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Abstract— In this paper, Opportunistic p-persistent Carrier
Sense Multiple Access (OpCSMA) is proposed to incorporate
multiuser diversity into p-persistent CSMA. In the OpCSMA,
each mobile terminal (MT) is assumed to have the knowledge
of its channel state information (CSI). At each idle time slot, an
MT sends a packet if the corresponding channel gain is above
the threshold, which is determined such that the probability of
accessing the medium is maintained to be p for any idle slots.
Using the infinite user model, it is proved that the OpCSMA
provides significant increase in the expected capacity compared
to p-persistent CSMA. In addition, the expected capacity of the
OpCSMA is shown to be proportional to ln G at low SNR where
G is the offered load. Simulation results corroborate the above
findings in slow fading channels.

I. INTRODUCTION

Carrier Sense Multiple Access (CSMA) is a medium access
control (MAC) protocol being widely used in many popular
networks such as 802.3 Ethernet and 802.11 Wireless LAN
(WLAN) [1]. The application of the CSMA can be also found
in sensor networks where the coordination among sensors is
minimized to lower the cost [2]. The 802.11 WLAN MAC
standard protocol is shown to be closely approximated by the
p-persistent CSMA even though two protocols have different
back-off intervals [3].

In a scalar wireless multiple access channel, the maximum
system throughput was achieved by allowing one user with
the best channel condition to access the wireless medium
[4],[5],[6]. As the number of users rises, the maximum
throughput increases due to the multiuser diversity effect.
The multiuser diversity was observed in the multiple antenna
systems as well [7],[8]. However, in general, a centralized
scheduler is required to utilize the multiuser diversity, which
would not be feasible for random access channels. Recently
in [9], the channel-aware ALOHA was proposed for the fast
fading channel. It achieves the multiuser diversity gain by
letting each mobile terminal (MT) access the medium only
when the channel gain is larger than the thresold. Since [9]
assumes independent and identically distributed (i.i.d.) block
fading over time slots, a single threshold value is assigned
to each MT. Similar protocol in [2] was shown to achieve
throughput comparable to that with a centralized scheduler.

However, in a slow fading channel, the block fading as-
sumption is no longer valid and the criterion on setting the
threshold becomes more complicated. If the 802.11 WLAN
system is considered, the channel is usually slowly varying

and also, the MAC protocol is well approximated by the
p-persistent CSMA. In this paper, we propose a variant of
p-persistent CSMA called Opportunistic p-persistent CSMA
(OpCSMA) that utilizes multiuser diversity in a slow fading
channel. Assuming reciprocity of channel gains, each MT
can obtain the knowledge of its own channel gain [10]. At
each idle time slot, an MT accesses the medium only if the
corresponding channel gain exceeds the threshold, which is
predefined such that the probability of accessing the medium
is maintained to be p for any idle slots. Different from the fast
fading case, each user is assumed to have a constant channel
gain for the subsequent time slots. Therefore, the threshold
for the current idle slot takes a smaller value if there was no
packet transmission in the previous idle slot. Using the infinite
user model [1], the OpCSMA is shown to have much larger
expected capacity than the conventional p-persistent CSMA at
high traffic loads. Also, the expected capacity of the OpCSMA
is proved to be proportional to lnG at low SNR where G is the
offered load. This implies that G is related with the average
number of active users that affects the degree of multiuser
diversity gain. On the other hand, the multiuser diversity can
be utilized to minimize the power consumption of the wireless
network, which is discussed in [11].

II. SYSTEM MODEL AND p-PERSISTENT CSMA

In wireless networks such as the WLAN, a time-varying
number of MTs communicate with an access point (AP)
through slow fading channels. Assuming only one MT ac-
cesses the channel at each scheduling time, the received signal
of the AP at time t is given by

y(t) =
√

hixi(t) + n(t), (1)
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Fig. 1. p-persistent CSMA time-slot structure. (TP: transmission period,
IRTD: initial random transmission delay)
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where xi(t) is the transmitted signal from MT i over the
bandwidth 2W , hi denotes the channel gain from MT i to the
AP, and n(t) is an additive white Gaussian noise (AWGN) with
the power of N0W . Without loss of generality, noise power
N0W and each user’s transmit signal power are assumed to
be 1 throughout this paper. Also, each user’s signal-to-noise
ratio (SNR) is assumed i.i.d. according to the probability
density function (pdf) fH(h). For a Rayleigh fading channel,
fH(h) = e

−h
Pr /Pr where Pr is the average signal power at the

receiver.

