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Abstract— In a fading broadcast channel (BC), Queue Propor-
tional Scheduling (QPS) is presented via geometric programming
(GP). Given the current queue state, QPS allocates a data
rate vector such that the expected rate vector averaged over
all fading states is proportional to the current queue state
vector as well as on the boundary of the ergodic BC capacity
region. One well known throughput optimal policy for a fading
BC is Maximum Weight Matching Scheduling (MWMS), which
maximizes the inner product of the queue state vector and
achievable rate vector. Simulation results for Poisson packet
arrivals and exponentially distributed packet lengths demonstrate
that QPS provides a significant decrease in average queuing delay
compared to MWMS. In addition, QPS is shown to guarantee
fairness among users in terms of average queuing delay.

I. INTRODUCTION

In multiuser communication systems, the transmit power
and rate of each user are often determined based on the
channel capacity region. This information theoretic approach
to resource allocation, which ignores the randomness in packet
arrivals and queuing, cannot guarantee stability of queuing
systems. The network capacity region is defined as a set of
all packet arrival rate vectors for which queue lengths can
remain finite [1]. Though an arrival rate vector is within the
network capacity region, resource allocation based only on
channel state information may cause a certain user’s backlog
to become unacceptably large, resulting in long queuing delay
as well as packet loss.

To account for queuing parameters, a cross-layer approach
to resource allocation has been recently proposed in [2],
[3], [4] and the references therein. These works show that
consideration of both channel and queue states allows the
entire network capacity region to be achieved in fading broad-
cast channels (BC) and multiple-access channels (MAC). A
scheduling policy that achieves the network capacity region
is called throughput optimal. One well-known throughput
optimal scheduling algorithm for the fading BC and MAC
is Maximum Weight Matching Scheduling [2]. This policy
achieves throughput optimality by allocating power and data
rate that maximize the inner product of the queue state vector
and achievable rate vector. Recent applications of MWMS can
be also found in OFDM downlink systems [5] and MIMO
downlink systems [4]. For the fading MAC, [6] shows that
MWMS minimizes the sum of each user’s average queuing

delay if symmetric channels and equal packet arrival rates are
assumed. This property is a consequence of the polymatroidal
structure of the MAC capacity region [7]. However, there are
no such structural properties in the fading BC capacity region
so that even with symmetry assumptions, MWMS cannot
guarantee the minimum average queuing delay.

In this paper, we propose another throughput optimal
scheduling policy for a fading BC, Queue Proportional
Scheduling (QPS), which has more desirable delay and fair-
ness properties than MWMS. For the current queue state,
QPS allocates a data rate vector such that the expected data
rate vector averaged over all fading states is a boundary
point of the ergodic BC capacity region and is proportional
to the current queue state vector. Utilizing degradedness of
BC for each fading state as well as convexity of the BC
capacity region, QPS is formulated as a geometric program,
which is a special form of convex optimization problem with
very efficient algorithms [8]. Simulations with Poisson packet
arrivals and exponentially distributed packet lengths show that
QPS provides significantly smaller average queuing delay than
MWMS. Moreover, with the QPS policy, fairness among users
can be always guaranteed in terms of average queuing delay.

The organization of this paper is as follows: Section II
provides the model of fading broadcast channels and queuing
systems. Together with a description of MWMS, the QPS
policy is proposed and formulated as a geometric program
in Section III. Section IV presents numerical results and
discussion, and concluding remarks are given in Section V.

Notation: Vectors are bold-faced. R
n denotes the set of

real n-vectors and R
n
+ denotes the set of nonnegative real

n-vectors. The symbol � (and its strict form �) is used to
denote the componentwise inequality between vectors: x � y
means xi ≥ yi, i = 1, 2, · · · , n.

