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Abstract—For fading broadcast channels (BC), a throughput
optimal scheduling policy called queue proportional scheduling
(QPS) is presented via geometric programming (GP). QPS finds
a data rate vector such that the expected rate vector over all
fading states is proportional to the current queue state vector
and is on the boundary of the ergodic capacity region of a fading
BC. Utilizing the degradedness of BC for each fading state, QPS
is formulated as a geometric program that can be solved with
efficient algorithms. The GP formulation of QPS is also extended
to orthogonal frequency-division multiplexing (OFDM) systems
in a fading BC. The throughput optimality of QPS is proved,
and it is shown that QPS can arbitrarily scale the ratio of each
user’s average queueing delay. Throughput, delay, and fairness
properties of QPS are numerically evaluated in a fading BC and
compared with other scheduling policies such as the well-known
maximum weight matching scheduling (MWMS). Simulation
results for Poisson packet arrivals and exponentially distributed
packet lengths demonstrate that compared with MWMS, QPS
provides a significant decrease in average queueing delay and has
more desirable fairness properties.

Index Terms—Broadcast channels (BC), channel capacity,
convex optimization, cross-layer resource allocation, fairness, geo-
metric programming (GP), orthogonal frequency-division multi-
plexing (OFDM), queueing analysis, queueing delay, scheduling.

I. INTRODUCTION

OPTIMAL allocation of communication resources, such as
the transmit power and data rate, is a central problem in

multiuser communication systems. With perfect channel state
information (CSI) at both the transmitter and receivers, each
user’s transmit power and rate can be determined based on the
channel capacity region. This information-theoretic approach to
resource allocation, which ignores the randomness in packet ar-
rivals and queueing, cannot guarantee stability of queueing sys-
tems. In [1], the network capacity region is defined as a set of
all packet arrival rate vectors for which it is possible to keep
every queue length finite. For bursty input traffic, it is gener-
ally difficult to estimate the packet arrival rates. Thus, resource
allocation solely based on CSI is unable to update rate alloca-
tion properly according to the dynamics of the input traffic. As
a result, even for a packet arrival rate vector within the network
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capacity region, some users’ queue backlogs may become un-
acceptably large, causing long queueing delay as well as buffer
overflow.

To account for queueing parameters, a cross-layer approach
to resource allocation has been recently proposed in [2]–[5]
and the references therein. These works show that considera-
tion of both CSI and queue state information (QSI) allows the
entire network capacity region to be achieved in fading broad-
cast and multiple-access channels (MACs). A scheduling policy
that achieves the network capacity region is called throughput
optimal. One well-known throughput optimal scheduling algo-
rithm is maximum weight matching scheduling (MWMS) that
maximizes the inner product of the queue state vector and the
achievable rate vector [6], [7]. This MWMS policy is proved to
be throughput optimal for both fading broadcast channels (BC)
and MAC [1], [2]. Recent applications of MWMS can be also
found in OFDM downlink systems [8] and MIMO downlink
systems [4], [5]. For the fading MAC, [9] shows that MWMS
actually minimizes the average queueing delay over all users if
symmetric channels and equal packet arrival rates are assumed.
This property is a consequence of the polymatroidal structure
of the MAC capacity region [10]. However, there are no such
structural properties in the fading BC capacity region so that
even with symmetry assumptions, MWMS cannot guarantee the
minimum average queueing delay.

This paper presents another throughput optimal scheduling
policy called queue proportional scheduling (QPS), which has
more desirable delay and fairness properties than MWMS in a
fading BC. Given the current queue state, QPS allocates a data
rate vector such that the expected rate vector averaged over all
fading states is proportional to the current queue state vector and
is on the boundary of the ergodic capacity region of a fading BC.
Utilizing the degradedness of BC for each fading state, QPS is
formulated via geometric programming (GP) [11]. GP is a spe-
cial case of convex optimization problems for which very effi-
cient interior point methods have been developed [12]. Also, the
GP formulation of QPS is extended to orthogonal frequency-di-
vision multiplexing (OFDM) which has received much attention
as a promising modulation technique for next-generation wire-
less communication systems supporting high data rate services.

