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Abstract— For multi-user orthogonal frequency division mul-
tiplexing (OFDM) systems, efficient optimal rate and power
allocation algorithms are presented via geometric programming
(GP), a special form of convex optimization problem for which
very efficient interior point methods exist. Both multiple access
channel (MAC) and broadcast channel (BC) are considered and
the following two resource allocation problems are of main inter-
est: weighted sum-rate maximization (WSRmax) and weighted
sum-power minimization (WSPmin). Utilizing degradedness of
BC on each tone, WSRmax and WSPmin in the BC can be all
formulated as GP. By using the duality relation between MAC
and BC, it is shown that the above resource allocation problems
in the MAC can be converted into GP problems as well. This
GP perspective of multi-user OFDM resource allocation problems
provides numerical efficiency as well as strong scalability for any
additional constraints of GP form.

I. INTRODUCTION

The architecture of many communication networks falls
into one of two categories: multiple access channel (MAC)
or broadcast channel (BC) [1]. Examples of the MAC and
BC are the uplink and downlink of a wireless LAN network,
respectively. In the uplink, a number of mobile terminals
send independent information to the access point (AP), and
in the downlink, the AP broadcasts messages, which are often
independent, to each mobile terminal (MT). With dramatically
increasing demand in high data rate services, orthogonal
frequency division multiplexing (OFDM) has drawn much
attention as a promising technique for the next generation
wireless communication systems. With perfect channel side
information (CSI) at both base station (BS) and MTs, as the
number of tones goes to infinity, OFDM is shown to achieve
the capacity of Gaussian BC and MAC with inter-symbol
interference (ISI), or with frequency-selective fading.

To achieve the channel capacity, superposition coding and
successive decoding at the BS can be utilized in downlink
and uplink OFDM systems, respectively [1]. By using such
techniques, OFDM systems can dynamically allocate com-
munication resources like power and rate on each tone in
order to satisfy various targets such as maximization of system
throughput or minimization of total transmit power. With each
user’s target data rate fixed, power minimization reduces inter-
cell interference levels in both uplink and downlink as well as
extends the battery life of each MT in the uplink.
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Over the last decade, much progress has been made on
resource allocation for scalar Gaussian MAC and BC with ISI,
where each MT and the BS are equipped with a single antenna.
In [2], Cheng and Verdu characterized the capacity region of
Gaussian MAC with ISI, and showed that the optimal input
power spectral densities can be viewed as a generalization
of the single-user water-filling spectrum. However, the lack
of efficient numerical algorithms triggered much research to
solve resource allocation problems efficiently by utilizing the
inherent structure of the Gaussian MAC. A breakthrough was
made by Tse and Hanly [3], where polymatroid structure
was used to characterize the capacity region of fading MAC,
and marginal utility functions were introduced to develop
algorithms that have strong greedy flavors. These results can
be directly extended to Gaussian MAC and BC with ISI [4].

Recently, [5] proposed an efficient algorithm applicable to
sum-rate maximization in Gaussian OFDM MAC by utiliz-
ing iterative water-filling (IWF) technique, which was first
introduced for power control in interference channels [6].
The application of IWF has been further extended to sum-
power minimization problem in Gaussian OFDM MAC by
[7]. However, for general weighted sum-rate maximization
or weighted sum-power minimization problems in Gaussian
OFDM MAC and BC, finding numerical algorithms with
lower complexity still remains non-trivial. Also, because of
the increasing demand in multi-media services such as video
and audio streaming, real-time and non real-time traffic often
coexist in the network. Thus, the constraints of resource
allocation problems become more complicated, which requires
developing new algorithms.

This paper introduces yet another powerful tool, geometric
programming (GP), into the family of numerical algorithms
for various resource allocation problems in OFDM MAC and
BC. GP is a special case of convex optimization for which
very efficient interior point methods have been developed [8].
GP has a variety of applications in communication systems
[9], which include the cross-layer resource allocation [10].
This paper primarily focuses on the following two resource
allocation problems in OFDM MAC and BC: weighted sum-
rate maximization (WSRmax) and weighted sum-power min-
imization (WSPmin). By using the “degradedness” of the BC
on each tone, as well as duality relation between MAC and
BC [11], this paper shows that all these resource allocation
problems in the OFDM MAC and BC can be formulated



by GP. This GP perspective of multi-user OFDM resource
allocation problems provides numerical efficiency as well as
strong scalability for any additional constraints of GP form.

