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Abstract—We consider the fading multiple-access channel which a given rate-tuple is achievable. The capacity region
(MAC) with additive Gaussian noise and multiple transmit and  of a deterministicGaussian MAC with single transmit and
receive antennas. It is assumed that the receiver has _perfect receive antenna (SISO-MAC) has the well-knopotymatroid
channel state information (CSI) while the mobile transmitters ) .
have no such knowledge. We study the transmission schemesmmure [4], which also holds for the fgdlng MIMO'MA(?' )
under which the receiver determines the transmit covariance On the other hand, though the power region of a deterministic
matrices for all the transmitters, based on the long-term CSI SISO-MAC assumes theontra-polymatroidstructure [4], this
statistics, and then feeds them back to each transmitter. We structure is non-existent for the fading MAC or MIMO-MAC.

characterize the achievable multi-userpower regionunder this  ag g yesult, the characterization of the power region for the
scheme. The power region constitutes all transmit ppwer-tuples fadin MIMb-MAC is not vet fully understood
under which a given set of “ergodic” rates is achievable for g y y : o
the transmitters. We show that all the boundary points of the  In [5], the authors have explored the characterization of
power region can be obtained through solving a sequence of the power region for the fading MIMO-MAC when CSI is
weighted sum-power minimization problems. We observe through perfectly known at both the transmitters and the receiver. |
numerical results that the transmit optimization based on the i haner, we use similar techniques as in [5] to charasteri
It(r)lggf_:j:nm C'vﬂcsztatlstlcs can provide substantial power savings in the power region for the fading MIMO-MAC when CSl is per-
J ' fectly known at the receiver but unknown at each transmitter
|. INTRODUCTION We consider the transmission scheme under which the receive
L ) ) . determines the transmit covariance matrices for all thestra
Transmission through'muIFlpIe transmlt and receive ameﬂﬁtters, based on the long-term CSI statistics (or equithle
nas, or theso-calledmultiple-input multiple-output (MIMO) ¢ CDI) as well as the rate requirement and power budget of
chann_el, IS knpwn as an e_ff|<:|ent scheme in _prowdl_ng €N%ach transmitter. Under the assumption that there is telia
mous information rates in rich-scattering mobile envirem link from the receiver to each transmitter, the receiveidfee

[1]6 The (_:haractenzau_on of MIMO c_hannel dcapa(.:'tyrrl;T'tSoack the transmit signal covariance matrices to all tratiensi
under various assumptions on transmitter and receivemeanry,q i goal of this paper is to characterize the achievable

state informatic_m (CSI) or channel distribution infornoati . . region under this scheme. Similar system setup as in
(CDI), has motivated a great deal of valuable scholarly Woﬁﬂis paper has been considered in [6] in characterizing the

(see [2] and references therein). For a single user case ap acity region for the fading MIMO-MAC

vyhen CSlis perfectly known at the recever but only CDI Notations We use boldface letters to denote matrices and
(in the form of either channel mean information or Chann%ctors. S| denotes the determinan§~ the inverse and
covariance information) is known at the transmitter, sohs Tr(S) the trace of a square matri. For any general matrix
to transmit signal covariance matrix for ergodic capacigi-o . 5 rt denote its conjugate transpodedenotes the identity
mization as well as the conditions under which beamformir}ga'trix_ E[] denotes statistical expectatiofi”*¥ denotes the
is optimal, have been recentlly established in several Wor§§ace ofr x y matrices with complex entrie® denotes the
(see _[2] and referepces therein). _ . M-dimensional real Euclidean space ak¥f its non-negative
This paper considers the multi-user transmission througly,nt The distribution of a complex Gaussian vector with
fading MIMO multiple-access channel (MIMO-MAC) With ype mean vector: and the covariance matri is denoted by
additive Gaussian noise at the receiver. Two commo /\V(z, %) and ~ means “distributed as.” The sign denotes

adopted means to measure the in.formation.-theore:-tic Ii(riitsthe generalized inequality [7] and for a square magiS = 0
the Gaussian MAC are the multi-useepacity regionand o< thaiS is positive semi-definite.

power region The capacity region is defined as the consti-

tution of all achievablé rate-tuples for the users given their Il. SYSTEM MODEL

individual power constraints. On the other hand, the power\ya consider a fading MIMO-MAC with- receive anten-
region consists of all possible power-tuples for the uset®t | .5 4t the base station ard mobile users equipped with