Reference [13] introduced the minimum draining time
(MDT) policy, which was shown to be throughput optimal and
shown to minimize the draining time of the queue backlogs in
a fluid model with no further arrivals. Our work was performed
independent of [13], and it turns out that QPS has the properties
of the MDT policy. We present another approach for proving
the throughput optimality of QPS, which is different from [13].
Also, using the new proof, QPS is shown to have the capability
of arbitrarily scaling the ratio of each user’s average queueing
delay. This fairness property of QPS is desirable for satisfying
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different quality-of-service (QoS) requirement of each user
[14]. From derived GP formulations, the queueing delay for
Poisson packet arrivals and exponentially distributed packet
lengths is simulated under various scheduling policies. Nu-
merical results corroborate the throughput optimality of QPS
and indicate that QPS provides significantly smaller average
queueing delay than MWMS. Moreover, it is observed that with
the QPS policy, the fairness in terms of average queueing delay
can be guaranteed for any arrival rate vectors. Compared with
other scheduling policies, QPS has larger number of variables
and constraints, which increases computational complexity. In
order to further reduce the complexity of QPS, we present a
method to approximate the ergodic capacity region of a fading
BC utilizing the hypersphere. This method is shown to make
the complexity of QPS comparable to other policies while
allowing only a small increase in the average queueing delay.

The organization of this paper is as follows. Section II de-
scribes the model of fading broadcast channels and queueing
systems. Together with the introduction to GP, the QPS policy
is presented and formulated via GP in Section III. Section IV
provides GP formulations of three well-known scheduling poli-
cies: MWMS, best channel highest possible rate (BCHPR), and
longest queue highest possible rate (LQHPR). In Section V, the
throughput optimality of QPS is proved, and its fairness and
delay properties are investigated. Section VI presents the hyper-
sphere approximation of the ergodic capacity region of a fading
BC. Numerical results and discussion are given in Section VII,
and finally, Section VIII provides concluding remarks.

Notation: Vectors are bold-faced. denotes the set of real
-vectors and denotes the set of nonnegative real -vec-

tors. Given two column vectors and of length ,
is expressed as an inner product . The curled inequality
symbol (and its strict form ) is used to denote the compo-
nent-wise inequality between vectors: means ,

. A column vector with all entries being 1 is de-
noted as ; the length of will be clear from context. denotes
expectation over the random variable .

II. SYSTEM MODEL

This section presents the models of fading broadcast channels
and queueing systems that are used in this paper. The overall
system is summarized in Fig. 1.

A. Fading Broadcast Channels

In this paper, a block fading channel is assumed where the
fading state is constant over one scheduling period and each
scheduling period undergo es independent and identically dis-
tributed (i.i.d.) fading. Also, both the transmitter and receivers
are assumed to have perfect knowledge of CSI. It is known
that the capacity region of a Gaussian BC can be achieved by
utilizing superposition coding at the transmitter in conjunction
with successive interference cancellation at each receiver [15].
With this optimal scheme, one user can remove the interference
caused by other users’ messages encoded earlier. Consider a
Gaussian broadcast channel with a single transmitter sending in-
dependent messages to users over two-sided bandwidth .
It is assumed that the transmitter has a peak power constraint of

Fig. 1. (a) Block diagram of the queueing system and scheduler. (b) Fading
broadcast channel models.

on each transmission. At time , the received signal of user
is expressed as

(1)

where the transmitted signal is composed of indepen-
dent messages, the complex channel gain of user is denoted
by and ’s are i.i.d. zero-mean Gaussian band-limited
noises with power . As in [16], the channel gain can be
combined with the noise component by defining an effective
noise . Then, the equivalent received signal
is given by

(2)

where the power of conditioned on the channel gain is
defined as . Without loss of generality,

is assumed throughout this paper for simplicity. The
effective noise power is used to denote a
fading state. The ergodic capacity region of a fading BC is the
set of all long-term average rate vectors achievable in a fading
BC with arbitrarily small probability of error. A power control
policy over all possible fading states is defined as a function
that maps from any fading state to each user’s transmit power

