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Abstract— Queue Proportional Scheduling (QPS) assigns each
user a data rate proportional to the number of packets (or bits) in
that user’s queue. This paper analyzes stability, delay and fairness
properties of QPS in a Gaussian broadcast channel (BC). QPS is
shown to achieve throughput optimality, and guarantee fairness
as well as different priorities among users in terms of average
queuing delay. One well known throughput optimal policy for
broadcast channels is Maximum Weight Matching Scheduling
(MWMS) that maximizes the inner product of the queue state
vector and the achievable rate vector. Simulation results with
Poisson packet arrivals and exponentially distributed packet
lengths demonstrate that QPS provides a significant decrease
in average queuing delay compared to MWMS in a Gaussian
BC.

I. INTRODUCTION

Optimal allocation of communication resources such as
the transmit power and data rate is a central problem in
multi-user communication systems. With perfect channel state
information (CSI) at both the transmitter and receivers, each
user’s transmit power and rate can be determined based on the
channel capacity region. This information theoretic approach
to resource allocation, which ignores the randomness in packet
arrivals and queuing, cannot guarantee stability of queuing
systems. In [1], the network capacity region is defined as a
set of all packet arrival rate vectors for which it is possible to
keep every queue length finite. For the bursty input traffic,
it is generally quite difficult to estimate the packet arrival
rates. Thus, resource allocation solely based on CSI is unable
to properly update rate allocation according to the dynamics
of the input traffic. As a result, even for a packet arrival
rate vector within the network capacity region, some users’
queue backlogs may become unacceptably large, causing long
queuing delay as well as more frequent packet loss.

To account for queuing parameters, a cross-layer approach
to resource allocation has been recently proposed in [2],
[3], [4] and the references therein. These works show that
consideration of both CSI and queue state information (QSI)
allows the entire network capacity region to be achieved in
broadcast and multiple-access channels. A scheduling policy
that achieves the network capacity region is called throughput
optimal. One well-known throughput optimal scheduling al-
gorithm is Maximum Weight Matching Scheduling (MWMS)
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that maximizes the inner product of the queue state vector and
the achievable rate vector [5][6]. This MWMS policy is proved
to be throughput optimal for both Gaussian broadcast channels
(BC) and multiple-access channels (MAC) [1], [2]. Recent
applications of MWMS can be also found in OFDM downlink
systems [7] and MIMO downlink systems [3], [4]. For the
Gaussian MAC, [8] shows that MWMS actually minimizes the
average queuing delay if symmetric channels and equal packet
arrival rates are assumed. This property is a consequence of
the polymatroidal structure of Gaussian MAC capacity region
[9]. However, for the Gaussian BC, there are no such structural
properties in the capacity region so that even with symmetry
assumptions, MWMS cannot guarantee the minimum average
queuing delay.

On the other hand, [10] proposes a new throughput optimal
scheduling policy in Gaussian broadcast channels. It is a type
of minimum draining time policy introduced in [11]. At each
scheduling period, this algorithm allocates each user a data
rate on the boundary of capacity region such that the ratio of
each user’s rate to the queue length is identical for every user.
In other words, it assigns the rate vector that is proportional
to the queue state vector as well as on the boundary of
the capacity region. This paper calls the above scheduling
policy Queue Proportional Scheduling (QPS). While MWMS
has been widely applied and studied, properties of QPS are
relatively unknown except its throughput optimality. This
paper further investigates delay and fairness properties of QPS
in a Gaussian BC.

In [10], a fluid model is utilized to prove throughput
optimality of QPS. In this paper, we present another proof
for throughput optimality without considering fluid models.
Though this model is simple to analyze, our direct approach
provides some insights on fairness property of QPS in terms of
average queuing delay, and it eventually reveals that QPS has a
capability of arbitrarily scaling the ratio of each user’s average
queuing delay. Moreover, this paper numerically evaluates
and compares average queuing delays of both MWMS and
QPS with Poisson packet arrivals and exponentially distributed
packet lengths. In a Gaussian BC, QPS is demonstrated
to provide a substantial decrease in average queuing delay
compared to MWMS.