Notation: Vectors are bold-faced. R
n denotes the set of

real n-vectors and R
n
+ denotes the set of nonnegative real

n-vectors. The symbol � (and its strict form �) is used to
denote the componentwise inequality between vectors: x � y
means xi ≥ yi, i = 1, 2, · · · , n.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, downlink and uplink OFDM system models
are described as well as the WSRmax and WSPmin problems
are mathematically formulated. This formulation considers a
transmission system with K users and N tones where the BS
and each user are equipped with a single antenna. It is assumed
that the ISI is completely removed by exploiting OFDM
techniques, i.e. the frequency response is flat within each tone.
In the downlink case, total transmit power is constrained to
Ptot, and in the uplink case, each user has individual power
constraint Pi where i is the user index.

On user k’s tone n, the channel gain is denoted by Hk(n),
and a zero-mean independent and identically distributed (i.i.d.)
Gaussian noise with variance σ2

k(n) is added at the receiver
part. For the uplink case, σk(n) is replaced with σ(n) since BS
is the only receiver. The channel signal-to-noise ratio (SNR)
for user k’s tone n is defined as gk(n) = |Hk(n)|2/σ2

k(n), and
let rk(n) and pk(n) denote rate and power allocation on user
k’s tone n. This paper assumes perfect CSI at both BS and
each user, which enables BS to dynamically allocate power and
rate on each tone according to channel conditions. Multiple
users are allowed to share each tone, and the BS performs
superposition coding in the downlink and successive decoding
in the uplink. Fig. 1 summarizes OFDM BC and MAC models.
Formulations of each resource allocation problem in OFDM
BC and MAC are presented in the next two subsections.

A. Resource Allocation Problems for OFDM BC

In the downlink, the BS encodes multi-user messages using
superposition coding with a proper encoding order. Also, each
receiver performs successive decoding with a decoding order
identical to the encoding order. It can be assumed that the
ordering is the same on every tone, which is shown to be
sufficient for achieving the overall capacity region [12]. Let
π(·) denote the message encoding order at the BS where
π(i) < π(j) means that user i’s message is encoded earlier
than user j’s message. With superposition coding, one user
can remove the interference caused by other users’ messages
encoded earlier. Therefore, the rate for user k’s tone n is
represented as

rk(n) =
1
2

log2

(
1 +

pk(n)gk(n)
1 + gk(n)

∑
i:π(i)>π(k) pi(n)

)
. (1)

First, the WSRmax problem can be formulated as follows.

maximize
K∑

k=1

µk

N∑
n=1

rk(n)

Fig. 1. (a) OFDM BC model. (b) OFDM MAC model.

subject to
K∑

k=1

N∑
n=1

pk(n) ≤ Ptot

pk(n) ≥ 0 ∀k and ∀n, (2)

where µk ≥ 0 is the weight on rate assigned to user k.
Under the total power constraint, this problem’s solution is the
optimal power and rate allocation that maximizes the weighted
sum-rate. The boundary surface of achievable rate region in
BC or MAC can be traced by solving WSRmax for all possible
weight vectors.

A dual version of WSRmax is WSPmin, which finds the
rate and power allocation that minimizes the weighted sum-
power with minimum rate constraints on each user. In the
downlink, transmit power comes from a single source at the
BS. Thus, sum-power minimization (SPmin) problem is of
particular interest in BC, which is formulated as

minimize
K∑

k=1

N∑
n=1

pk(n)

subject to
N∑

n=1

rk(n) ≥ Rk ∀k

pk(n) ≥ 0 ∀k and ∀n, (3)

where Rk is user k’s minimum rate constraint.

B. Resource Allocation Problems for OFDM MAC

In the uplink case, the BS performs successive decoding
with interference cancellation, in which each user’s message is



successively decoded and subtracted from the received signal.
As in the downlink, the same ordering can be assumed over
the tones without losing achievable rates. Let π(·) denote the
decoding order at the BS where π(i) < π(j) means that user
i’s message is decoded earlier than user j’s message. Then,
the rate for user k’s tone n is given by

rk(n) =
1
2

log2

(
1 +

pk(n)gk(n)
1 +

∑
i:π(i)>π(k) pi(n)gi(n)

)
. (4)

Using this definition of rk(n), formulation of WSRmax in
the MAC is the same as in the BC except power constraint.
Total power constraint is considered in the BC, but each user
has an individual power constraint in the MAC. Thus, total
power constraint,

∑K
k=1

∑N
n=1 pk(n) ≤ Ptot is replaced with

individual power constraints,
∑N

n=1 pk(n) ≤ Pk for all k in
WSRmax for the MAC.