1 . . ) . t1,--- ,tx transmit antennas, respectively. The transmission
A rate-tuple is achievable if there exist a sequence of ctatemach of the f h he b . . d b
users such that the probability of decoding error for all tisers approaches rom each user to the base station 'S_ assume . to e syn-
zero as the code length goes to infinity [3]. chronously. We assume the space of fading states is coasnuo



and infinite and the fading process is stationary and ergodic P2
At each state/, the fading MAC is given by

xz1(v)
y(v) = [Hi(v) - Hr(v)] : + z(v), 1)
x i (V)

wherey € C"*! denotes the received signal vectas, €
Ct*! and H;, € C"** denote, respectively, the transmitted
signal vector and the channel matrix of mobile ugerk =
1,...,K. z € C"*! denotes the AWGN at the receiver where
z ~CN(0,I).

We consider the case where the CSI is perfectly known at
the receiver but unknown at each transmitter. With avéitgbi -~ A
of CSI, the receiver can acquire the long-term CSI stafistic
of each mobile user and hence determine the transmit signa
covariance matrices for all mobile users based on the iddivi
ual rate requirements and power budgets. Let the covariance Fig. 1.
matrix of the transmitted signal of usérbe S 2 E[z,z|],
where the expectation is taken over the code-book$nét 0.

Recall that since CSI is not available at the transmitf&r,is A|ternative|y, each boundary point of the power region
fixed for all the fading states. Any code-book for useshould can be considered geometrically as the intersection ofe lin
satisfy Tr(Sy) = px, wherep = (p1,...,px) € RE is the passing through the origin.€. the power-tuple with all zeros)
vector of average transmit powers for all the users. For @fixgnd the power region (see Fig. 1). Equivalently, it can be
set of {Sy}, k = 1,..., K, it was shown in [8] that all the cast as the solution to the following sum-power minimizatio

rate-tuples in the set; ({ Hy(v)},{Sx}) defined as below are proplem with a sequence of power-ratio constraints:
achievable.

v

P1

A two-user MAC power region.

K
Cr({H(v)}, {Sk}) = {r RN r < Minimize  » Tr(Sk) (7)
keJ k=1
1 . st. > Re VE ®)
E §log ZHk(V)SkHL(V)+I VJ C {1,...,K}}, r e Cy({Hrw)}, {Sk}), 9)
keJ Si>=0 Vk, (10)
where the expectation is taken over the distributionsof K
The power regionfor the fading MAC is then defined as Tr (Sk) = ag ZTr(Sj) Vk.  (11)
=1
Puac (R) £ {p: r = R, r €C; ({Hx()},{Si})}, (2 ! p
In the above,a = (a1, -+ ,ax) € RE is the prescribed
_ K . A +
where R = ([, , i) € Ry denotes the average-ratg ower-profilevector andy_+_, oy, = 1. It is not hard to show

constraint vector. It is not hard to show that the power negi

defined in (2) is a convex set. hat the above two problems are both convex. Therefore, they

can be solved by standard convex optimization techniques.
[1l. CHARACTERIZATION OF POWER-REGION i L

The power region defined in (2) is illustrated in Fig. 1 fo'rA' We|9hted Sum-Power er.nmlzatlon o
a two-user MAC. The solid line in Fig. 1 represents all the We first consider the weighted sum-power minimization
boundary points of the power region. Each boundary poi,gfoblem in (3). The Lagrangian of this primal problem witle th
e.g.,point A as indicated in Fig. 1, can be characterized BYgctor of dual variablegt = (u1,..., i) € RY, associated
two means. Firstly, due to the convexity of the power regioM‘{'th_ the inequality constraints in (4) is defined as in [7] and
each of its boundary points can be expresses as the solatiofft9iven by

a weighted sum-power minimization problem for some non- K K

negative weights denoted by;s, LESk e}, 1) = Z M Tr(Sk) — Zuk(rk — Ry). (12)
K k=1 k=1

Minimize  » AcTr(S) (3) Note that the variable$S;.} and {r,} belong to the region
k=1 D which is specified by the remaining constrains in (5) and
sit. 7 > Ry Vk, (4)  (6). Then the Lagrange dual function [7] defined as
r € Cy({Hr()} {Sk}), (5)
= min LS {re}, ), 13