The organization of this paper is as follows: Section II
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describes the model of Gaussian broadcast channels and
queuing systems. QPS is introduced in Section III along with
the description of the conventional MWMS. In Section IV,
throughput optimality of QPS is proved and Section V presents
delay and fairness properties of QPS. Numerical results and
discussion are given in Section VI and Section VII provides
the concluding remarks.

Notation: Vectors are bold-faced. R
n denotes the set of

real n-vectors and R
n
+ denotes the set of nonnegative real n-

vectors. 1[·] is the indicator function which equals 1 if its
argument is satisfied, 0 otherwise.

II. SYSTEM MODEL

Consider a Gaussian broadcast channel with a single trans-
mitter sending independent messages to K users over two-
sided bandwidth 2W . At time t, the received signal of user i
is expressed as

Yi(t) = hiX(t) + ni(t), i = 1, · · · ,K (1)

where the transmitted signal X(t) is composed of K inde-
pendent messages, the complex channel gain of user i is
denoted by hi and ni(t)’s are independent and identically
distributed (i.i.d.) zero-mean Gaussian noise with power N0W .
The transmitter has a total power constraint of P . This multi-
user channel is a degraded broadcast channel whose capacity
region is well known [12]. Without loss of generality, it can
be assumed that W = 1 and |h1|≥|h2|≥···≥|hK |. Then, the
capacity region is defined as

C(P ) =
{

Ri : Ri ≤ log
(

1 +
αi|hi|2P

N0 + Σj<iαj |hi|2P
)

,

i = 1, 2, · · · ,K, where Σiαi = 1} (2)

where αi is the fraction of total transmit power used for
user i’s signal. This capacity region is convex since time-
sharing can be always performed, and each point is achieved
by superposition coding along with the successive interference
cancellation [12].

K data sources generate packets according to independent
Poisson arrival processes {Ai(t), i = 1, ···,K}, which are
stationary counting processes with limt→∞ Ai(t)/t = ai <
∞, and var(Ai(t + T ) − Ai(t)) < ∞ for T < ∞. The
packet lengths in bits {Xi} are i.i.d. exponentially distributed
and satisfy E(Xi) = µi < ∞, and E(Xi

2) < ∞. Packet
lengths are assumed independent of packet arrival processes.
User i’s arrival rate in bits is given by λi = aiµi. The
transmitter has K output queues assumed to have infinite
capacity. Packets from source i enter queue i and wait until
they are served to receiver i. The scheduling period is denoted
by Ts, which is assumed 1 without loss of generality. Over
each scheduling period, the achievable data rate vector should
be within the capacity region C(P ) defined in (2). At time t,
the number of bits waiting to be sent to user i is denoted
by Qi(t). A time interval [t, t + 1), with t = 0, 1, 2, · · · ,
is denoted by the time slot t , and Zi(t) is defined as the
number of arrived bits at user i’s queue during the time slot
t. Then, after a scheduling period, user i’s queue state vector

Fig. 1. (a) Block diagram of the queuing system and scheduler. (b) Gaussian
broadcast channel models.

is equal to Qi(t + 1) = max {Qi(t) − Ri(t), 0} + Zi(t). The
allocated rate vector at time slot t, R(t) is determined by the
queue-aware scheduler based on both queue states and channel
conditions. Fig. 1 summarizes the system model described
above. This paper adopts the stability definition of queuing
systems given in [1]. Thus, with the overflow function defined
by g(M) = lim supt→∞

1
t

∫ t

0
1[Qi(τ)>M ] dτ , queue i is said

to be stable if g(M) → 0 as M → ∞. An arrival rate
vector λ is stabilizable if there exists a feasible power and
rate allocation policy that keeps all queues stable. Also, [1]
defines the network capacity region as a set of arrival rate
vectors for which all queues can be stable. If a scheduling
method achieves the entire network capacity region, it is called
throughput optimal.

III. QUEUE PROPORTIONAL SCHEDULING (QPS)

First, MWMS takes the following form in a Gaussian BC.