. Let denote the set of all power policies satisfying the
sum power constraint which is given by

(3)
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For each fading state, the channel is a degraded Gaussian broad-
cast channel, where the capacity region is achieved by encoding
a message of the user with smaller effective noise power later.
With this optimal ordering, the capacity of user for a fading
state is given by

(4)

where and is the in-
dicator function, which equals 1 if its argument is satisfied; 0
otherwise. Then, the capacity region of a Gaussian BC for the
fading state and transmit power is

(5)

Let denote the set of achievable rates averaged over all
fading states for a power policy

(6)

With the sum power constraint and perfect CSI at the trans-
mitter and receivers, the ergodic capacity region of a fading BC
is given by [16]

(7)

where the region is convex.

B. Queueing Systems

The queueing system and scheduler are modeled by the fol-
lowing: data sources generate packets according to indepen-
dent Poisson arrival processes , which are
stationary counting processes with ,
and for . Packet
lengths in bits are i.i.d. exponentially distributed with

and . We assume packet lengths
are independent of packet arrival processes; thus, user ’s av-
erage arrival rate in bits is given by . The transmitter
has output queues assumed to have infinite capacity. Packets
from source enter queue and wait until they are served to
receiver . The scheduling period is denoted by , and without
loss of generality, we assume . At time , the fading
state is represented as , and
the queue state vector is ,
where denotes the number of bits waiting to be sent
to user . The allocated rate vector at time is represented
as ,
which is determined by the scheduler based on both fading
and queue states. For simplicity, and are
interchangeably used throughout this paper. is achievable
only when it is within the capacity region defined
in (5).

A time interval with is denoted by the
time slot . It is assumed that the rate allocation is determined at
the beginning of each time slot, and it remains unchanged until
the new time slot begins. Since and are assumed,

for is equivalent to a vector denoting the
number of bits supported by each user in the time slot . De-
fine as the number of arrived bits at user ’s queue in the
time slot . Then, after a scheduling period, user ’s queue state
vector is equal to .
In this paper, each scheduling policy has an explicit constraint
of ; thus, operation can be simply re-
moved. We adopt the stability definition of queueing systems
given in [1]. Therefore, with the overflow function defined by

, queue is said
to be stable if as . An arrival rate vector is
stabilizable if there exists a feasible power-and-rate-allocation
policy that keeps all queues stable. A set of stabilizable arrival
rate vectors forms the network capacity region [1], and a sched-
uling method that achieves the entire network capacity region is
called throughput optimal.

III. QUEUE PROPORTIONAL SCHEDULING VIA

GEOMETRIC PROGRAMMING (GP)

In this section, QPS is introduced and formulated via GP.
First, the next section presents brief introduction of GP.

A. Geometric Programming (GP)

GP is a special form of convex optimization problems
for which very efficient algorithms have been developed
[12], and a variety of GP applications can be found in
communication systems [18]. GP uses monomial and posyn-
omial functions. A monomial function has the form of

, where ,
and . A posynomial is a sum of monomials

. Then, GP takes the
following form:

(8)

where and are posynomials and are monomials. Al-
though this is not a convex optimization problem, with a change
of variables: and , we can convert it
into a convex form as the following:

(9)

The solution of this problem can be easily found by using very
efficient GP algorithms that are well-developed [18].

B. Queue Proportional Scheduling via GP

At time slot , MWMS, a well-known throughput optimal
scheduling policy, assigns the following data rate vector:

(10)

where , is the fading state vector at
time , and . is the user ’s
priority weight which is set to 1 for all users if everyone has the
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same priority. This algorithm tends to allocate higher data rate
to the user with longer backlog or better channel conditions. By
jointly considering queue and channel states, MWMS is shown
to achieve the entire network capacity region [6].

