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Abstract— We consider the fading multiple-access channel
(MAC) with additive Gaussian noise and multiple transmit and
receive antennas. It is assumed that the receiver has perfect
channel state information (CSI) while the mobile transmitters
have no such knowledge. We study the transmission scheme
under which the receiver determines the transmit covariance
matrices for all the transmitters, based on the long-term CSI
statistics, and then feeds them back to each transmitter. We
characterize the achievable multi-userpower regionunder this
scheme. The power region constitutes all transmit power-tuples
under which a given set of “ergodic” rates is achievable for
the transmitters. We show that all the boundary points of the
power region can be obtained through solving a sequence of
weighted sum-power minimization problems. We observe through
numerical results that the transmit optimization based on the
long-term CSI statistics can provide substantial power savings in
the fading MAC.

I. I NTRODUCTION

Transmission through multiple transmit and receive anten-
nas, or theso-calledmultiple-input multiple-output (MIMO)
channel, is known as an efficient scheme in providing enor-
mous information rates in rich-scattering mobile environment
[1]. The characterization of MIMO channel capacity limits
under various assumptions on transmitter and receiver channel
state information (CSI) or channel distribution information
(CDI), has motivated a great deal of valuable scholarly work
(see [2] and references therein). For a single user case and
when CSI is perfectly known at the receiver but only CDI
(in the form of either channel mean information or channel
covariance information) is known at the transmitter, solutions
to transmit signal covariance matrix for ergodic capacity opti-
mization as well as the conditions under which beamforming
is optimal, have been recently established in several works
(see [2] and references therein).

This paper considers the multi-user transmission through
fading MIMO multiple-access channel (MIMO-MAC) with
additive Gaussian noise at the receiver. Two commonly
adopted means to measure the information-theoretic limitsof
the Gaussian MAC are the multi-usercapacity regionand
power region. The capacity region is defined as the consti-
tution of all achievable1 rate-tuples for the users given their
individual power constraints. On the other hand, the power
region consists of all possible power-tuples for the users under

1A rate-tuple is achievable if there exist a sequence of codesfor each of the
users such that the probability of decoding error for all theusers approaches
zero as the code length goes to infinity [3].

which a given rate-tuple is achievable. The capacity region
of a deterministicGaussian MAC with single transmit and
receive antenna (SISO-MAC) has the well-knownpolymatroid
structure [4], which also holds for the fading MIMO-MAC.
On the other hand, though the power region of a deterministic
SISO-MAC assumes thecontra-polymatroidstructure [4], this
structure is non-existent for the fading MAC or MIMO-MAC.
As a result, the characterization of the power region for the
fading MIMO-MAC is not yet fully understood.

In [5], the authors have explored the characterization of
the power region for the fading MIMO-MAC when CSI is
perfectly known at both the transmitters and the receiver. In
this paper, we use similar techniques as in [5] to characterize
the power region for the fading MIMO-MAC when CSI is per-
fectly known at the receiver but unknown at each transmitter.
We consider the transmission scheme under which the receiver
determines the transmit covariance matrices for all the trans-
mitters, based on the long-term CSI statistics (or equivalently,
the CDI) as well as the rate requirement and power budget of
each transmitter. Under the assumption that there is a reliable
link from the receiver to each transmitter, the receiver feeds
back the transmit signal covariance matrices to all transmitters.
The main goal of this paper is to characterize the achievable
power region under this scheme. Similar system setup as in
this paper has been considered in [6] in characterizing the
capacity region for the fading MIMO-MAC.

Notations: We use boldface letters to denote matrices and
vectors. |S| denotes the determinant,S−1 the inverse and
Tr(S) the trace of a square matrixS. For any general matrix
M , M † denote its conjugate transpose.I denotes the identity
matrix. E[·] denotes statistical expectation.C

x×y denotes the
space ofx×y matrices with complex entries.R

M denotes the
M -dimensional real Euclidean space andR

M
+ its non-negative

orthant. The distribution of a complex Gaussian vector with
the mean vectorx and the covariance matrixΣ is denoted by
CN (x,Σ) and∼ means “distributed as.” The sign� denotes
the generalized inequality [7] and for a square matrixS, S � 0
means thatS is positive semi-definite.