RMWMS(t) = arg max
r∈C(P )

K∑
i=1

αiQi(t)ri (3)

where the achievable rate vector is r = [r1 r2 · · · rK ]T and
RMWMS(t) denotes the scheduled data rate vector at time
slot t by employing MWMS. For user i, Qi(t) is the queue
state at time t, ri is the achievable rate, and αi is the priority
weight which is equal to 1 if all users have the same priority.
From (3), this algorithm tends to allocate higher data rate
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Fig. 2. Capacity region of two user Gaussian BC, and rate vectors of QPS
and MWMS when the queue state vector is Q(t) (User 1’s SNR=19dB and
user 2’s SNR=13dB).

to the user with longer queue or better channel conditions.
By jointly considering queue and channel states, MWMS
achieves the entire network capacity region. A delay optimal
scheduling policy minimizes average queuing delay over all
K users, which is defined as limt→∞ E[ 1

K

∑K
i=1 Qi(t)] [8].

As mentioned in Section I, the delay optimal scheduling in
broadcast channels is still unknown.

This section introduces Queue Proportional Scheduling
(QPS), which has advantages over MWMS in the Gaussian
BC in terms of delay and fairness. At each scheduling period,
QPS assigns a maximum data rate vector which is proportional
to the current queue state vector. Assuming equal priority for
all users, the proposed algorithm can be formulated as follows.

RQPS(t) = Q(t)(max x)
subject to Q(t)x ∈ C(P ) and x ≤ 1. (4)

At time slot t, RQPS(t) is the rate vector scheduled by QPS
and the queue state vector in bits is denoted by Q(t) =
[Q1(t) Q2(t) · · · QK(t)]T . (4) is a convex optimization
problem with a globally optimal solution [13]. By utilizing
the degradedness of a Gaussian BC, it is shown in [14] that
(4) can be converted into geometric programming (GP) which
is a special form of convex optimization problems with very
efficient interior point methods.

For the queue state vector Q(t), Fig. 2 illustrates two
distinct rate vectors supported by MWMS and QPS. Two user
Gaussian BC is considered where user 1’s average signal-to-
noise ratio (SNR) is 19dB and user 2’s average SNR is 13dB.
Since both bandwidth and scheduling period are assumed 1,
bps/Hz is equivalent to bits/slot. In other words, the rate region
in Fig. 2 shows how many bits can be supported in each time
slot. The given queue state vector satisfies Q2(t) = 0.5Q1(t),
which results in RQPS(t) = [4.1 2.05]T and RMWMS(t) =
[6.34 0]T . From Fig. 2, it can be anticipated that as the queue
state changes, MWMS will exhibit more fluctuations in the

supported rate vector compared to QPS. According to queuing
theory, lower variance in service rate or arrival rate provide
smaller queuing delay [15]. Therefore, QPS can be expected
to have smaller average queuing delay than MWMS, which
will be elaborated in next sections.

IV. THROUGHPUT OPTIMALITY OF QPS

In this section, QPS is proved to be a throughput optimal
scheduling policy in the Gaussian BC. The next theorem shows
convergence property of the expected queue state vector, which
is crucial in proving throughput optimality as well as analyzing
fairness properties of QPS.

Theorem 1: Under the QPS policy in a Gaussian BC, as
t → ∞, the expected queue state vector conditioned on any
initial queue state, converges to a vector proportional to the
arrival rate vector.

Proof: Let q0 ∈ R
K
+ be the initial queue state vec-

tor. Consider time slot t and let Q(t) be equal to qt =
[qt,1 qt,2 · · · qt,K ]T . Without loss of generality, assume
qt,1 �= 0 and λ1 �= 0. Then, qt can be represented as
qt = w(t)[λ1, λ2 + ∆λ2, · · · , λK + ∆λK ]T where w(t) =
qt,1/λ1 and ∆λi ∈ R such that w(t)(λi + ∆λi) = qt,i for
i = 2, · · · ,K. The expectation of Q(t + 1) conditioned on
Q(t) = qt becomes

E [Q(t + 1)|Q(t) = qt] = qt + λ − RQPS(t). (5)

By definition of QPS, RQPS(t) = r(t) (qt/w(t)) where r(t)
equals max x subject to x (qt/w(t)) ∈ C(P ) and x ≤ w(t).
(5) can be converted into the following form.