II. SYSTEM MODEL

In this paper, a block fading channel is assumed where
the fading state is constant over one scheduling period and
each scheduling period undergoes independent and identi-
cally distributed (i.i.d.) fading. Also, both transmitter and
receivers are assumed to have perfect knowledge of channel
state information (CSI) so that the transmitter can perform
superposition coding and each receiver can use successive
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Fig. 1. (a) Block diagram of the queuing system and scheduler. (b) Fading
broadcast channel models.

decoding [9]. In addition, the transmitter is assumed to have a
peak power constraint of P on each transmission. Consider a
Gaussian broadcast channel with a single transmitter sending
independent messages to K users over two-sided bandwidth
2W . At time t, the received signal of user i is expressed as

Yi(t) = hi(t)X(t) + zi(t), i = 1, · · · ,K (1)

where the transmitted signal X(t) is composed of K inde-
pendent messages, the complex channel gain of user i is
denoted by hi(t), and zi(t)’s are i.i.d. zero-mean Gaussian
noise with power N0W . As in [10], the channel gain can be
combined with the noise component by defining an effective
noise z̃i(t) = zi(t)/hi(t). Then, the equivalent received signal
is given by

Yi(t) = X(t) + z̃i(t), i = 1, · · · ,K (2)

where the power of z̃i(t) conditioned on the channel gain is
defined as ni(t) = N0W/|hi(t)|2. Without loss of generality,
W = 1 is assumed throughout this paper for simplicity. The
effective noise power n = [n1 n2 · · · nK ]T is considered as
the denotation of a fading state. We define the ergodic BC
capacity region as the set of all long-term average rate vectors
achievable in the fading BC with arbitrarily small probability
of error. For each fading state, the channel is equivalent to
a degraded Gaussian BC described above. A power control
policy P over all possible fading states is defined as a function

that maps from any fading state n to each user’s transmit
power Pi(n). Let Ω denote the set of all power policies
satisfying the sum power constraint P which is given by

Ω =

{
P :

K∑
i=1

Pi(n) ≤ P, for any n

}
. (3)

Under superposition coding and successive decoding with the
optimal ordering, the capacity of user i for a fading state n is

Ri (P(n)) = log

(
1 +

Pi(n)

ni +
∑K

k=1 Pk(n)1 [ni > nk]

)
(4)

where 1 [·] is the indicator function which is equal to 1 if
its argument is true and 0 otherwise. Then, the Gaussian BC
capacity region for the fading state n and transmit power P
is

C(n, P ) = {Ri : Ri ≤ Ri (P(n)) , i = 1, 2, · · · ,K,

where
∑

i

Pi(n) = P}. (5)

Let CBC(P) denote the set of achievable rates averaged over
all fading states for a power policy P
CBC(P) = {Ri : Ri ≤ En [Ri(P(n))] , i = 1, 2, · · · ,K}.

(6)
By the theorem in [10], with the sum power constraint P as
well as perfect CSI at the transmitter and receivers, the ergodic
capacity region of a fading broadcast channel is given by

Cerg(P ) =
⋃
P∈Ω

CBC(P) (7)

where the region Cerg(P ) is convex.

The queuing system and scheduler are modeled as the
following. K data sources generate packets according to inde-
pendent Poisson arrival processes {Ai(t), i = 1, ···,K}, which
are stationary counting processes with limt→∞ Ai(t)/t =
ai < ∞, and var(Ai(t + T ) − Ai(t)) < ∞ for T < ∞.
Packet lengths in bits {Xi} are i.i.d. exponentially distributed
and satisfy E[Xi] = γi < ∞, and E[Xi

2] < ∞. We assume
packet lengths are independent of packet arrival processes;
thus, user i’s arrival rate in bits is given by λi = aiγi.

The transmitter has K output queues assumed to have
infinite capacity. Packets from source i enter queue i and
wait until they are served to receiver i. The scheduling period
is denoted by Ts, and without loss of generality, we assume
Ts = 1. At time t, the achievable data rate vector is within
the capacity region C (n(t), P ) defined in (5). Qi(t) denotes
the number of bits waiting to be sent to user i at time t.
A time interval [t, t + 1), with t = 0, 1, 2, · · · , is denoted
by the time slot t , and Zi(t) is defined as the number of
arrived bits at user i’s queue during the time slot t. Then,
after a scheduling period, user i’s queue state vector is equal
to Qi(t + 1) = max{Qi(t) − Ri(n(t),Q(t)), 0} + Zi(t).
The allocated rate vector at time slot t, R(n(t),Q(t)) is
determined by the scheduler based on both queue states and
channel conditions. Fig. 1 summarizes the overall system.