In contrast, the proposed QPS algorithm allocates the fol-
lowing data rate vector at time slot :

(11)

where is a scalar. Assuming equal priority on each user,
. Then, the average rate vector under the QPS

policy, is proportional to the queue
state vector and also lies on the boundary surface of the er-
godic capacity region. As shown in [17], each boundary point
of in a fading BC is a solution to the optimization
problem , where for some .
When such is given, is a solution to the
optimization problem , where for
any fading state . Therefore, the data rate vector assigned
by QPS at time slot can be expressed as

(12)

Under the QPS policy, is determined based on the current
queue state vector, as well as the ergodic capacity region of a
fading BC. However, as shown in (10), MWMS only considers
the queue state vector in deriving the weight vector.

Fig. 2 illustrates two distinct expected rate vectors supported
by MWMS and QPS for the queue state vector . A two user
Rayleigh-fading BC is considered, where , user 1’s av-
erage signal-to-noise ratio (SNR) is 13 dB and user 2’s average
SNR is 7 dB. Each user’s average SNR is defined as the av-
erage received SNR when the total transmit power is allocated
to that user. Since is assumed, bits per second
per Hertz (bps/Hz) is equivalent to bits/scheduling period. Thus,
the ergodic capacity region in Fig. 2 represents the set of vec-
tors denoting each user’s expected number of bits served in one
scheduling period. Also, note that with , the net-
work capacity region is the same as the ergodic capacity region.
From Fig. 2, as the queue state changes, MWMS is expected to
exhibit more variations in the average rate vector compared with
QPS. According to queueing theory, lower variance in service
rate or arrival rate provides smaller queueing delay [19]. There-
fore, QPS is expected to have smaller average queueing delay
than MWMS, as demonstrated in Section VII.

By utilizing the degradedness of BC for each fading state,
the rate allocation of QPS can be formulated via GP. Assume
that the most recent fading states are sampled, which are
denoted by . To reduce the correlation among
samples, the sampling period needs to be determined in consid-
eration of fading coherence time. In this paper, the sampling pe-
riod is simply assumed equal to one scheduling period because
of i.i.d. block fading over each scheduling time. Without loss of
generality, is assumed to denote the current fading state

. Then, consider a family of parallel Gaussian broadcast

Fig. 2. Ergodic capacity region of a two user Rayleigh-fading BC, and expected
rate vectors of QPS and MWMS when the queue state vector isQ(t) (P = 2,
user 1’s average SNR = 13 dB and user 2’s average SNR = 7 dB).

channels, such that in the th component channel, user has ef-
fective noise variance , rate , and power . Note
that each BC has a power constraint of . At time slot , QPS
allocates the data rate vector that is a solu-
tion of the following optimization problem:

(13)

From (4) and (5), the capacity region of the th Gaussian BC
is given by

(14)

where is the permutation such that

, and is the fraction of the total transmit
power used for user ’s signal in the th Gaussian BC.
When is on the boundary of the capacity region, solving
the ’s in terms of the rate vector yields the fol-
lowing equations:

(15)



SEONG et al.: QUEUE PROPORTIONAL SCHEDULING VIA GEOMETRIC PROGRAMMING IN FADING BROADCAST CHANNELS 1597

where . As shown in [16], (14) is equivalent to

(16)

Using this relation, (13) can be converted into

(17)

where the second set of constraints is added to avoid al-
locating redundant power to some users with short queue
lengths. If the optimization variable is defined as

, (17) is a standard
geometric program with the globally optimal solution

. Then, the data rate vector sup-
ported under the QPS policy is ,
and the corresponding power allocation can be obtained by
solving (15) for . This GP formulation of QPS
can be extended to OFDM systems, as discussed in the next
subsection.