This paper considers the infinite user model that was
first considered by Abramson [12], and used to evaluate the
throughput of p-persistent CSMA [1]. The traffic sources are
composed of an infinite number of MTs that collectively form
a single Poisson process; thus, each new packet always arrives
at a new user. In case of a collision or a back-off, the packet
is delayed for a random interval so that it appears as a new
arrival in the future. By aggregating arrival process including
new and retransmitted packets, the average number of arrivals
per unit time, G, is defined as offered load. The number of
MTs in the network equals the number of packets waiting for
transmission; thus, the effect of time variations in the number
of users is considered in the infinite user model. In this paper,
it is also assumed that the channel gains of all users are i.i.d.
according to the pdf fH(h), and the channel gain is invariant
over time. Although this model may appear unnatural at first, it
actually lower bounds the performance of a finite-user system
since each user’s packets are assumed to compete against each
other [12]. In practice, these modeling hypotheses approximate
a large finite population in which each MT transmits packets
infrequently through slowly-varying channels.

Fig. 1 shows the operation of p-persistent CSMA [1]
along a normalized time axis that is finely partitioned into
slots of duration a. The slot duration is usually twice the
maximum propagation delay between the AP and MTs. All
MTs can start transmitting only at the beginning of a slot
and each packet is of constant length T . To simplify the
analysis, time axis is normalized by T so that the packet length
is equal to 1. A beacon signal is placed at the beginning
of each slot for channel estimation at the MTs. Provided
the wireless channel is reciprocal in time division duplexed
(TDD) WLANs, the estimated downlink channel gain can
replace the uplink channel gain. When a packet arrives at
an MT, the MT first checks whether any other MTs are
transmitting a packet. If the channel is found idle, the MT
accesses the wireless medium with probability p to reduce the
collision probability. Therefore, even during a busy period, a
silent period appears with probability 1 − p, which is called
initial random transmission delay (IRTD). If an MT starts
transmitting a packet at time t = 0, the other MTs wait until
t = T + a where the a term is due to the propagation delay.
Thus, as illustrated in the dotted boxes of Fig. 1, the duration
of a transmission period (TP) is (T +a). Once an MT decides
to defer transmission, it repeats the same procedure for the
following idle slots. When all MTs have no packets to send,

an idle period is maintained until new packets arrive.
The throughput of a random-access protocol has been

measured by using the average channel utilization S that is
the number of successfully-transmitted packets per unit time.
Using renewal theory and probabilistic analysis, it was shown
in [1] that the average channel utilization is

S =
(1 − e−aG)[P ′

sπ0 + Ps(1 − π0)]
(1 − e−aG)[at̄′π0 + at̄(1 − π0) + 1 + a] + aπ0

, (2)

where P ′
s and Ps are respectively the probability of successful

transmission of the first and the remaining TPs, π0 is the
probability that no packet arrives during a TP, and t̄′ and t̄
are the average duration of an IRTD before the first and the
other TPs.

III. OPPORTUNISTIC p-PERSISTENT CSMA (OPCSMA)

In p-persistent CSMA, if the channel is sensed idle, each
MT generates a Bernoulli random variable with the mean of
p at the beginning of each slot. Then, an MT accesses the
wireless medium if its random variable is equal to one. Though
the packet collision probability can be controlled by adjusting
p, p-persistent CSMA ignores the channel state information
in accessing the medium. To incorporate multiuser diversity,
the OpCSMA decides whether to access the medium by
comparing the channel gain with the predetermined threshold
as shown in Fig. 2. Under the OpCSMA, each MT has a set of
thresholds related with its channel gain. Since it is assumed
that the channel statistics are the same for all MTs, every
user shares a single set of thresholds, {T0, T1, · · · , Tk, · · ·}
where the subscript denotes the index of idle slots. Assume
that MT i has a packet to send, but k−1 idle slots have elapsed
without its accessing the medium. Then, MT i sends a packet
at the kth idle slot if its channel gain hi exceeds the threshold
Tk. Therefore, it can be easily seen that Tm−1 > Tm for all
positive integer m. In the analysis, it is assumed that a is so
small that no packets arrive during an IRTD. As a result, k
simply denotes the idle slot index. Since the channel gains of
all MTs are less than Tk−1 at the kth idle slot, the probability
of accessing the wireless medium for the MT i is

P (hi > Tk|hi < Tk−1) =
FH(Tk−1) − FH(Tk)