II. SYSTEM MODEL

We consider a fading MIMO-MAC withr receive anten-
nas at the base station andK mobile users equipped with
t1, · · · , tK transmit antennas, respectively. The transmission
from each user to the base station is assumed to be syn-
chronously. We assume the space of fading states is continuous



and infinite and the fading process is stationary and ergodic.
At each stateν, the fading MAC is given by

y(ν) = [H1(ν) · · ·HK(ν)]


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

x1(ν)
...

xK(ν)






+ z(ν), (1)

where y ∈ C
r×1 denotes the received signal vector.xk ∈

C
tk×1 andHk ∈ C

r×tk denote, respectively, the transmitted
signal vector and the channel matrix of mobile userk, k =
1, . . . ,K. z ∈ C

r×1 denotes the AWGN at the receiver where
z ∼ CN (0, I).

We consider the case where the CSI is perfectly known at
the receiver but unknown at each transmitter. With availability
of CSI, the receiver can acquire the long-term CSI statistics
of each mobile user and hence determine the transmit signal
covariance matrices for all mobile users based on the individ-
ual rate requirements and power budgets. Let the covariance
matrix of the transmitted signal of userk be Sk , E[xkx

†
k],

where the expectation is taken over the code-book andSk � 0.
Recall that since CSI is not available at the transmitter,Sk is
fixed for all the fading states. Any code-book for userk should
satisfy Tr(Sk) = pk, wherep = (p1, . . . , pK) ∈ R

K
+ is the

vector of average transmit powers for all the users. For a fixed
set of {Sk}, k = 1, . . . ,K, it was shown in [8] that all the
rate-tuples in the setCf ({Hk(ν)}, {Sk}) defined as below are
achievable.

Cf ({Hk(ν)}, {Sk}) =

{

r ∈ R
K
+ :

∑

k∈J

rk ≤

E
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∣

]

∀J ⊆ {1, . . . ,K}

}

,

where the expectation is taken over the distribution ofν.
The power regionfor the fading MAC is then defined as

PMAC (R) , {p : r � R, r ∈ Cf ({Hk(ν)}, {Sk})} , (2)

where R = (R1, · · · , RK) ∈ R
K
+ denotes the average-rate

constraint vector. It is not hard to show that the power region
defined in (2) is a convex set.

III. C HARACTERIZATION OF POWER-REGION

The power region defined in (2) is illustrated in Fig. 1 for
a two-user MAC. The solid line in Fig. 1 represents all the
boundary points of the power region. Each boundary point,
e.g., point A as indicated in Fig. 1, can be characterized by
two means. Firstly, due to the convexity of the power region,
each of its boundary points can be expresses as the solution to
a weighted sum-power minimization problem for some non-
negative weights denoted byλks,

Minimize

K
∑

k=1

λkTr (Sk) (3)

s.t. rk ≥ Rk ∀k, (4)

r ∈ Cf ({Hk(ν)}, {Sk}), (5)

Sk � 0 ∀k. (6)

Fig. 1. A two-user MAC power region.

Alternatively, each boundary point of the power region
can be considered geometrically as the intersection of a line
passing through the origin (i.e., the power-tuple with all zeros)
and the power region (see Fig. 1). Equivalently, it can be
cast as the solution to the following sum-power minimization
problem with a sequence of power-ratio constraints:

Minimize

K
∑

k=1

Tr(Sk) (7)

s.t. rk ≥ Rk ∀k, (8)

r ∈ Cf ({Hk(ν)}, {Sk}), (9)

Sk � 0 ∀k, (10)

Tr (Sk) = αk

K
∑

j=1

Tr(Sj) ∀k. (11)

In the above,α = (α1, · · · , αK) ∈ R
K
+ is the prescribed

power-profilevector and
∑K

k=1 αk = 1. It is not hard to show
that the above two problems are both convex. Therefore, they
can be solved by standard convex optimization techniques.