E [Q(t + 1)|Q(t) = qt] = (w(t) − r(t) + 1) ×
[λ1, λ2 + γ(t)∆λ2, · · · , λK + γ(t)∆λK ]T (6)

where γ(t) = 1 − 1/(w(t) − r(t) + 1). If qt ∈ C(P ), then
w(t) = r(t); hence, γ(t) = 0 and E[Q(t+1)|Q(t) = qt] = λ.
Otherwise, w(t) > r(t) and γ(t) is strictly less than 1. Let
the angle between λ ∈ R

K
+ and x ∈ R

K
+ be denoted by θλ(x)

that is

θλ(x) = cos−1

(
λT x

‖λ‖2‖x‖2

)
, 0 ≤ θλ(x) ≤ π

2
. (7)

Since γ(t) < 1, θλ(qt) ≥ θλ(E[Q(t + 1)|Q(t) = qt]). This
paper assumes i.i.d. block fading and Poisson packet arrivals.
Therefore, each user’s queue state is the 1st order Markov
process, which allows the following relation to hold from
Chapman-Kolmogorov equations [16].

E [Q(t + 1)|Q(0) = q0] =
E [E [Q(t + 1)|Q(t)] |Q(0) = q0 ] for t = 1, 2, · · · (8)

Since θλ(Q(t)) ≥ θλ(E[Q(t + 1)|Q(t)]), the right-hand side
(RHS) of (8) has a direction closer to λ than E[Q(t)|Q(0) =
q0]. Consequently, the following relation is obtained.

θλ (E[Q(t)|Q(0) = q0]) ≥ θλ (E[Q(t + 1)|Q(0) = q0])
for t = 1, 2, · · · (9)
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Define an infinite sequence θt ∈ R+ such that θt =
θλ(E[Q(t)|Q(0) = q0]) for t = 1, 2, · · · . Since θt is mono-
tonically decreasing and θt ≥ 0, θt is a converging sequence.
In the RHS of (8), E[Q(t+1)|Q(t)] = Q(t)+λ−RQPS(t) =
(1 − c)Q(t) + λ where c = max r such that rQ(t) ∈ C(P )
and r ≤ 1. Therefore, (8) can be expressed as

E [Q(t + 1)|Q(0) = q0] =
(1 − c)E [Q(t) |Q(0) = q0 ] + λ, for t = 1, 2, · · · (10)

By the convergence property, as t → ∞, the angle between
E[Q(t)|Q(0) = q0] and E[Q(t + 1)|Q(0) = q0] becomes
zero. Therefore, to satisfy the equality in (10), when t → ∞,
the direction of these two vectors should converge to that of
λ. As a result, it can be concluded that limt→∞ θt = 0, which
completes the proof of the theorem.

Based on Theorem 1, throughput optimality of QPS policy
can be proved by using Lyapunov stability analysis [1].

Theorem 2: In a Gaussian BC, the QPS policy is throughput
optimal.

Proof: Assuming Ts = 1, the network capacity region
is equivalent to C(P ). Thus, it needs to be shown that for
any λ ∈ int C(P ) where int S denotes the interior of a set
S, the queue lengths for all users can be kept finite. First,
choose the Lyapunov function L(Q(t)) =

∑K
i=1 Qi(t). The

evolution of L(Q(t)) in one scheduling interval is L(Q(t +
1)) =

∑K
i=1 Qi(t + 1) =

∑K
i=1(max{Qi(t) − Ri(t), 0} +

Zi(t)). QPS always satisfies Qi(t) ≥ Ri(t) for i = 1, · · · ,K.
Therefore, max{ , 0} operation can be ignored. Without loss of
generality, assume that the initial queue state vector is Q(0) =
q0 where ‖q0‖∞ is sufficiently small. Then, conditioned on
Q(t) = qt, the expected drift of the Lyapunov function is

E [L(Q(t + 1)) − L(Q(t))|Q(t) = qt] =
K∑

i=1

(λi − (Ri(t)|Q(t) = qt)) . (11)