Compared with SPmin in the BC, WSPmin in the MAC
includes the weight on each user’s power in the objec-
tive. Therefore,

∑K
k=1

∑N
n=1 pk(n) in (3) is replaced with∑K

k=1 λk

∑N
n=1 pk(n) where λk ≥ 0 is the weight on power

assigned to user k. Other than this change in the objective, all
the constraints are identical in both cases.

III. OPTIMAL RESOURCE ALLOCATION VIA GEOMETRIC

PROGRAMMING

In this section, WSRmax and WSPmin problems for down-
link and uplink OFDM systems are formulated as geomet-
ric programming (GP), a convex optimization problem with
efficient algorithms to obtain the globally optimal solution.
GP uses monomial and posynomial functions. A monomial
function has the form of h(x) = cxa1

1 xa2
2 · · ·xan

n , where
x � 0, c ≥ 0 and ai ∈ R. A posynomial is a sum of
monomials f(x) =

∑
k ckxa1k

1 xa2k
2 · · ·xank

n . Then, GP takes
the following form,

minimize f0(x)
subject to fi(x) ≤ 1 (5)

hj(x) = 1,

where f0 and fi are posynomials and hj are monomials.
Although this is not a convex optimization problem, with a
change of variables: yi = log xi and bik = log cik, we can
convert it into a convex form as the following:

minimize p0(y) = log
∑

k

exp(aT
0ky + b0k)

subject to pi(y) = log
∑

k

exp(aT
iky + bik) ≤ 0

qj(y) = aT
j y + bj = 0 (6)

A variety of efficient interior point methods have been devel-
oped to quickly find the optimal solution of (6) [8].

GP formulation of OFDM resource allocation problems is
closely related with the message encoding and decoding order.
According to [12], the optimal ordering for various OFDM
resource allocation problems is identical over all the tones,

which implies that K! possible orderings exist regardless
of the number of tones. In the downlink, the channel at
each tone forms a degraded broadcast channel where the
largest rate region is achieved by encoding the user with
higher channel SNR later [1]. The next subsection shows that
after determining this tone-dependent ordering on every tone,
WSRmax and SPmin in the BC can be converted into GP.
Clearly, this ordering cannot perform worse than any other
orderings in the above problems. Thus, the optimal rate and
power allocation obtained by solving GP must conform to the
optimal ordering that is one of K! tone-independent orderings.
By using the duality relation between BC and its dual MAC,
WSRmax and WSPmin in the MAC can be also solved via
GP, which will be shown in the following subsections.

A. GP Formulations for OFDM BC

In the downlink OFDM systems, the achievable rate region
of tone n can be represented as

CBC

(
m(n),

K∑
k=1

pk(n)

)
= {rπn(i)(n) : rπn(i)(n) ≤

1
2

log

(
1 +

pπn(i)(n)
mπn(i)(n) +

∑
j<i pπn(j)(n)

)
, i = 1, · · · ,K}, (7)

where the effective noise variance of user k’s tone n, mk(n) =
1/gk(n), m(n) = [m1(n), · · · ,mK(n)]T , and πn(·) is the
permutation at tone n such that mπn(1)(n) < mπn(2)(n) <
· · · < mπn(K)(n). That is, πn(·) is in order of decreasing
channel SNRs on tone n, which is reverse to the encod-
ing order providing the largest rate region. When r(n) =
[r1(n), · · · , rK(n)]T is on the boundary of the capacity region,
solving pπn(i)(n)’s in terms of the rate vector r(n) yields the
following equations.

l∑
i=1

pπn(i)(n) =
l∑

i=1

(
mπn(i)(n) − mπn(i−1)(n)

)
(8)

× exp


2 ln 2

l∑
j=i

rπn(j)(n)


− mπn(l)(n), l = 1, · · · ,K

where mπn(0)(n) ≡ 0. As shown in [4], (7) equals

CBC

(
m(n),

K∑
k=1

pk(n)

)
= {rπn(i)(n) :

K∑
i=1

(
mπn(i)(n) − mπn(i−1)(n)

)
exp


2 ln 2

K∑
j=i

rπn(j)(n)


 (9)

≤
K∑

k=1

pk(n) + mπn(K)(n), ri(n) ≥ 0, i = 1, · · · ,K}.