Fig. 2. Ergodic capacity region of two user Rayleigh fading BC, and expected
rate vectors of QPS and MWMS when the queue state vector is Q(t) (User
1’s average SNR=13dB and user 2’s average SNR=7dB).

III. QUEUE PROPORTIONAL SCHEDULING VIA

GEOMETRIC PROGRAMMING

In this section, QPS is introduced and formulated via
geometric programming (GP), which is a convex optimization
problem with efficient algorithms to obtain the globally opti-
mal solution. GP uses monomial and posynomial functions. A
monomial function has the form of h(x) = cxa1

1 xa2
2 · · ·xan

n ,
where x � 0, c ≥ 0 and ai ∈ R. A posynomial is a sum of
monomials f(x) =

∑
k ckxa1k

1 xa2k
2 · · ·xank

n . Then, GP takes
the following form,

minimize f0(x)
subject to fi(x) ≤ 1 (8)

hj(x) = 1

where f0 and fi are posynomials and hj are monomials.
Although this is not a convex optimization problem, with a
change of variables: yi = log xi and bik = log cik, we can
convert it into a convex form as the following:

minimize p0(y) = log Σk exp(aT
0ky + b0k)

subject to pi(y) = log Σk exp(aT
iky + bik) ≤ 0 (9)

qj(y) = aT
j y + bj = 0.

This problem can be easily solved by using efficient interior
point methods.

As shown in [11], when an average rate vector R∗ =
En[R(n)] lies on the boundary surface of Cerg(P ) in the
fading BC, R∗ is a solution to the optimization problem
maxr µT r such that r ∈ Cerg(P ) for some µ ∈ R

K
+ . Also,

for a given µ, R∗ solves the above problem if and only if
there exists the rate allocation R(n) ∈ R

K
+ such that for any

fading state n, R(n) is a solution to the optimization problem
maxr µT r where r ∈ C(n, P ). At time slot t, MWMS assigns
the data rate vector RMWMS(n(t),Q(t)) ∈ C (n(t), P )

which satisfies

En(t) [RMWMS (n(t),Q(t))] = arg max
r

K∑
i=1

αiQi(t)ri

such that r ∈ Cerg(P ) (10)

where r = [r1 r2 · · · rK ]T and αi is the user i’s priority
weight which is set to 1 for all users if everyone has the same
priority. Let Q′(t) = [α1Q1(t) · · · αKQK(t)]T . Then, by the
theorem in [11],

RMWMS (n(t),Q(t)) = arg max
r

Q′(t)T r

such that r ∈ C (n(t), P ) . (11)

This algorithm tends to allocate higher data rate to the user
with longer queue or better channel conditions.

On the other hand, QPS allocates the following data rate
vector at time slot t.

RQPS (n(t),Q(t)) ∈ C (n(t), P ) such that

En(t) [RQPS (n(t),Q(t))] = Q′(t)
(

max
Q′(t)x∈Cerg(P )

x

)
(12)

where x is a scalar. Assuming equal priority on each user,
Q′(t) = Q(t). Then, the average rate vector under the QPS
policy, En(t)[RQPS(n(t),Q(t))] is proportional to the queue
state vector, and also lies on the boundary surface of the
ergodic capacity region. Therefore, for some µ ∈ R

K
+ , the data

rate vector assigned by QPS at time slot t can be expressed
as

RQPS (n(t),Q(t)) = arg max
r

µT r

such that r ∈ C (n(t), P ) . (13)

Under the QPS policy, µ is determined based on the current
queue state vector as well as the ergodic BC capacity region.
On the other hand, MWMS only considers the queue state
vector in the derivation of µ.