To prove throughput optimality of QPS, it is required to show
that as ‖qt‖∞ → ∞ , (11) becomes strictly negative for any
λ ∈ int C(P ). Since ‖q0‖∞ is sufficiently small and the bit
arrival process has finite mean and variance, ‖qt‖∞ → ∞
also implies t → ∞. Thus, from Theorem 1, as ‖qt‖∞ → ∞,
E[Q(t)|Q(0) = q0] converges to xλ for some x ≥ 0. In
general, Q(t) can be represented as Q(t) = E[Q(t)|Q(0) =
q0] + N(t) = (w(t)λ + ε(t)) + N(t) where N(t) denotes
the deviation of Q(t) from its conditional mean value, and
ε(t) is the deviation of E[Q(t)|Q(0) = q0] from the direction
of λ. Since RQPS(t) ∈ C(P ) and the bit arrival process
has finite mean and variance, ‖N(t)‖∞ is finite. Also, from
Theorem 1, ε(t) vanishes as ‖qt‖∞ → ∞. Consequently, as
‖qt‖∞ → ∞, Q(t) = w(t)(λ+(ε(t)+N(t))/w(t)) → w(t)λ
with probability 1.

Under the QPS policy, lim‖qt‖∞→∞(R(t)|Q(t) = qt) =
limw(t)→∞(R(t)|Q(t) = w(t)λ) = λ(max r) such that λr ∈
C(P ) and r ≤ w(t). If λ ∈ int C(P ), then max r > 1. Hence,
when ‖qt‖∞ → ∞, the Lyapunov drift in (11) becomes
strictly negative for any λ ∈ int C(P ).

V. FAIRNESS AND DELAY PROPERTIES OF QPS

This section shows that for any arrival rates, QPS can
arbitrarily scale the ratio of each user’s average queuing delay.
Also, it is shown that without new packet arrivals, QPS empties
all the backlogs faster than any other scheduling policies,
which indicates QPS is a type of minimum draining time
policies in [11]. First, the next theorem shows that QPS has
a capability of guaranteeing fairness among users in terms of
average queuing delay.

Theorem 3: In a Gaussian BC under the QPS policy, as
t → ∞, each user’s average queuing delay becomes equalized.

Proof: From Theorem 1, the expected queue state vector
becomes proportional to the arrival rate vector as t → ∞.
By Little’s theorem [17], an average queue length is the same
as a product of the arrival rate and average queuing delay.
Therefore, with the QPS policy, each user’s average queuing
delay is equalized after the convergence.

In general, QPS can satisfy a different Quality of Service
(QoS) for each user in terms of average queuing delay. This
property is shown in the following corollary to Theorem 3.

Corollary 1: Let α denote the priority vector on average
queuing delay. For example, α1 = 2α2, means that the
average delay of user 1 should be half of user 2’s average
delay. This priority can be satisfied with the QPS policy by
replacing Q(t) with the modified queue state vector Q′(t) =
[α1Q1(t) α2Q2(t) · · · αKQK(t)]T .

Proof: From Theorem 1, the average of a modified queue
state vector Q′(t) converges to λx for some x ∈ R+. Thus,
user i’s average queue length converges to (λix)/αi, and by
Little’s theorem, user i’s average queuing delay becomes x/αi.

One reasonable way of choosing the priority vector α is to
find a vector proportional to each user’s maximum achievable
rate when no other users transmit.

The following theorem proves that QPS guarantees the
minimum draining time without new packet arrivals.

Theorem 4: Let the initial queue state vector be Q(0) =
q0 ∈ R

K
+ , and assume that there are no more packet arrivals

after t = 0. Then, in a Gaussian BC, no other scheduling
methods clear up the backlogs faster than QPS.

Proof: Let TX denote the time until a scheduling
algorithm X empties all the queue backlogs. Over the time
interval [0, TX ], the total supported data vector in bits is q0.
Thus, the average data vector allocated per each scheduling
period is given by RX,avg = q0/TX . Since C(P ) is convex,
RX,avg ∈ C(P ) is always satisfied. Therefore, TX is mini-
mized by assigning Ropt = (max r)q0 such that rq0 ∈ C(P )
for every scheduling period. Under the QPS policy, without
new packet arrivals, the direction of the queue state vector is
preserved over time since the scheduled rate vector is always
proportional to the queue state vector. Therefore, by definition,
QPS allocates a data rate vector RQPS = (max r)q0 such that
rq0 ∈ C(P ) at each scheduling time. It can be easily seen that
Ropt = RQPS and this completes the proof of the theorem.
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In actual systems with random packet arrivals, the property
in Theorem 4 can be approximated by replacing q0 with the
current queue state vector. Therefore, at each scheduling time,
QPS tries to empty the current queue backlogs as fast as
possible. This property of QPS results in low average queuing
delay, which will be demonstrated to be much smaller than
MWMS in a Gaussian BC.

