formed by the i-th to K-th elements on the k-th column of A.

Thus, the ordering and PSD is assigned by:

πni,MGA = arg max
k


µk

(
log2

(
γkg

MGA(i)
nk

Γ

))+

−λk

(
γk − Γ

g
MGA(i)
nk

)+

 , (15)

and

pnk =

(
γk − Γ

g
(πn,MGA)
nk

)+

. (16)

Furthermore, Qn,πn,MGA , Dn,πn,MGA , and Gn,πn,MGA are ob-
tained by (3) after the search.

To summarize, the whole problem can be solved in a
suboptimal sense by the following algorithm:

Select an initial λ
While PSD for individual user does not converge, do

For n = 1 to N
For i = 1 to K

Calcualte Householder matrix Qi−1 if i �= 1
Find g

MGA(i)
nk according to (14)

Determine πni,MGA and pnk according to
(15) and (16)

Update λ by the ellipsoid method based on
the sub-gradient in (11)

End While

At each iteration, the PSD assignments, {pnk}, given by
the suboptimal decoding orders, πn,MGA, deviate from those
given by the optimal decoding orders, πn,opt. As a result,
the sub-gradient in MGA is only an approximation of the
true sub-gradient in (11). Fortunately, in all of the examples
tested, it is observed that the weighted sum-rate achieved by
MGA is very close to the optimal and all individual power
constraints are active as well.

It also worth mentioning that instead of selecting one best
user, it is also possible for MGA to select L users at a time. At
i-th iteration, [πn,(i−1)L+1,MGA, · · · , πn,iL,MGA] is determined
by searching all (K−L(i−1))!

(K−Li)! possible permutations of the users
with unassigned orderings.

C. Complexity

The complexity of the ellipsoid method grows with the
square of the number of variables, so O(K2) iterations are
needed no matter optimal search or MGA is used. Since N
subproblems (7) have to be solved, the overall computational
complexity is O(NK2) times the complexity of solving (7).

For optimal search (or equivalently MGA with L = K),
each subproblem requires a search of K! orderings, and
for each ordering a summation of K terms is done. There-
fore, the overall complexity of solving this problem becomes
O(NK3K!). Moreover, the search in (9) requires the informa-
tion of all g

(πn)
nk . All subchannel gains are stored in memory

and be retrieved at every iteration. The desired memory size
is then equal to BNKK! bits, where B is the number of bits
required to store a subchannel gain. If one chooses to reserve
the memory by calculating QR decompositions inside the
subproblem repeatedly at every iteration, this would produce
K3 more computational complexity. These properties make
the implementation of this search infeasible, especially when
K is large.

On the other hand, when L = 1, selecting the best user in
MGA does not increase the order of the complexity. Hence, the
complexity of MGA is the same as that of QR decomposition,
O(K3). Considering all tones and outer loop, O(NK5) exe-
cutions are required to find the suboptimal solution. The sig-
nificant reduction of computational complexity makes MGA a
practical scheme for vectored DSL. Moreover, no reservation
of memory is needed for storing the subchannel gains since
the QR decomposition is done inside the subproblem. As L
increases, the weighted sum-rate also increases but so does
the computational complexity. An example in the next section
shows how this tradeoff works.

IV. SIMULATION RESULTS

In Fig. 1, the achievable rate regions for a very-high-bit-rate
DSL (VDSL) system with two users are simulated. The loop
length of the first user is 300 feet while it of the second user
is 3 Kft. 2048 complex tones each with subchannel bandwidth
4.3125kHz, upstream transmit power 14.5 dBm, carrier mask,
and PSD mask are assigned according to [13]. Although the
PSD mask introduce N more constraints to the optimization
problem, it can be applied to the search domain D and the
PSD in (8), without changing the main body of the algorithm.
One T1 disturber is introduced as the common alien noise
source. To get the noise covariance matrices, the correlation
coefficients are assigned to 0.99 for all tones. −140dBm/Hz
white noise is also added to all users. And an SNR gap
of 12dB, which may combine coding gain and margin, is
assumed. There are total 4 regions in Fig. 1. Three of them
are obtained by ZF-GDFE with different strategies of ordering
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Fig. 1. Achievable rate region for ZF-GDFE

search. The dashed curve shows the rate region of using the
same ordering for all tones, i.e. π1 = π2 = · · · = πN .
Since there are only 2! rate-tuples, time-sharing is used to find
the achievable rate region. The remaining two ZF-GDFE rate
regions are obtained by applying optimal search and MGA
(L = 1), respectively. Other than those 3 achievable rate
regions, an outer bound containing three line segments, where
R1, R2, and sum rate are maximized, is provided as in [1]. It
can be seen that the region achieved by MGA is very close
to the optimal ZF-GDFE achievable rate region, and both are
strictly larger than the one using time-sharing of rates with
uniform ordering. The outer bound is loose in general, but
it is assured that in this environment the bound is tight when
R1 is greater than 33 Mbps and can be achieved by ZF-GDFE
whenever a good orderings is chosen. The achievable rate tuple
for zero-forcing linear equalizer (ZF-LE) [14] is also shown
in the figure. When noise is correlated, ZF-LE is far from
optimal and feeding back previous decisions is important.

In Table I, a four-user system with loop lengths 300 feet, 1
Kft, 2 Kft, and 3 Kft is simulated. The parameters are selected
the same as in the previous example. The weight for WSRmax
is selected at random. And one of the 4! rate tuples using the
same ordering for all tones is selected for comparison. As
L and the computational complexity increases, the weighted
sum-rate also increases. Thus, the tradeoff between complexity
and weighted sum-rate can be verified.

In addition to higher weighted sum-rate, MGA can support
much larger number of rate tuples than only K! rate tuples
achieved by the same ordering on every tone. Though the
number of rate tuples can grow by time-sharing or frequency-
sharing multiple rate tuples, these methods substantially in-
crease the computational complexity. In order to obtain a
new rate tuple by time-sharing, NK! executions of QR de-
composition and KK! single-user waterfillings are required.
Moreover, possibly up to K! linear equations need to be solved
in determining each user’s time-sharing portion. Therefore,
higher achievable rates, a simpler implementation and more
flexible rate choices make MGA an advantageous scheme.

µ data rate L = 1 L = 2 L = 4 unform ZF-LE
ordering

µ1 = 0.424 R1 35.380 35.302 32.557 27.742 27.742
µ2 = 0.338 R2 27.681 27.377 25.157 28.567 23.156
µ3 = 0.566 R3 17.974 18.055 17.600 14.244 11.412
µ4 = 0.621 R4 4.052 4.256 8.477 11.331 3.734

WSR 37.047 37.083 37.533 36.516 28.367

TABLE I

SIMULATION RESULTS FOR A 4-USER SYSTEM

V. CONCLUSION

In upstream vectored DSL systems with ZF-GDFE, different
decoding order at each tone can substantially affect each user’s
achievable rate. For a given weighted sum-rate maximization
problem, this paper employs Lagrange dual decomposition to
achieve linear complexity in the number of tones. To find
the optimal orderings, exhaustive search over all possible K!
orderings is required at each maximization of Lagrangian. In
this paper, proposed MGA avoids the exhaustive search by
maximizing individual terms of the subproblem iteratively.
The search complexity is significantly reduced, while the loss
on the weighted sum-rate is very small. With large number
of vectored DSL lines in the upstream, MGA emerges as a
promising algorithm for its high numerical efficiency.
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