From above relations, WSRmax problem given in (2) can
be converted into the following GP.

minimize log exp

(
−

K∑
k=1

µk

N∑
n=1

rk(n)

)



subject to log exp (−rk(n)) ≤ 0, ∀ k, n

log
N∑

n=1

K∑
k=1

(
mπn(k)(n) − mπn(k−1)(n)

Ptot +
∑N

l=1 mπl(K)(l)

)

× exp

(
2 ln 2

K∑
i=k

rπn(i)(n)

)
≤ 0, (10)

where the optimization variables are rk(n)’s. Given the opti-
mal rates, the optimal power allocation is derived from (8).

For SPmin in (3), the optimal ordering on each tone is also
the one providing the largest rate region, which enables the
following GP formulation of SPmin.

minimize log
N∑

n=1

K∑
k=1

(
mπn(k)(n) − mπn(k−1)(n)

)

× exp

(
2 ln 2

K∑
i=k

rπn(i)(n)

)

subject to log exp (−rk(n)) ≤ 0, ∀ k, n (11)

log

(
exp(Rk) exp(−

N∑
n=1

rk(n))

)
≤ 0 ∀ k

B. GP Formulations for OFDM MAC

By using duality relation between BC and MAC, the results
obtained for the downlink can be extended for GP formulations
of WSRmax and WSPmin in the uplink. Given a BC, its dual
MAC has the channel SNRs and a total power constraint that
are the same as in the original BC. [11] showed that any
points in the BC capacity region can be also achieved in its
dual MAC if the decoding order in the dual MAC is reverse
to the encoding order in the BC. Since the total power for
both channels is identical, the rate allocation minimizing sum-
power in the MAC can be solved via GP in its dual BC by
using (11). Note that from the above argument on ordering,
the decoding order on tone n in the MAC is equal to the
permutation πn(·) defined in the previous subsection. Once
the optimal rate allocation for SPmin is obtained by solving
GP, the corresponding power allocation in the MAC can be
determined from the following equation.

pπn(k)(n) =
(22rπn(k)(n) − 1) · 22

∑K
i=k+1 rπn(i)(n)

gπn(k)(n)
, ∀ k, n (12)

where rπn(K+1)(n) ≡ 0 for all n. This equation is derived by
applying the tone-dependent optimal ordering to (4).

In the uplink case, each user has different power source
so that WSPmin problem is more useful than SPmin. With
general non-equal weights, the tone-dependent optimal order-
ing can be different from that defined in SPmin. However,
by utilizing channel scaling method, the optimal ordering for
WSPmin in the MAC can be easily determined, and this
problem becomes solvable via GP as well. Define the scaled
power p′k(n) = λkpk(n) where λk is the weight on user
k’s power. Then, close observation of (4) reveals that if the
channel SNR is also scaled such that g′k(n) = gk(n)/λk, the
mutual information in terms of scaled powers and channel

SNRs remains the same as that before scaling [2]. Therefore,
we can convert WSPmin in the MAC into SPmin in terms of
p′k(n) and g′k(n), which is solved via GP.

GP formulation of WSRmax for the MAC is not straight-
forward compared to other problems so far. The optimal tone-
independent ordering is automatically determined from the
given weight vector, but this ordering doesn’t guarantee the
feasibility of GP formulations because of the individual power
constraints. This paper shows that by employing Lagrange dual
decomposition, WSRmax can be solved via iterative GP. First,
convert WSRmax in the MAC to the minimization problem by
multiplying −1 and taking the exponential on the objective.
Lagrangian of this problem is defined over domain D as

L({pk(n)}, {rk(n)},λ) = exp

(
−

K∑
k=1

µk

N∑
n=1

rk(n)

)