S, =0 V. ©) 9(p) S {8k} {re} ) (13)



serves as a lower bound on the optimal value of the primalNext, we consider the maximization of the dual function,
problem, denoted byp*. For a convex problem, Slater'sg(u) over all possible values qgi;s. Althoughg(u) is con-
condition states that the duality gap is zero if the feasibt@ve, it is not necessarily differentiable and therefortnaga-

set has non-empty interior [7]. By using large enough powetson algorithms that exploit the function’s differentiagsich

the setsC;({H(v)},{Sk}) can be made arbitrary large toas Newton method cannot be employed directly. Nevertheless
contain any rateéR as an interior point. Thus Slater’s conditiorperforming a “gradient” based search to find the optimaleslu

holds and the duality gap is zero for our problers,, of s is still possible. The search direction is based on what is
. . known as a “sub-gradient”. For the concave funcggp), 8 €
p= Iﬁl%g(“) =9(w), (14) R¥ is called a sub-gradient at if g(¢) < g(u)+ (¢p— )76

where* denote an optimal solution in maximizing the duafo" @/l ¢ € RZ. Thus;he optimal values qi*, cannot lie in

function. The above equality suggests that the optimaltigpiu e half-spacés — )76 < 0. The following lemma provides

to the primal problem can be obtained by first minimizing théS With a sub-gradient fog(;i). L

Lagrangian,C, to obtain the Lagrange dual functiarys) for  -emma 2:If {Sy} an*d {ri} minimize L({Sk},{rx}, 1)

a givenys, and then maximizing(y) over all possible values ©V&" D -€- L({Sy}, {ri},u) = g(n), then the vector

of /us. In the following, we provide a numerical routine td€fined agh = Iy —rj is a sub-gradient .

solve this optimization problem. Proof: For any¢ - 0, 9(@) < LSk} {ri}. ¢) = g(n)+
Numerical Routine: We first look further into the mini- 2-k=1(%x — ) (Ri — 7).

mization of the Lagrangiarg, to attain the dual function(y) *With the sub-gradient at hand, the optimal dual variable
in (13). In this casey is fixed and the variables afeS),} and # can be found by a gradient-based search method like sub-

{ri.}. From (12), it is easy to see that the minimizationbf gradient method or ellipsoid method [7]. We omit here their

can be rewritten as the following equivalent problem: details that can be found in standard optimization texes[li.
We only point out that from programming implementation,

. the ellipsoid method is more suitable than the sub-gradient
Maximize ; HETk = ; ARTr(S) (15 method in solving the problem due to its superior convergenc
~ ” behavior and guaranteed convergence. It is also notedhéat t
st r G ({HW)L {8k}, (16) sub-gradient method may exhibit oscillation when some ef th

S =0 VE. (I7)  uzs are indeed equal. It is also remarked that the algorithm

To simplify the above problem further, the following lemmaroposed in [4, Algorithm 5.3] can be modified to search for

borrowed from [4] is utilized to remove the constraint in Y16 the optimal value of+*, which, like sub-gradient method, may
Lemma 1:For any permutation over {1,2,..., K}, r(™ also exhibit oscillation when some @f;s are equal.

defined as So far we have developed numerical routines to determine
. R the optimal value for the problem in (3); = Y i, Tr(S}),

‘21:1 H (i) (v) Sy H oy (V) +I‘ and associated primal and dual optimal solutiofiSy, 7}

S oo ) S2) HE o (0) + 1)

and p*, respectively. In the following, we address the issue
is a vertex of the polymatroidC;({H . (v)}, {Sk}) in RE. dual optimal solutionp™ is not an issue in convergence of

()

1
(k) E §log , (18)

on the uniqueness of the solutions. While uniqueness of the

Furthermore, for any: > 0, the solution to the problem the proposed algorithms, uniqueness of the primal varsable

K plays an important role in their convergence behavior. &inc

Maximi ) t reC({H s we are using a prlmal-glual approach to solve the opt_|m_|z|at|o
aximize ;/ﬂﬂk st r G {HL W)} ASk problem in (3), the primal variable§Sy,r;} that optimize

. . ") ) the Lagrangian foru™ might not satisfy the rate constraints
is attained by a vertex'™ ), wherer* is such thati.-(1) > jn (4). However if we prove that these solutions are unique,