FH(Tk−1)
, k = 1, 2, · · ·

(3)
where FH(h) =

∫ h

0
fH(x)dx is the probability distribution

function of a channel gain. To maintain the probability of
transmission at each idle slot equal to p, P (hi > Tk|hi <
Tk−1) = p for all positive integer k. Then the following
relation can be obtained from (3)

qFH(Tk−1) = FH(Tk), (4)

where q = 1 − p. In particular, the transmission probability
at the 0th idle slot is P (hi ≥ T0) = 1 − FH(T0), so the
threshold at slot k is Tk = F−1

H (qk+1) from (4) and the initial
condition at k = 0. As an example, this paper considers a
Rayleigh fading channel where Tk = −Pr ln(1 − qk+1).

Without a collision, the maximum achievable rate for MT i
is equal to 0.5 log2(1+hi) if the packet length is much shorter
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than the coherence time of the channel. In the absence of new
packet arrival during an IRTD, expected channel capacity [13]
when an MT accesses channel at slot k is

C(k) =
∫ Tk−1

Tk

fH(h|Tk−1 > h ≥ Tk)
1
2

log2(1 + h)dh

=
1

2pqk ln 2
(e

1
Pr

(
E1

(
1 + Tk

Pr

)
− E1

(
1 + Tk−1

Pr

))

−e
Tk−1

Pr ln(1 + Tk−1) + e
Tk
Pr ln(1 + Tk)), (5)

where E1(x) =
∫ ∞

x
e−u

u du is called the exponential integral
function and T−1 = ∞. If it is assumed that a collision always
causes packet errors, the expected capacity C is expressed as

C = E

[ ∞∑
k=0

PK(k)C(k)Ps

]
(6)

where PK(k) denotes the probability that a packet is trans-
mitted at slot k, and Ps is the probability of no packet
collisions. During the first TP in a busy period (see Fig. 1),
the number of packet arrivals is Poisson distributed with a
mean of λ = aG. Provided a is small, only one packet arrives
with high probability; thus, Ps ≈ 1 and PK(k = 1) ≈ 1.
For the following TPs, the number of arrivals, n, is Poisson
distributed with a larger mean of λ = (1 + a)G. In other
words, πn = e−λ λn

n! since arrived packets during the previous
packet transmission have been backlogged until the channel is
available. As a result, the probability of transmitting packets
at slot k is PK(k) = qkn(1− qn) where qkn is the probability
of no transmission before slot k and 1− qn is the probability
of at least one attempt to access the channel. Similarly, Ps(n)
equals the probability of transmitting only one packet, npqn−1,
divided by the probability of at least one transmission; thus,
Ps(n) = npqn−1

1−qn . Hence, expected channel capacity is

C = π0C̄F + (1 − π0)C̄R, (7)

where C̄F and C̄R denote respectively the expected capacity
for the first TP in a busy period and the following TPs.
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Fig. 2. Block diagram of the OpCSMA

Since only one packet arrives in the network for the first
TP with high probability, C̄ equals the expected capacity with
only one user in the network, which is

C̄F =
∫ ∞

0

1
2Pr

e−h/Pr log2(1 + h)dh

=
e

1
Pr

2 ln 2
E1

(
1
Pr

)
. (8)

The expected capacity during the other TPs is given as follows:

C̄R =
∞∑

n=1

πn

1 − π0
Ps(n)

∞∑
k=0

PK(k)C(k), (9)

where n denotes the number of packets in the network, and
k represents the slot index. After changing the order of the
summation and using ex =

∑∞
k=0

xk

k! , C̄R becomes

C̄R =
λe−λ

1 − e−λ

∞∑
k=0

eλqk+1
C(k). (10)

Provided a is small, the analytic result of the expected capacity
is obtained by applying (10) into (7).

The expected channel capacity C is the maximum possible
amount of successfully-transmitted data divided by the actual
transmission time, but in CSMA systems, no data is trans-
mitted during IRTDs and idle periods. By taking into account
such wasted time, we define the throughput as the amount of
successfully-transmitted data divided by the duration of both
the transmission and the wasted time. In a manner similar to
(2), the throughput using modified access control is as follows:

Sm =
(1 − e−aG)C

(1 − e−aG)[at̄′π0 + at̄(1 − π0) + 1 + a] + aπ0
.

(11)
Without modified access control, the throughput is the same
as (11) except that C̄R in (7) is replaced with C̄ ′ which is

C̄ ′ = C̄F

∞∑
n=1

πn

1 − π0
Ps(n), (12)

since the channel gain of a successfully-transmitted packet is
distributed as fh regardless of k and n. Proposition 1 demon-
strates that proposed access control increases the throughput
of p-persistent CSMA.