+
K∑

k=1

λk

(
N∑

n=1

pk(n) − Pk

)
, (13)

where λ � 0 and the domain D is defined as the set of all
non-negative pk(n)’s for all k and n. Then, the Largrange dual
function is represented as

f(λ) = min
{pk(n)},{rk(n)}∈D

L({pk(n)}, {rk(n)},λ). (14)

For a fixed λ, the minimization problem in (14) can be
formulated via GP as the following. First, define the scaled
power p′k(n) = λkpk(n), and the scaled channel SNR
g′k(n) = gk(n)/λk. Then, in terms of p′k(n) and g′k(n), the
minimization of Lagrangian in (13) is equivalent to maxi-
mizing the weighted sum-rate and minimizing the sum-power
simultaneously. In the dual BC, the optimal encoding order
on each tone for WSRmax and SPmin is equal to the order of
increasing scaled channel SNR. From this reasoning, (14) can
be converted into GP as follows.

minimize log

(
exp

(
−

K∑
k=1

µk

N∑
n=1

rk(n)

)

+
N∑

n=1

K∑
k=1

(
m′

π′
n(k)(n) − m′

π′
n(k−1)(n)

)

× exp

(
2 ln 2

K∑
i=k

rπ′
n(i)(n)

))

subject to log exp (−rk(n)) ≤ 0, ∀ k, n (15)

where m′
k(n) = 1/g′k(n) and π′

n(·) is the permutation at tone
n such that m′

π′
n(1)(n) < m′

π′
n(2)(n) < · · · < m′

π′
n(K)(n), or

π′
n(·) is in order of decreasing scaled channel SNRs on tone

n. With the optimal rate and power allocation obtained by this
GP, f(λ) can be derived from (13).

Finally, the dual optimal solution is obtained by maximizing
f(λ) over λ � 0. Since the original WSRmax in the MAC
is a convex optimization problem, the duality gap is zero,
which means that the dual optimal objective always equals
the primal optimal objective [8]. This maximization can be
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done by iterating the following steps until each user’s power
converges to individual power constraint: find f(λ) via GP for
a fixed λ, and update λ to the direction of increasing f(λ).
The update of λ can be efficiently done by using the ellipsoid
method, which is a type of sub-gradient search methods for
non-differentiable functions. The ellipsoid method is shown
to converge in O(n2) iterations where n is the number of
variables [8]. A sub-gradient for f(λ) required in the ellipsoid
method is dk =

∑N
n=1 p∗k(n) − Pk for all k, where {p∗k(n)}

optimizes the minimization problem in the definition of f(λ).

IV. NUMERICAL RESULTS AND DISCUSSION

This section provides some simulation results generated
using GP formulations for multi-user OFDM resource allo-
cation problems. Fig. 2 presents two achievable rate regions
of OFDM BC and MAC where N = 64, K = 2, Ptot =
NK = 128 in BC, P1 = P2 = Ptot

2 = 64 in MAC. Channel
SNRs are assumed to be i.i.d. exponentially distributed with

each tone’s average SNR of 10 dB. The same set of channel
SNRs are used for both BC and MAC. In Fig. 2, boundary
points of rate regions are obtained by solving WSRmax via GP
for all possible weight vectors. Since P1 + P2 = Ptot as well
as both OFDM BC and MAC have the same channel SNRs,
duality relation holds between these two channels. Therefore,
both rate regions always share at least one boundary point,
which can be observed in Fig. 2.

Fig. 3 illustrates the power region for the same OFDM MAC
as in Fig. 2, with the target rate vector of R = [2.05 2.19]T

bits per dimension. Boundary points of power region are
characterized by solving WSPmin via GP for all possible
weight vectors. The given target rate vector is a boundary
point shared by both OFDM BC and MAC in Fig. 2. Thus, as
in Fig. 3, the minimum sum-power required to support these
target rates is equal to the total power used in Fig. 2

V. CONCLUSION

In downlink and uplink OFDM systems, various resource
allocation problems are formulated as geometric programming
(GP), a special form of convex optimization that can be
solved very efficiently. This paper presents GP formulations
of two major problems: weighted sum-rate maximization
and weighted sum-power minimization. Without violating GP
structure, a variety of rate constraints can be added, which is
essential for satisfying each user’s various quality of service
(QoS) requirement. In multi-user OFDM systems, GP emerges
as a powerful tool that provides high numerical efficiency as
well as strong scalability.
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