VI. NUMERICAL RESULTS AND DISCUSSION

This section presents simulation results with Poisson packet
arrivals and exponentially distributed packet lengths to demon-
strate stability, delay, and fairness properties of the QPS
algorithm. In the simulation, average packet length for each
user, scheduling period, and signal bandwidth are all equal to
1, and noise power is 0.1. In Fig. 3 and Fig. 4, the average
queue length is evaluated for different values of λ1 with two
users and ten users, respectively. Four scheduling algorithms
are compared in both figures: QPS, MWMS, Longest Queue
Highest Possible Rate (LQHPR) and Best Channel Highest
Possible Rate (BCHPR) [18]. LQHPR allocates full power to
a user with the longest queue. Under the BCHPR policy, a
user with the better channel condition takes higher priority
in resource allocation, user i is served only if some transmit
power remains after clearing queue backlogs of users with
higher priorities than user i.

For the two user case in Fig. 3, a Gaussian BC channel
presented in Fig. 2 is considered where the power constraint
P = 2 and the channel gain vector is h = [2 1]T ; thus,
user 1’s SNR=19dB, and user 2’s SNR=13dB. Also, the bit
arrival rate vector satisfies λ = λ1[1 0.5]T . From Fig. 2,
λ ∈ int C(P ) if and only if λ1 < 4.1. Fig. 3 demonstrates
that the average queue length of QPS is about 30% smaller
than that of MWMS for any λ1 < 4.1. Since MWMS is a
throughput optimal policy, this observation corroborates the
throughput optimality of QPS. LQHPR and BCHPR, which
are not throughput optimal, have much longer average queue
lengths than MWMS. Simulation results with 10 users are
shown in Fig. 4. The total transmit power is P = 10 and user
i’s channel gain hi = 2− 0.1(i− 1) and λi = λ1(0.9)i−1 for
i = 1, · · · , 10. QPS provides about 40-50% smaller average
queue length than MWMS, which is a more prominent differ-
ence than in the two user case. BCHPR is also observed to
have around 20% smaller average queue length than MWMS
at small λ1. However, as λ1 approaches to the boundary of a
network capacity region, the average queue length of BCHPR
grows faster than MWMS.

The fairness properties of QPS, MWMS and BCHPR with
10 users are illustrated in Fig. 5. The simulation environment
is identical with Fig. 4 and λ1 = 1.32 is considered. Fig. 5
shows the arrival rate vector as well as each user’s average
queuing delay in slots for above three scheduling policies. It
is observed that fairness among users is not satisfied under the
BCHPR, which provides intolerably long average queue length
for users with worse channel conditions. MWMS tends to
equalize each user’s average queue length. Since each user has
a different arrival rate, by Little’s theorem, MWMS provides
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Fig. 3. Average queue length vs user 1’s bit arrival rate under LQHPR,
BCHPR, MWMS and QPS (2 users, user 1’s SNR=13dB and user 2’s
SNR=7dB, λ2 = 0.5λ1).
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Fig. 4. Average queue length vs user 1’s bit arrival rate under LQHPR,
BCHPR, MWMS and QPS (10 users, user i’s channel gain hi = 2−0.1(i−1)
and λi = λ1(0.9)i−1 for i = 1, · · · , 10).

smaller average queuing delay for the user with higher arrival
rate. On the other hand, the average queue length of QPS is
shown to be almost proportional to the arrival rate vector so
that each user’s average queuing delay is equalized. Therefore,
under the QPS policy, fairness among users is guaranteed in
terms of average queuing delay.