For the queue state vector Q(t), Fig. 2 illustrates two
distinct expected rate vectors supported by MWMS and QPS.
Two user Rayleigh fading BC is considered where user 1’s
average signal-to-noise ratio (SNR) is 13dB and user 2’s
average SNR is 7dB. From Fig. 2, we can expect that as the
queue state changes, MWMS exhibits more fluctuations in the
average rate vector compared to QPS. According to queuing
theory, lower variance in service rate or arrival rate provides
smaller queuing delay [12]. Therefore, QPS is expected to have
smaller average queuing delay than MWMS as demonstrated
in the next section.

By utilizing degradedness of BC for each fading state as
well as convexity of the ergodic BC capacity region, the rate
allocation of QPS can be formulated as GP. Assume that
recent M fading states are sampled, which are denoted by{
n(1), · · · ,n(M)

}
. To reduce the correlation among samples,

sampling period needs to be determined in consideration of
fading coherence time. In this paper, the sampling period is
simply assumed equal to one scheduling period due to i.i.d.
block fading over each scheduling time. Without loss of gener-



ality, n(M) is assumed to denote the current fading state n(t).
Then, consider a family of M parallel broadcast channels, such
that in the mth component channel, user i has noise variance
n

(m)
i , rate and power denoted by R

(m)
i and P

(m)
i . Note that

each BC channel has a power constraint of P . At time slot t,
QPS allocates the data rate vector RQPS(n(M),Q(t)) that is
a solution of the following optimization problem.

1
M

M∑
m=1

RQPS

(
n(m),Q(t)

)
= Q(t)

(
max

Q(t)x∈Cerg(P )
x

)

RQPS

(
n(m),Q(t)

)
∈ C

(
n(m), P

)
for all m (14)

From (4) and (5), if R(m) is on the boundary of the capacity
region for the mth component channel, solving power in terms
of rate yields

l∑
i=1

P
(m)
πm(i) =

l∑
i=1

(
n

(m)
πm(i) − n

(m)
πm(i−1)

)

× exp


ln 2

K∑
j=i

R
(m)
πm(j)


− n

(m)
πm(l), l = 1, · · · ,K (15)

where πm(·) is the permutation such that n
(m)
πm(1) < n

(m)
πm(2) <

· · · < n
(m)
πm(K) and n

(m)
πm(0) ≡ 0. Then, as shown in [10], the

capacity region of the mth Gaussian BC can be expressed as

C(n(m), P ) = {R(m)
πm(i) :

K∑
i=1

(
n

(m)
πm(i) − n

(m)
πm(i−1)

)

× exp


ln 2

K∑
j=i

R
(m)
πm(j)


− n

(m)
πm(K) ≤ P

and R
(m)
πm(i) ≥ 0, i = 1, 2, · · · ,K}. (16)

Using this relation, (14) can be converted into

minimize log (exp(−x))

subject to log
(
exp

(
−R

(m)
i

))
≤ 0, ∀ i and m

log
(
exp

(
−Q

(M)
i

)
exp

(
R

(M)
i

))
≤ 0, ∀ i

log
K∑

i=1


n

(m)
πm(i) − n

(m)
πm(i−1)

P + n
(m)
πm(K)




× exp


ln 2

K∑
j=i

R
(m)
πm(j)


 ≤ 0, ∀ m

Q(t)x − 1
M

M∑
m=1

R(m) = 0 (17)

where the second constraint is added to avoid allocat-
ing redundant power to some users with short queue
lengths. If the optimization variable is defined as y =
[x (R(1))T · · · (R(M))T ]T ∈ R

(KM+1)×1, (17) is the
standard geometric program with the globally optimal solution
y∗ = [x∗ (R∗(1))T · · · (R∗(M))T ]T . Thus, the data rate vec-

3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
0

10

20

30

40

50

60

70

80

90

100

User 1’s average bit arrival rate

A
ve

ra
ge

 q
ue

ue
 le

ng
th

 in
 b

its

MWMS
QPS
BCHPR
LQHPR

Fig. 3. Average queue length vs user 1’s bit arrival rate under four scheduling
policies (2 users, user 1’s average SNR=13dB and user 2’s average SNR=7dB,
λ2 = 0.5λ1).
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Fig. 4. Average queue length vs user 1’s bit arrival rate under four scheduling
policies (10 users, user i’s average SNR (dB) = 20 − (i − 1) and λi = λ1

for i = 1, · · · , 10).

tor supported under the QPS policy is RQPS(n(M),Q(t)) =
R∗(M), and the corresponding power allocation can be ob-
tained by solving (15) for m = M .