C. Extension to OFDM Systems

In a fading BC with intersymbol interference (ISI), the ISI
can be completely removed by exploiting OFDM techniques
with sufficient number of tones, i.e., the frequency response
can be made flat within each tone. Consider OFDM systems
with users and tones. On each tone, the channel is equiv-
alent to a fading BC without ISI, which becomes a degraded
Gaussian BC for the fixed fading state. Therefore, by extending
the results from Section III-B, QPS for OFDM systems in a
fading BC can be also converted into GP. At tone , sampled
fading state vectors are denoted by , where

. For the th sampled fading state,
, , and denote the effective noise variance,

rate, and power on user ’s tone , respectively. Without loss
of generality, the th sample is assumed to denote the current

fading state. Also, a total power constraint of is imposed on
each transmission of OFDM symbols. Define as the per-
mutation such that .
By carefully applying above updates to (16) and (17), QPS in
OFDM systems can be converted into the following GP:

(18)

where . If the optimization variable is defined as

, (18) is a
standard geometric program with the globally optimal solution

. Consequent rate allo-
cation on tone under the QPS policy is

for , and the corresponding power al-
location can be obtained by applying (15) on each tone with

.

IV. OTHER SCHEDULING POLICIES VIA GP

This section provides GP formulations of three other sched-
uling methods in a fading BC: MWMS, BCHPR, and LQHPR.

A. Maximum Weight Matching Scheduling (MWMS) via GP

At time slot , the rate allocation under MWMS can be found
by solving (10), which is the weighted sum-rate maximization
problem over considering the queue state vector

as the weight vector. Utilizing (16), MWMS can be for-
mulated as the following GP:

(19)

where is the permutation such that
. Let be the solution of (19), then

.
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B. Best Channel Highest Possible Rate (BCHPR) via GP

Under the BCHPR policy, a user with the better channel con-
dition takes higher priority in resource allocation. Also, user is
served only if some transmit power remains after clearing queue
backlogs of users with higher priorities than user . This algo-
rithm is equivalent to allocating a data rate vector that minimizes
the -norm distance from the current queue state vector. The

-norm of a vector is defined as
. At time slot , the BCHPR policy supports the rate vector

that is a solution of the following opti-
mization problem:

(20)

With the constraint of , the solution of the above
problem is unaffected by . After removing this sum-
mation from the objective, (20) can be converted into the fol-
lowing GP:

(21)

Let be the solution of (21), then .
When for any , the BCHPR policy
solely depends on channel conditions. At each scheduling time,
it allocates total power to the single user with the best channel
condition, which is a sum-rate maximizing scheme in a fading
BC [20].

C. Longest Queue Highest Possible Rate (LQHPR) via GP

LQHPR schedules a data rate vector such that the longest
queue length is minimized, which is equivalent to selecting a
rate vector minimizing the -norm distance from the current
queue state vector. The -norm of a vector is defined
as . Hence, at time slot , the
LQHPR policy assigns the rate vector
that is a solution of the following optimization problem:

(22)

Let denote the upper bound on such that
. Then, the above equation can be represented as

(23)

Define the optimization variable as then, (23) is
a standard geometric program with the globally optimal point

. The data rate vector supported under LQHPR
is .

V. PROPERTIES OF THE QPS POLICY IN THE FADING BC

In this section, QPS is proved to be throughput optimal in a
fading BC, and its fairness and delay properties are analyzed.

A. Throughput Optimality of QPS

The next theorem shows the convergence property of the
expected queue state vector under QPS, which is crucial in
showing throughput optimality and fairness properties.

Theorem 1: Under the QPS policy in a fading BC, as ,
the expected queue state vector conditioned on any initial queue
state, converges to a vector proportional to the arrival rate vector.

Proof: Let be the initial queue state vector, and
denote the bit arrival rate vector by , where

. Consider time slot when some queues have backlogs
and let be equal to . Without loss
of generality, assume . Then, can be represented as

, where
and such that for

. The expectation of conditioned on
becomes

(24)

Under QPS, , where
equals subject to . (24) can

be converted into the following form:

(25)

where . If , then
; hence, and .