VII. CONCLUSION

In Gaussian broadcast channels, Queue Proportional
Scheduling (QPS) is shown to have desirable delay and
fairness properties. QPS achieves throughput optimality by
allocating a maximum data rate vector that is proportional to
the queue state vector. In addition, this policy can arbitrarily
control the ratio of each user’s average queuing delay in order
to satisfy each user’s different QoS. Numerical results demon-
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Fig. 5. Each user’s bit arrival rate and each user’s average queuing delay
under BCHPR, MWMS and QPS (10 users, user i’s channel gain hi = 2 −
0.1(i − 1) and λi = 1.32(0.9)i−1 for i = 1, · · · , 10).

strate that QPS provides significantly smaller average queuing
delay compared to Maximum Weight Matching Scheduling
(MWMS) in a Gaussian BC.

REFERENCES

[1] M.J. Neely, E. Modiano and C.E. Rohrs, “Power allocation and routing
in multibeam satellites with time-varying channels,” IEEE/ACM Trans.
Networking, vol. 11, no. 1, pp 138-152, Feb. 2003.

[2] R. Barry and E. Yeh, “Cross-layer wireless resource allocation,” IEEE
Signal Processing Magazine, pp 59 - 68, Sept. 2004.

[3] H. Viswanathan and K. Kumaran, “Rate scheduling in multiple antenna
downlink,” in Proc. 39th Annual Allerton Conf. Commununications, Con-
trol and Computing, Allerton, IL, Oct. 2001, pp. 747-756.

[4] C. Swannack, E. Uysal-Biyikoglu, and G. Wornell, “Low complexity
multiuser scheduling for maximizing throughput in the MIMO broadcast
channel,” Proc. 42nd Annual Allerton Conf. Commununications, Control
and Computing, Allerton, IL, Oct. 2004.

[5] L. Tassiulas and A. Ephremides, “Dynamic server allocation to parallel
queues with randomly varying connectivity,” IEEE Trans. Info. Theory,
vol. 39, Mar. 1993, pp. 466-78.

[6] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving
100% throughput in an input-queued switch,” in Proc. IEEE INFOCOM
’96, San Francisco, CA, pp. 296-302.

[7] G. Song, Y. Li, L. Cimini Jr, and H. Zheng, “Joint channel-aware and
queue-aware data scheduling in multiple shared wireless channels,” in Proc.
IEEE Wireless Communications and Networking Conference (WCNC),
Atlanta, Georgia, 2004.

[8] E. Yeh and A. Cohen, “Throughput and delay optimal resource allocation
in multi-access fading channels,” in Proceedings of the International
Symposium on Information Theory, Yokohama, Japan, p. 245, 2003.

[9] D. Tse and S. Hanly, “Multi-access fading channels: Part I,” IEEE Trans.
Inform. Theory, vol. 44, no. 7, pp. 2796-2831, 1998.

[10] A. Eryilmaz, R. Srikant, and J.R. Perkins, “Throughput-optimal schedul-
ing for broadcast channels,” in Proc. of SPIE, vol. 4531, pp. 70-78, 2001.

[11] R. Leelahakriengkrai and R. Agrawal, “Scheduling in multimedia wire-
less networks,” in Proc. 17th Int. Teletraffic Congress, Salvador da Bahia,
Brazil, December 2001.

[12] T. Cover and J. Thomas, Elements of Information Theory, New York:
John Wiley and Sons Inc., 1997.

[13] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, 2003.

[14] K. Seong, R. Narasimhan, and J.M. Cioffi, “Queue proportional schedul-
ing via geometric programming in fading broadcast channels,” IEEE J.
Select. Areas Comm., vol. 24, no. 8, Aug. 2006.

[15] S. Asmussen, Applied Probability and Queues, New York: Springer,
2000.

[16] S. Ross, Stochastic Processes, John Wiley and Sons Inc., 1996.
[17] D. Bertsekas and R. Gallager, Data Networks. NJ: Prentice Hall, 1992.
[18] E. Yeh and A. Cohen, “Information theory, queueing, and resource

allocation in multi-user fading communications,” in Proceedings of the
2004 Conference on Information Sciences and Systems, Princeton, NJ,
2004, pp. 1396-1401.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.


	Select a link below
	Return to Main Menu
	Return to Previous View