Hre(2) 2 - oo 2 P (K)- from the Karush-Kuhn-Tucker (KKT) optimality conditions,
With the above lemma, the problem in (15) can be furthehey satisfy the rate constraints automatically.
simplified as the maximization of Uniqueness of the Solutions:First we study the effect
K 1 k of u* on the convergence of our algorithms. Consider a
(tr (k) —uﬂ(kﬂ))]E[ilog Z (H i) (v) fading SIMO (single transmit antenna and multiple receive
k=1 i=1 antennas) MAC with two users. The channel of the two
K users,{H(v)} and{H(v)}, are independent and each has
Sw(i)HjT(i)(V)> + IH = > MTr(Sk), (19) independent entries distributed @8/(0, 1). Fig. 2 shows the
k=1 capacity region of this fading SIMO-MAC under a sum-power
whereS; = 0for k=1,..., K andr is a permutation such constraint,i.e,, p; + po < 10. It is seen that the capacity

that jir1y > tr2) = -0 2 Mr(x) = Hr(x4+1) = 0. Since region is indeed symmetric. The dashed line and the dotted
the above maximization is concave with twice differentgablline show how two vertices of the constituting polymatroids
objective function and only positive semi-definite conistis sweep the capacity region as and p, vary while keeping

it can be solved numericallg.g, by interior-point method [7]. their sum equal to 10. The dashed line corresponds to the case



when user 2's message is decoded before user 1's while the °f--

dotted line does for the reversed decoding order. Any point, 1sr \*x\\\ A

e.g, point A shown in Fig. 2, on the dashed or dotted line | <
corresponds to a vertex of some polymatroid. Also note that B

there is a region on the boundary that does not consist of the g“' DN
vertices. We refer to this part as the “time-sharing” region fﬂz -
which corresponds to -45 degree straight lines of constgut ol
polymatroids (point B is in this region). Hence, any pointhe E K
time-sharing region is not achievable by successive degodi £ \

and time-sharing of transmission rates and powers as well as sl '
decoding orders between two users is required to achiese thi | '
point if successive decoding is used at the receiver. .

Suppose now the rate-pair indicated by point A is the | /|
actual rate constraint for the problem in (3) and the problem %% ¢ s o8 1 12 1%
minimizes the weighted sum-power of the two users with equal reraon fate B, seectis
weights,i.e, Ay = Az = 1. In this case, the minimum Sum'Fig. 2. Capacity region for two-user fading MAC with = to =1, r =2
power required is thus 10. Because point A is a vertex, Lemragdp; + p2 < 10.
1implies thatu < p3 in the associated optimal dual variables,
p*. On the other hand, if the rate-pair indicated by point B is - o
the rate constraint for a sum-power minimization problem i@ (11) andD denotes the set specified by the remaining
(3), u* must have equal entriese., i} = 5. Since there is constraints in (9) and (10). We have
no “sharp” vertex with multiple tangent lines on the bourydar K K
of this capacity region under the sum-power constraint, e ¢~ L({Sx}, {rx},1t,6) = > MTr(Sk) = Y _ pu(rs — R
conclude thafs* is unique for any rate pair on the boundary. k=1 k=1

Furthermore, in the Appendix, it is shown that the set of K K
optimal transmit covariance matricesS; } is indeed unique. =Y o (Tr (Sk)—ar Y Tr(Sk')> : (20)
The only question remains to be answered is whether the  *=! k=1
set of optimal ratesy; is unique. The answer is yes forDefine the Lagrange dual function as
the case where ajl;s are different and positive. Recall that _ .
r* maximizes)_, uyr, over Cy({H(v)},{S}}) and since 9(p,9) = {Skf{lﬁ}epﬁ({sk}’{rk}’”’é)' (21)
{S}.} is unique and all weights are different and positivé js . .
unique. In this case, from KKT conditions;s automatically And_ the optimal value of the primal problem can be then
satisfy the rate constraints in (4). Note that for the caserah attained as
some of theu;s are equal, the optimal rates;s may not p* = max_g(u,d). (22)

be unique and consequently they may not satisfy the rate p=0,0

constraints. As an example, assume the target rate is p@tilar numerical routine as in Section I1I-A can be develdp

B in Fig. 2. In this caseu] = p3 and any point on the for solving the above problem and the details are omitted

straight line maximizesy_, uyrx over Cr({Hk(v)},{S%}).- here for brevity. It is worth pointing out that the dual func-

Moreover, our proposed numerical routine obtains eith@mtpotion, ¢(yu,d), has also a sub-gradieni, defined asp, =

C or D as the optimai* which clearly does not satisfy the, S5 | Tr(S},) — Tr(S}), with respect to the dual variable

rate constraints. This is because the simplified optimozati s, for k = 1,..., K, whereL({St}, {ri}, 1, 8) = g(us, 8).