Otherwise, and is strictly less than 1. Let the
angle between and be denoted by that is

(26)

Since , . This
paper assumes i.i.d. block fading and Poisson packet arrivals.
Therefore, each user’s queue state is the first-order Markov
process, which allows the following relation to hold from
Chapman–Kolmogorov equations [21]

(27)

Since , the right-hand side
(RHS) of (27) has a direction closer to than

. Consequently, the following relation is obtained:

(28)

Define an infinite sequence for
. Since is monotonically decreasing and nonneg-

ative, is a converging sequence. In the RHS of (27),
,
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where such that . Therefore, (27)
can be expressed as

(29)

By the convergence property, as , the angle between
and becomes

zero. Therefore, to satisfy the equality in (29) when ,
the direction of these two vectors should converge to that of .
As a result, it can be concluded that , which
completes the proof of the theorem.

Based on Theorem 1, the throughput optimality of QPS can
be proved by using Lyapunov stability analysis [1].

Theorem 2: In a fading BC, the QPS policy is throughput
optimal.

Proof: With , the network capacity region
is equivalent to . Thus, we need to show that for any

, where denotes the interior of a set ,
the queue lengths for all users can be kept finite. First, choose
the Lyapunov function . The evolu-
tion of in one scheduling interval is

. Conditioned
on , the expected drift of the Lyapunov function is

(30)

To prove the throughput optimality of QPS, it is required to
show that as queue lengths grow sufficiently large, (30) becomes
strictly negative for any [22]. By Theorem 1,
in the stationary regime, for some .
Thus, can be represented as

, where and
for . As increases,

with probability 1, which re-
sults in
with probability 1.
such that . If , then .
Thus, when grows sufficiently large, the Lyapunov drift
in (30) becomes strictly negative for any .

B. Fairness and Delay Properties of QPS

This section shows that for any arrival rates, QPS can arbi-
trarily scale the ratio of each user’s average queueing delay.
Also, it is shown that without new packet arrivals, QPS min-
imizes the expected time to empty all the backlogs. First, the
next theorem shows that QPS has a capability of guaranteeing
fairness among users in terms of average queueing delay.

Theorem 3: In a fading BC under the QPS policy, as ,
each user’s average queueing delay becomes equalized.

Proof: From Theorem 1, the average queue state vector be-
comes proportional to the arrival rate vector as . By
Little’s theorem [23], the average queue length is the same as
a product of the arrival rate and average queueing delay. There-
fore, with QPS policy, each user’s average queueing delay is
equalized after the convergence.

In general, QPS can satisfy a different QoS for each user in
terms of average queueing delay. This property is shown in the
following corollary to Theorem 3.

Corollary 1: Let denote the priority vector on average
queueing delay. For example, means that the
average delay of user 1 should be half of user 2’s average
delay. This priority can be satisfied with the QPS policy
by replacing with the modified queue state vector

.
Proof: From Theorem 1, the average of a modified queue

state vector converges to for some . Thus, user
’s average queue length converges to , and by Little’s

theorem, user ’s average queueing delay becomes .
One reasonable way of choosing the priority vector is to

find a vector proportional to each user’s maximum achievable
average rate when no other users transmit.

The next theorem shows that without new packet arrivals,
QPS minimizes the expected time to empty all the queue
backlogs.

Theorem 4: Let the initial queue state vector be
, and assume that there are no more packet arrivals after

. Then, in a fading BC, the QPS policy presuming the constant
queue state vector of for all minimizes the expected
time until all the queue backlogs are cleared.

Proof: Let denote the expected time until a sched-
uling algorithm empties all the queue backlogs . The total
supported data vector is . Thus, given , the average data
vector allocated per each scheduling period can be expressed
as . Since is convex,

is always satisfied. Therefore, is minimized by
assigning at time slot such
that

(31)

From the definition of QPS, it can be easily seen that
is equal to , which completes

the proof of the theorem.
In actual systems with random packet arrivals, the property

in Theorem 4 can be approximated by replacing with the
current queue state vector . Therefore, at each scheduling
time, QPS tries to minimize the expected time to empty current
queue backlogs. This property of QPS results in low average
queueing delay, which will be demonstrated to be much smaller
than MWMS in a fading BC.