A. Weighted Sum-Power Minimization

We first consider the weighted sum-power minimization
problem in (3). The Lagrangian of this primal problem with the
vector of dual variablesµ = (µ1, . . . , µK) ∈ R

K
+ , associated

with the inequality constraints in (4) is defined as in [7] and
is given by

L({Sk}, {rk},µ) =

K
∑

k=1

λkTr(Sk) −
K
∑

k=1

µk(rk − Rk). (12)

Note that the variables{Sk} and {rk} belong to the region
D which is specified by the remaining constrains in (5) and
(6). Then the Lagrange dual function [7] defined as

g(µ) = min
{Sk},{rk}∈D

L({Sk}, {rk},µ), (13)



serves as a lower bound on the optimal value of the primal
problem, denoted byp∗. For a convex problem, Slater’s
condition states that the duality gap is zero if the feasible
set has non-empty interior [7]. By using large enough powers,
the setsCf ({Hk(ν)}, {Sk}) can be made arbitrary large to
contain any rateR as an interior point. Thus Slater’s condition
holds and the duality gap is zero for our problem,i.e.,

p∗ = max
µ�0

g(µ) , g(µ∗), (14)

whereµ∗ denote an optimal solution in maximizing the dual
function. The above equality suggests that the optimal solution
to the primal problem can be obtained by first minimizing the
Lagrangian,L, to obtain the Lagrange dual functiong(µ) for
a givenµ, and then maximizingg(µ) over all possible values
of µks. In the following, we provide a numerical routine to
solve this optimization problem.

Numerical Routine: We first look further into the mini-
mization of the Lagrangian,L, to attain the dual functiong(µ)
in (13). In this case,µ is fixed and the variables are{Sk} and
{rk}. From (12), it is easy to see that the minimization ofL
can be rewritten as the following equivalent problem:

Maximize

K
∑

k=1

µkrk −
K
∑

k=1

λkTr(Sk) (15)

s.t. r ∈ Cf ({Hk(ν)}, {Sk}), (16)

Sk � 0 ∀k. (17)

To simplify the above problem further, the following lemma
borrowed from [4] is utilized to remove the constraint in (16).

Lemma 1:For any permutationπ over {1, 2, . . . ,K}, r(π)

defined as

r
(π)
π(k) = E
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log

∣

∣

∣
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i=1 Hπ(i)(ν)S∗

π(i)H
†
π(i)(ν) + I

∣

∣

∣

∣

∣

∣

∑k−1
i=1 Hπ(i)(ν)S∗

π(i)H
†
π(i)(ν) + I

∣

∣

∣



 , (18)

is a vertex of the polymatroidCf ({Hk(ν)}, {Sk}) in R
K
+ .

Furthermore, for anyµ � 0, the solution to the problem

Maximize

K
∑

k=1

µkrk s.t. r ∈ Cf ({Hk(ν)}, {Sk})

is attained by a vertexr(π∗), whereπ∗ is such thatµπ∗(1) ≥
µπ∗(2) ≥ . . . ≥ µπ∗(K).

With the above lemma, the problem in (15) can be further
simplified as the maximization of

K
∑

k=1

(

µπ(k) − µπ(k+1)

)

E

[

1

2
log

∣

∣

∣

∣

k
∑

i=1

(

Hπ(i)(ν)

Sπ(i)H
†
π(i)(ν)

)

+ I

∣

∣

∣

∣

]

−
K
∑

k=1

λkTr(Sk), (19)

whereSk � 0 for k = 1, . . . ,K andπ is a permutation such
that µπ(1) ≥ µπ(2) ≥ . . . ≥ µπ(K) ≥ µπ(K+1) = 0. Since
the above maximization is concave with twice differentiable
objective function and only positive semi-definite constraints,
it can be solved numerically,e.g., by interior-point method [7].

Next, we consider the maximization of the dual function,
g(µ) over all possible values ofµks. Althoughg(µ) is con-
cave, it is not necessarily differentiable and therefore optimiza-
tion algorithms that exploit the function’s differentialssuch
as Newton method cannot be employed directly. Nevertheless,
performing a “gradient” based search to find the optimal values
of µks is still possible. The search direction is based on what is
known as a “sub-gradient”. For the concave functiong(µ), θ ∈
R

K is called a sub-gradient atµ if g(φ) ≤ g(µ)+(φ−µ)T θ

for all φ ∈ R
K
+ . Thus the optimal values ofµ∗, cannot lie in

the half-space(φ−µ)T θ < 0. The following lemma provides
us with a sub-gradient forg(µ).