in (19) always tends to use a vertex of the capacity region

as the solution for*. However, this is not an issue in the IV. NUMERICAL RESULTS

convergence of our algorithm. As far as we kn¢®,} is In this section we characterize the power region for a

unigue, we can obtain the target rate as a convex combinatfdayleigh fading MIMO-MAC withr = 2 antennas at the base

of the vertices of the unique polymatroi@; ({ Hy(v),{S}}}. station andK = 2 mobile users each equipped with= 2

antennas. We consider the case where the receive antennas

are separated enough that they experience independemg fadi
In this subsection, we propose a solution to the problem kfowever, due to the size limitations, this might not be theeca

(7), for which a new set of equality constraints is imposed iior the mobile users and the fading levels might be corrdlate

(11) to regulate the transmitted power of each user acogrdiacross transmit antennas. Given that, we employ the channel

to a given power profile vectogy. Similarly as done in Section model that describes the channel for usaisH;, = H,,UR%2

IlI-A, we consider the Lagrangian of the primal problem ifor £ = 1,2, where Ry, is the covariance matrix for the

(7). Let the vector of dual variablgs = (u1,...,uk) € Rff transmit antenna fading levels of userand H,, is ar by ¢

be associated with the inequality constraints in (8) and matrix, assumed to be independent across two users and each

(61,...,05) € RE associated with the equality constraintdiaving independent entries distributed@s(0, 1).

L L
16 18 2

B. Sum-Power Minimization with Power-Profile



V. CONCLUSION

Power region for a fading MIMO-MAC is considered and
efficient numerical algorithms for characterizing thisioegis
proposed.

APPENDIX

In the Appendix, we prove that the optimal values of the
transmit signal covariance matricds§; }, are unique. Without
loss of generality assume; > 3 > ... > uj > pji,, =
0. Let {Sg)} and {S,(f)} be two optimal solutions of the
problem in (3). From (12) and using Lemma 1, it can be shown

| K K K
‘ ‘ ‘ p* = Z /\k.Tr(S,(j)) + ZHZRk - Z ( (k= Mig1)
k=1 k=1 k

I
0 5 10 15 20 25 30 35 40 —

P1
>7

for j = 1,2. Since the problem is convex, for amye [0, 1],

_ 1) | 732 ; ; i a_
We assume the receiver has complete CSI knowledge afnﬁ N g‘gk f+ A5y, r|13 als_ohaﬂ optimal ,SO“;;;'O” V\f/her@—
can exctractR;; from it. Based onR;; it computes the — (. This fact together with the concavity tfg|-| function

1
Fig. 3. Power region for two-user Rayleigh fading MAC with= to = 2, E 3 log

r=2.

k
STH()SYH () + 1
=1

transmit covariance matrix of uset that minimizes the implies that

weighted-sum power. Similar to the proof given in [6], it can E {bg ‘ﬁA(l)(u) i BA(Q)(V)‘ _

be shown that the expression in (19) is maximized $r -

that has the same set of eigenvectorRg, for k = 1,2. ﬁlog‘A(l)(y)‘ _mog’A(?)(y)H =0,

Equivalently, ikaAkQ,t be the eigenvalue decomposition of ) .

. ' ) (€) & K (9)
Ry, then the optimalS;, would be in the form 0iQ, Q] Where A (v) = 35, H,(v)S;"Hiy(v)! + 1. Let f(B)
for some diagonal matri®,. This observation reduces thedenote the function on the LHS of the above equation, then
number of variables frondct? to Kt that in turn reduces the /(9) = 0. for all 0 < 5 < 1. Becausef(f) is twice
complexity of our proposed algorithm. continuously differentiable function, both its first anccerd

. . .y d2 _
Monte-Carlo simulation withV — 5000 samples is used derivatives must vanist.e., 7z f(/5) =

to approximate the expectation terms. Fig. 3 plots the power 1 2 1 3 A2 -1\
region of the described MAC foR = [2 1]T nuts per —E {Tr <((A( )(V) A )(V))(ﬂA( )(V) +ﬁA( )(V)) 1) ﬂ

transmission and must be equal to zero. For every the matrix inTx(.) is a

1 04 1 05 positive semi-definite matrix and hence has a positive trace
Ry = Ry = . (23) : . P . _—
04 1 05 1 Since the expectation of a positive random variable is zéro,
. . _ must be zero a.e., AV (v) = A®(v) a.e.. This implies that
To illustrate th_e effectiveness of our proposed algonthm,- Sg) — S,(f) for the case of infinite number of fading states.
compare the weighted-sum power obtained from our algorithm R
for some weights to the one obtained from another sub-optima EFERENCES
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