VI. HYPERSPHERE APPROXIMATION OF THE ERGODIC

CAPACITY REGION OF A FADING BC

At each scheduling time, QPS solves (17) which has
optimization variables and constraints. In order
to capture the fading statistics, QPS requires the number of sam-
pled fading states, . Even though GP can be efficiently
solved and the constraint matrix of (17) is sparse, im-
plies that the computational complexity of QPS can be higher
than other scheduling polices such as MWMS, which has
variables and constraints. The expected rate vector under
QPS is a boundary point of the ergodic capacity region that
is proportional to the current queue state vector. The rate al-
location satisfying this condition can be obtained by solving
(12) with a proper weight vector determined from the cur-
rent queue state vector and ergodic capacity region. With the
QPS policy, is a normal vector of the tangent plane, which
is drawn at the boundary point of supported by QPS.
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Thus, if the boundary surface of can be characterized
with a simple function, finding becomes much easier, and the
computational complexity of QPS becomes comparable to other
scheduling policies.

This section proposes a simple method to approximate the
boundary surface of by utilizing a hypersphere. By al-
lowing a small increase in the average queueing delay, this hy-
persphere approximation method solves the complexity issue of
QPS. First, boundary points on are sampled
to characterize the -dimensional hypersphere. points cor-
respond to each user’s average rate when total transmit power
is allocated to that user. They are equivalent to the intercept
of each user’s rate axis with . The remaining point is
the maximum average sum-rate vector achieved by transmit-
ting only to the best user at each scheduling period. The next
lemma provides the uniqueness of -dimensional hypersphere
constructed by using these rate vectors.

Lemma 1: In a fading BC with users, there exists a
unique -dimensional hypersphere characterized with each
user’s maximum average rate vector and the maximum average
sum-rate vector.

Proof: Let user ’s maximum average rate vector be de-
noted by , where is a unit vector whose
th element is 1 and the others are 0’s. Also, denote the max-

imum average sum-rate vector by . In a fading BC,
the sum rate is maximized by allocating full power to the best
user. When excluding the trivial case, where the best user is al-
ways identical, exists outside the dimensional hyper-
plane that passes through ’s for . The center of
the -dimensional hypershere is denoted by . Then,

for . Therefore, the
following linear equation is obtained:

...

...
(32)

is nonsingular since every row of is independent of each
other. Thus, has a unique solution, which is .

Let the weight vector for QPS acquired from the hypersphere
approximation be denoted by . We can easily find a boundary
point of the hypersphere that is proportional to the current queue
state vector. If this boundary point is , .

VII. NUMERICAL RESULTS AND DISCUSSION

This section presents simulation results with Poisson packet
arrivals and exponentially distributed packet lengths to demon-
strate stability, delay, and fairness properties of the QPS al-
gorithm. In the simulation, the average packet length for each
user, the scheduling period, and the signal bandwidth are all
equal to 1. Also, the average queue length over all users is de-
fined as . First, Fig. 3 demon-
strates the effect of the number of sampled fading states,
on the average queue length under QPS. A Rayleigh-fading BC

Fig. 3. Average queue length under QPS versus user 1’s bit arrival rate for
M = 2, 5, 10, and 20 (K = P = 2, user 1’s average SNR = 13 dB, and user
2’s average SNR = 7 dB, � = 0:5� ).

presented in Fig. 2 is considered, where , user 1’s av-
erage dB, and user 2’s average dB.
Also, the bit arrival rate of user 2 is assumed to be the half of
user 1’s. Thus, the bit arrival rate vector can be represented as

. From Fig. 2, if and only if
. The average queue lengths are evaluated for different

values of when , 5, 10, and 20. Fig. 3 shows that
as increases, larger throughput and smaller average queue
length can be achieved with QPS. About 10% throughput loss
is observed with compared with the maximum achiev-
able throughput. However, this loss quickly vanishes with larger

, which becomes much less than 1% for . Also, it
is shown that for , the additional decrease in average
queue length is quite small, which suggests that about ten inde-
pendent fading samples are sufficient in using QPS.