Lemma 2: If {S∗
k} and {r∗k} minimize L({Sk}, {rk},µ)

over D, i.e. L({S∗
k}, {r

∗
k},µ) = g(µ), then the vectorθ

defined asθk = Rk − r∗k is a sub-gradient atµ.
Proof : For anyφ � 0, g(φ) ≤ L({S∗

k}, {r
∗
k},φ) = g(µ)+

∑K
k=1(φk − µk) (Rk − r∗k).
With the sub-gradient at hand, the optimal dual variable

µ∗ can be found by a gradient-based search method like sub-
gradient method or ellipsoid method [7]. We omit here their
details that can be found in standard optimization texts like [7].
We only point out that from programming implementation,
the ellipsoid method is more suitable than the sub-gradient
method in solving the problem due to its superior convergence
behavior and guaranteed convergence. It is also noted that the
sub-gradient method may exhibit oscillation when some of the
µ∗

ks are indeed equal. It is also remarked that the algorithm
proposed in [4, Algorithm 5.3] can be modified to search for
the optimal value ofµ∗, which, like sub-gradient method, may
also exhibit oscillation when some ofµ∗

ks are equal.
So far we have developed numerical routines to determine

the optimal value for the problem in (3),p∗ =
∑K

k=1 Tr(S
∗
k),

and associated primal and dual optimal solutions,{S∗
k, r∗k}

and µ∗, respectively. In the following, we address the issue
on the uniqueness of the solutions. While uniqueness of the
dual optimal solutionµ∗ is not an issue in convergence of
the proposed algorithms, uniqueness of the primal variables
plays an important role in their convergence behavior. Since
we are using a primal-dual approach to solve the optimization
problem in (3), the primal variables{S∗

k, r∗k} that optimize
the Lagrangian forµ∗ might not satisfy the rate constraints
in (4). However if we prove that these solutions are unique,
from the Karush-Kuhn-Tucker (KKT) optimality conditions,
they satisfy the rate constraints automatically.

Uniqueness of the Solutions:First we study the effect
of µ∗ on the convergence of our algorithms. Consider a
fading SIMO (single transmit antenna and multiple receive
antennas) MAC with two users. The channel of the two
users,{H1(ν)} and{H2(ν)}, are independent and each has
independent entries distributed asCN (0, 1). Fig. 2 shows the
capacity region of this fading SIMO-MAC under a sum-power
constraint, i.e., p1 + p2 ≤ 10. It is seen that the capacity
region is indeed symmetric. The dashed line and the dotted
line show how two vertices of the constituting polymatroids
sweep the capacity region asp1 and p2 vary while keeping
their sum equal to 10. The dashed line corresponds to the case



when user 2’s message is decoded before user 1’s while the
dotted line does for the reversed decoding order. Any point,
e.g., point A shown in Fig. 2, on the dashed or dotted line
corresponds to a vertex of some polymatroid. Also note that
there is a region on the boundary that does not consist of the
vertices. We refer to this part as the “time-sharing” region
which corresponds to -45 degree straight lines of constituting
polymatroids (point B is in this region). Hence, any point inthe
time-sharing region is not achievable by successive decoding
and time-sharing of transmission rates and powers as well as
decoding orders between two users is required to achieve this
point if successive decoding is used at the receiver.

Suppose now the rate-pair indicated by point A is the
actual rate constraint for the problem in (3) and the problem
minimizes the weighted sum-power of the two users with equal
weights, i.e., λ1 = λ2 = 1. In this case, the minimum sum-
power required is thus 10. Because point A is a vertex, Lemma
1 implies thatµ∗

1 ≤ µ∗
2 in the associated optimal dual variables,

µ∗. On the other hand, if the rate-pair indicated by point B is
the rate constraint for a sum-power minimization problem in
(3), µ∗ must have equal entries,i.e., µ∗

1 = µ∗
2. Since there is

no “sharp” vertex with multiple tangent lines on the boundary
of this capacity region under the sum-power constraint, we can
conclude thatµ∗ is unique for any rate pair on the boundary.