Proposition 1: For any p and G, the expected channel
capacity C̄R in (9) is larger than C̄ ′ in (12). Thus, the
throughput Sm is increased by modified access control.

Proof: See Appendix.
Throughput S in (2) can be also applied to the OpCSMA

in ergodic channels since the probability of accessing the
channel is a constant p. Therefore, little problem may occur
even if MTs using the OpCSMA co-exist with MTs employing
conventional p-persistent CSMA.

In study of multiuser diversity, the channel capacity at a low
SNR is proportional to ln U where U is the number of users
in a network. In proposition 2, as p → 0, the limit of expected
capacity at a low SNR is shown to become proportional to
lnG where G is the offered load.
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Fig. 3. Comparison of analyzed and simulated expected channel capacity
when a=0.01 and average SNR = 0dB. A: Analysis, S: Simulation, w/o:
without modified access control.
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Fig. 4. Comparison of analyzed and simulated expected channel capacity
when a=0.1 and average SNR = 10dB. A: Analysis, S: Simulation, w/o:
without modified access control.

Proposition 2: For low SNR, the asymptotic expected chan-
nel capacity C as p → 0 is

C0 = lim
p→0

C ≈ (γ + lnλ)Pr

2
, (13)

where γ = limn→∞(
∑n

k=1
1
k − lnn) denotes Euler-

Mascheroni constant.

Proof: See Appendix.

Under the infinite-user model, the offered load G approxi-
mates the average number of active users in a network which
is closely related with the multiuser diversity gain.
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IV. NUMERICAL RESULTS

In this section, the expected channel capacity and the
throughput of p-persistent CSMA and the OpCSMA are eval-
uated through simulations in a Rayleigh fading channel. Also,
the simulation results are compared to the analytic results
provided in Section III. First, a Poisson random variable n
with mean λ = aG is generated at the beginning of each slot
during an idle period. This is repeated until n > 0, then a busy
period begins by re-setting k = 0 where k is the slot index.
Second, random variables with the pdf fH(h) are assigned
to channel gains for newly arrived packets. Then, one of the
following three operations is performed depending on l, the
number of packets whose channel gain exceeds Tk; l = 0,
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increase n by a Poisson random variable with mean λ = aG,
increment k, then repeat the second step; l = 1, increase R, the
amount of successfully-transmitted data, by 0.5 log2(1 + hi);
l > 1, declare a collision. Third, a Poisson random variable n
with mean λ = (1 + a)G is generated at the end of a packet
transmission. If n is zero, the algorithm returns to the first step,
otherwise, to the second step. At the end of the simulation, the
expected capacity and the throughput are obtained by dividing
R by the number of successfully-transmitted packets, and the
total simulation time, respectively. Contrary to the analysis,
the simulation allows new packet arrivals during IRTDs. Thus,
simulated expected capacity is usually larger than the analytic
result because the channel gains for newly arrived packets can
be even greater than Tk−1.

The analyzed expected capacity is compared to the sim-
ulation result at a = 0.01 and average SNR=0dB in Fig.
3. At small p, the analysis tends to underestimate expected
capacity compared to the simulation. With smaller p, the
duration of an IRTD is longer, which allows more packet
arrivals during an IRTD. However, the analytic result well
matches to the simulation result when p is large. Compared
to the conventional method, the OpCSMA almost doubles the
expected capacity for large G due to the multiuser diversity
gain. However, when G < 0.4, the gain in the expected
capacity disappears because: 1) only one packet has arrived
before transmission with high probability; and 2) a busy period
consists of only one TP.

In Fig. 4, the analytic results become less accurate as a
increases to 0.1 since the duration of an IRTD is ten-times as
long as that in Fig. 3. However, the analysis is still accurate
at large G since, even with small p, the length of an IRTD
decreases as G increases. The proposed access control also
provides the increased expected capacity at reasonably high
SNR. As an example, when the average SNR is equal to 10dB
and G = 7, the OpCSMA shows 60% improvement in the
expected capacity.

Similarly, the throughput Sm is significantly enhanced
by employing the OpCSMA as shown in Fig. 5. Provided
G = 7, p = 0.03, and SNR=10dB, the proposed method
improves the throughput from 1.25 bits/dim to 2.02 bits/dim.
At lower average SNR, the relative gain exceeds 100% if the
other conditions are maintained. The merit of incorporating
multiuser diversity is reduced as G decreases below 0.5.