IV. NUMERICAL RESULTS AND DISCUSSION

This section presents simulation results with Poisson packet
arrivals and exponentially distributed packet lengths to demon-
strate stability, delay, and fairness properties of the QPS
algorithm. In the simulation, average packet length for each
user, scheduling period, and signal bandwidth are all equal to
1, and noise power is 0.1. In Fig. 3 and Fig. 4, average queue
lengths over K users defined as limt→∞ E[ 1

K

∑K
i=1 Qi(t)] are

evaluated for different values of λ1 when K = 2 and K = 10,
respectively. Four scheduling algorithms are compared in both
figures: QPS, MWMS, Longest Queue Highest Possible Rate



(LQHPR) and Best Channel Highest Possible Rate (BCHPR)
[2]. LQHPR allocates full power to a user with the longest
queue. Under the BCHPR policy, a user with better channel
condition takes higher priority in rate allocation, and user i
can be served only if user i has the best channel or some
transmit power remains after clearing queue backlogs of users
with higher priorities than user i.

For the two user case in Fig. 3, the Rayleigh fading BC
channel presented in Fig. 2 is considered where the total
power constraint P = 2, user 1’s average SNR=13dB, and
user 2’s average SNR=7dB. Also, the bit arrival rate vector
satisfies λ = λ1[1 0.5]T . From Fig. 2, λ ∈ int Cerg(P ) if and
only if λ1 < 3.9. Fig. 3 demonstrates that the average queue
length of QPS is about 30% smaller than that of MWMS for
any λ1 < 3.9. Since MWMS is a throughput optimal policy,
this observation corroborates throughput optimality of QPS,
which is proved in [13]. Fig. 3 also shows that LQHPR and
BCHPR, which are not throughput optimal, have much longer
average queue lengths than MWMS. Simulation results with
10 users are presented in Fig. 4. The total transmit power is
P = 10 and user i’s average SNR is equal to 20 − (i − 1)
(dB) for i = 1, · · · , 10. Also, the bit arrival rate is identical
for every user. With λ1 < 0.92, QPS provides about 40-50%
smaller average queue length than MWMS, which is a greater
difference compared to the two user case.

The fairness properties of QPS, MWMS and BCHPR with
10 users are illustrated in Fig. 5. User i’s average SNR is
equal to 20 − 0.5(i − 1) (dB) and λi = 1.55(0.9)i−1 for
i = 1, · · · , 10. Fig. 5 presents each user’s average queuing
delay in slots for the above three scheduling policies. It is
observed that fairness among users is not satisfied under the
BCHPR, which provides intolerably long average queuing
delay for users with worse channel conditions. MWMS tends
to equalize each user’s average queue length. Since each user
has a different arrival rate, by Little’s theorem [14], MWMS
provides smaller average queuing delay for the user with
higher arrival rate. On the other hand, the average queue length
of QPS is shown to be proportional to the arrival rate vector so
that each user’s average queuing delay is equalized. Therefore,
under the QPS policy, fairness among users can be guaranteed
in terms of average queuing delay.

V. CONCLUSION

In fading broadcast channels, Queue Proportional Schedul-
ing (QPS) is shown to have more desirable delay and fair-
ness properties than Maximum Weight Matching Scheduling
(MWMS). Utilizing degradedness of BC and convexity of the
BC capacity region, QPS is formulated as a geometric program
whose globally optimal solution can be obtained with very
efficient algorithms. Numerical results demonstrate that QPS
provides significantly smaller average queuing delay compared
to MWMS for any arrival rate vector within the network
capacity region. In addition, QPS is shown to satisfy fairness
among users in terms of average queuing delay.
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Fig. 5. Each user’s average queuing delay under QPS, MWMS and BCHPR
(10 users, user i’s average SNR (dB) = 20−0.5(i−1) and λi = λ1(0.9)i−1
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