In Figs. 4 and 5, average queue lengths are evaluated for
different values of when and , respectively.
In both figures, and five scheduling algorithms
are compared: QPS, QPS with hypersphere approximation,
MWMS, BCHPR, and LQHPR. For the two user case in Fig. 4,
the channel and input traffic conditions are assumed to be the
same as in Fig. 3. Fig. 4 shows that the average queue length
of QPS is about 30% smaller than that of MWMS for any

. Since MWMS is a throughput optimal policy, this
observation corroborates the throughput optimality of QPS.
LQHPR and BCHPR, which are not throughput optimal, have
about 12% and 5% throughput loss, respectively. QPS using the
hypersphere approximation of slightly increases the
average queue length compared to QPS. However, its average
queue length is still much smaller than MWMS. Simulation
results with ten users are presented in Fig. 5. and user
’s average SNR is equal to (dB) for .

Also, the bit arrival rate is identical for all users. QPS is ob-
served to provide about a 40%–50% reduction in average queue
length compared to MWMS, a larger difference than in the
two user case. The throughput loss of LQHPR and BCHPR is
around 30% and 10%, respectively, which is also much greater
than in Fig. 4. Accuracy of the hypersphere approximation is
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Fig. 4. Average queue length versus user 1’s bit arrival rate under five sched-
uling policies (K = P = 2, M = 10, user 1’s average SNR = 13 dB, and
user 2’s average SNR = 7 dB, � = 0:5� ).

Fig. 5. Average queue length versus user 1’s bit arrival rate under five sched-
uling policies (K = P = 10, M = 10, user i’s average SNR (dB) =
20� (i � 1), and � = � for i = 1; � � � ; 10).

somewhat lower than in the two user case, but this method
still gives about a 30% decrease in the average queue length
compared to MWMS.

The fairness properties of QPS, QPS with hypersphere ap-
proximation, MWMS, and BCHPR with ten users are illustrated
in Figs. 6 and 7. , , user ’s average SNR is equal
to (dB), and for .
First, Fig. 6 demonstrates each user’s average queue length in
bits for the above four scheduling policies. It is observed that
fairness among users is not satisfied under the BCHPR, which
provides intolerably long average queueing delay for users with
worse channel conditions. MWMS is shown to approximately
equalize every user’s average queue length. Since each user has
a different arrival rate, by Little’s theorem, MWMS provides
smaller average queueing delay for the user with higher bit ar-
rival rate. On the other hand, each user’s average queue length
under QPS is shown to be proportional to the bit arrival rate

Fig. 6. Each user’s average queue length under four scheduling policies (K =
P = 10, M = 10, user i’s average SNR (dB) = 20 � 0:5(i � 1), and
� = 1:55(0:9) for i = 1; � � � ; 10).

Fig. 7. Each user’s average queueing delay under four scheduling policies
(K = P = 10,M = 10, user i’s average SNR (dB) = 20� 0:5(i� 1), and
� = 1:55(0:9) for i = 1; � � � ; 10).

vector so that average queueing delay of every user is equal-
ized. Therefore, under the QPS policy, fairness among users is
guaranteed in terms of average queueing delay. QPS with hyper-
sphere approximation also shows a similar tendency with QPS,
but some deviation from the arrival rate vector is observed be-
cause of the approximation error. Fig. 7 presents each user’s av-
erage queueing delay in slots, which indicates that QPS equal-
izes every user’s average queueing delay.

VIII. CONCLUSION

In fading broadcast channels, QPS is shown to provide
more desirable delay and fairness properties than MWMS,
a well-known throughput optimal scheduling policy. The
GP formulation of QPS, which is also applicable to OFDM
systems, is presented, where GP is a special form of convex op-
timization problems with well-developed efficient algorithms.
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The throughput optimality of QPS is proved, and it is shown
that QPS can arbitrarily scale the ratio of each user’s average
queueing delay, which is essential in satisfying different QoS
requirement of each user. Numerical results demonstrate that
QPS provides significantly smaller average queueing delay
compared with MWMS for any arrival rate vector within the
network capacity region.
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