At smaller SNR, (17) is an approximation of the expected
capacity. Also, Proposition 2 shows the limit of the expected
capacity as p → 0. To verify the accuracy of these analysis,
approximation results are compared to analytic results in Fig.
6 provided p = 0.001, a = 0.01. At −10dB SNR, both
analysis and limit curves show that the expected capacity
linearly increases with lnG. In addition, the deviation of the
limit curve from the analytic one becomes very small for
G ≤ 10. Compared to the expected capacity using the p-
persistent CSMA, the relative gain is as high as 900% at
large G. With higher average SNR of −3dB, similar linear
improvement in the expected capacity results from multiuser
diversity. In addition, the analytic result no longer exhibits

linear improvement with high G, which is in part due to drastic
increase in the collision probability with high G.

V. CONCLUSION

This paper proposes a variant of p-persistent CSMA called
Opportunistic p-persistent CSMA (OpCSMA) that achieves
multiuser diversity gain in a slow fading channel. Under the
infinite user model, the expected capacity and the throughput
of a p-persistent CSMA network are significantly improved
due to the multiuser diversity gain which the OpCSMA pro-
vides. Analytic results demonstrate that the expected channel
capacity increases proportional to lnG at low SNR where G is
the offered load. Thus, G may be considered as the effective
number of users in the network that is useful in analyzing
the degree of multiuser diversity. In particular, the OpCSMA
is a promising protocol for 802.11 WLAN since its MAC
protocol is well approximated by p-persistent CSMA as well
as the typical WLAN channel is slowly varying. Under the
OpCSMA, the probability of accessing the wireless medium is
still equal to p. Therefore, the new systems using the OpCSMA
may be deployed without hurting the existing systems with
conventional p-persistent CSMA. However, if the channels are
not i.i.d. or the delay constraint of the service is tight, MTs
with larger average channel gain tend to utilize the wireless
medium for the most of the time, so the proposed method
needs to take into account the fairness issues.

APPENDIX

PROOF OF PROPOSITION 1

Using the OpCSMA, MT i transmits a packet successfully
if and only if Tk−1 > hi ≥ Tk and hj < Tk for j �= i.
Suppose that the number of packets in the network is n. From
the above property, the expected channel capacity given n is
expressed as

C̄n = E[max(0.5 log2(1 + h1), · · · , 0.5 log2(1 + hn))], (14)

where hi is an i.i.d. random variable with a pdf fH(hi) and
obviously C̄n ≥ C̄F for all n. From the ergodicity of a channel
and (9),

C̄R =
∞∑

n=1

πn

1 − π0
Ps(n)C̄n. (15)

Comparing (15) and (12), C̄R < C̄ ′′ since C̄n ≥ C̄F for all
n.

APPENDIX

PROOF OF PROPOSITION 2

C(k) is lower bounded as follows since log2(1 + h) is
monotonically increasing:

C(k) =
∫ Tk−1

Tk

e−h/Pr

2PrP (Tk ≤ h < Tk−1)
log2(1 + h)dh

≥ 0.5 log2(1 − Pr ln(1 − qk+1)). (16)
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Then, insertion of C(k) in (16) into (9), and use of log2(1 +
x) ≈ x and ex =

∑∞
k=0

xk

k! , produces the following approxi-
mation for C̄R:

C̄R ≈ −Prpλe−λ

2 − 2e−λ

∞∑
k=0

qk ln(1 − qk+1)eλqk+1
. (17)

When p is small, the summation can be approximated by
an integration as the following

C̄R ≈ −Prpλe−λ

2 − 2e−λ

∫ ∞

0

qx ln(1 − qx+1)eλqx+1
dx

=
−Prpe−λ(eλ(E1(λ) − E1(λp)) − eλq ln p)

(2 − 2e−λ)q ln q
. (18)

For small x, E1(x) ≈ −γ − lnx where γ =
limn→∞(

∑n
k=1

1
k − lnn) is Euler-Mascheroni constant. In

addition, limp→0
p

q ln q = −1 and limp→0 eλq = eλ. Applying
theses approximations into (18) leads to limit of C̄R as
follows:

lim
p→0

C̄R =
(γ + ln λ)Pr

2 − 2e−λ
. (19)

Finally, for sufficiently large G, π0 ≈ 0, then C at small p is

C0 = lim
p→0

(
e−λC̄F + (1 − e−λ)C̄R

)
=

(γ + lnλ)Pr

2
. (20)
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