Furthermore, in the Appendix, it is shown that the set of
optimal transmit covariance matrices,{S∗

k} is indeed unique.
The only question remains to be answered is whether the
set of optimal rates,r∗k is unique. The answer is yes for
the case where allµ∗

ks are different and positive. Recall that
r∗ maximizes

∑

k µ∗
krk over Cf ({Hk(ν)}, {S∗

k}) and since
{S∗

k} is unique and all weights are different and positive ,r∗ is
unique. In this case, from KKT conditions,r∗ks automatically
satisfy the rate constraints in (4). Note that for the case where
some of theµ∗

ks are equal, the optimal rates,r∗ks may not
be unique and consequently they may not satisfy the rate
constraints. As an example, assume the target rate is point
B in Fig. 2. In this case,µ∗

1 = µ∗
2 and any point on the

straight line maximizes
∑

k µ∗
krk over Cf ({Hk(ν)}, {S∗

k}).
Moreover, our proposed numerical routine obtains either point
C or D as the optimalr∗ which clearly does not satisfy the
rate constraints. This is because the simplified optimization
in (19) always tends to use a vertex of the capacity region
as the solution forr∗. However, this is not an issue in the
convergence of our algorithm. As far as we know{S∗

k} is
unique, we can obtain the target rate as a convex combination
of the vertices of the unique polymatroid,Cf ({Hk(ν), {S∗

k}}.

B. Sum-Power Minimization with Power-Profile

In this subsection, we propose a solution to the problem in
(7), for which a new set of equality constraints is imposed in
(11) to regulate the transmitted power of each user according
to a given power profile vector,α. Similarly as done in Section
III-A, we consider the Lagrangian of the primal problem in
(7). Let the vector of dual variablesµ = (µ1, . . . , µK) ∈ R

K
+

be associated with the inequality constraints in (8) andδ =
(δ1, . . . , δK) ∈ R

K associated with the equality constraints
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Fig. 2. Capacity region for two-user fading MAC witht1 = t2 = 1, r = 2

andp1 + p2 ≤ 10.

in (11) andD denotes the set specified by the remaining
constraints in (9) and (10). We have

L({Sk}, {rk},µ, δ) =

K
∑

k=1

λkTr(Sk) −
K
∑

k=1

µk(rk − Rk)

−
K
∑

k=1

δk

(

Tr (Sk) − αk

K
∑

k′=1

Tr(Sk′)

)

. (20)

Define the Lagrange dual function as

g(µ, δ) = min
{Sk},{rk}∈D

L({Sk}, {rk},µ, δ). (21)

And the optimal value of the primal problem can be then
attained as

p∗ = max
µ�0,δ

g(µ, δ). (22)

Similar numerical routine as in Section III-A can be developed
for solving the above problem and the details are omitted
here for brevity. It is worth pointing out that the dual func-
tion, g(µ, δ), has also a sub-gradientρk defined asρk =
α
∑K

k′=1 Tr(S
∗
k′)− Tr(S∗

k), with respect to the dual variable
δk, for k = 1, . . . ,K, whereL({S∗

k}, {r
∗
k},µ, δ) = g(µ, δ).

IV. N UMERICAL RESULTS

In this section we characterize the power region for a
Rayleigh fading MIMO-MAC withr = 2 antennas at the base
station andK = 2 mobile users each equipped witht = 2
antennas. We consider the case where the receive antennas
are separated enough that they experience independent fading.
However, due to the size limitations, this might not be the case
for the mobile users and the fading levels might be correlated
across transmit antennas. Given that, we employ the channel
model that describes the channel for userk asHk = HwR

1/2
tk

for k = 1, 2, where Rtk is the covariance matrix for the
transmit antenna fading levels of userk, andHw is a r by t

matrix, assumed to be independent across two users and each
having independent entries distributed asCN (0, 1).
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We assume the receiver has complete CSI knowledge and
can exctractRtk from it. Based onRtk it computes the
transmit covariance matrix of userk that minimizes the
weighted-sum power. Similar to the proof given in [6], it can
be shown that the expression in (19) is maximized forSk

that has the same set of eigenvector asRtk for k = 1, 2.
Equivalently, ifQkΛkQ

†
k be the eigenvalue decomposition of

Rtk, then the optimalSk would be in the form ofQkΣkQ
†
k

for some diagonal matrixΣk. This observation reduces the
number of variables fromKt2 to Kt that in turn reduces the
complexity of our proposed algorithm.

Monte-Carlo simulation withN = 5000 samples is used
to approximate the expectation terms. Fig. 3 plots the power
region of the described MAC forR = [2 1]T nuts per
transmission and

Rt1 =

[

1 0.4
0.4 1

]

Rt2 =

[

1 0.5
0.5 1

]

. (23)

To illustrate the effectiveness of our proposed algorithm,we
compare the weighted-sum power obtained from our algorithm
for some weights to the one obtained from another sub-optimal
algorithm. In this sub-optimal algorithm, first the receiver
picks an arbitrary decoding order for the users. Starting from
the last decoded user, it minimizes the power required to main-
tain the target rate for that user, while considering the users
that have not been decoded yet as interference. For example,
for decoding order 2 then 1, the receiver first computesS1

with minimum trace that satisfyE[ 12 log |H1S1H
†
1 +I|] ≥ 2,

then it fixesS1 and computes the minimum traceS2 that
satisfy E[ 12 log |H1S1H

†
1 + H2S2H

†
2 + I|] ≥ 3. Each of

these optimizations are convex. The powers obtained by this
sub-optimal algorithm are shown by (*) in Fig. 3 for two
different decoding orders. The minimum value of0.4p1+0.6p2

to support the target rate[2 1]T is 11.5 by our algorithm.
However, the receiver running this sub-optimal algorithm will
require 13.3 units of power if user 1 is decoded first and 12.8
units of power if user 2 is decoded first.

V. CONCLUSION

Power region for a fading MIMO-MAC is considered and
efficient numerical algorithms for characterizing this region is
proposed.

APPENDIX

In the Appendix, we prove that the optimal values of the
transmit signal covariance matrices,{S∗

k}, are unique. Without
loss of generality assumeµ∗

1 ≥ µ∗
2 ≥ . . . ≥ µ∗

K > µ∗
K+1 =

0. Let {S(1)
k } and {S

(2)
k } be two optimal solutions of the

problem in (3). From (12) and using Lemma 1, it can be shown

p∗ =
K
∑

k=1

λkTr(S
(j)
k ) +

K
∑

k=1

µ∗
kRk −

K
∑

k=1

(

(

µ∗
k − µ∗

k+1

)

E

[

1

2
log

∣

∣

∣

∣

∣

k
∑

i=1

Hi(ν)S
(j)
i Hi(ν)† + I

∣

∣

∣

∣

∣

]

)

,

for j = 1, 2. Since the problem is convex, for anyβ ∈ [0, 1],
Sk = βS

(1)
k + β̄S

(2)
k is also an optimal solution wherēβ =

1−β. This fact together with the concavity oflog | · | function
implies that

E

[

log
∣

∣

∣
βA(1)(ν) + β̄A(2)(ν)

∣

∣

∣
−

β log
∣

∣

∣
A(1)(ν)

∣

∣

∣
− β̄ log

∣

∣

∣
A(2)(ν)

∣

∣

∣

]

= 0,

where A(j)(ν) ,
∑K

k=1 Hk(ν)S
(j)
k Hk(ν)† + I. Let f(β)

denote the function on the LHS of the above equation, then
f(β) = 0, for all 0 ≤ β ≤ 1. Becausef(β) is twice
continuously differentiable function, both its first and second
derivatives must vanish,i.e., d2

dβ2 f(β) =

−E

[

Tr

(

(

(A(1)(ν) − A(2)(ν))(βA(1)(ν) + β̄A(2)(ν))−1
)2
)]

must be equal to zero. For everyν, the matrix inTr(.) is a
positive semi-definite matrix and hence has a positive trace.
Since the expectation of a positive random variable is zero,it
must be zero a.e., orA(1)(ν) = A(2)(ν) a.e.. This implies that
S

(1)
k = S

(2)
k for the case of infinite number of fading states.
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