
SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, SEPT. 1, 2006 1

Autonomous Spectrum Balancing for Digital
Subscriber Lines

Raphael Cendrillon, Member, IEEE, Jianwei Huang∗, Member, IEEE,
Mung Chiang, Member, IEEE, and Marc Moonen, Senior Member, IEEE

Abstract— The main performance bottleneck of modern Digital
Subscriber Line (DSL) networks is the crosstalk among different
lines (users). By deploying Dynamic Spectrum Management
(DSM) techniques and reducing excess crosstalks among users,
a network operator can dramatically increase the data rates
and service reach of broadband access. However, current DSM
algorithms suffer from either substantial suboptimality in typical
deployment scenarios or prohibitively high complexity due to
centralized computation.

This paper develops, analyzes, and simulates a new suite of
DSM algorithms for DSL interference-channel models called
Autonomous Spectrum Balancing (ASB), for both synchronous
and asynchronous transmission cases. In the synchronous case,
the transmissions over different tones are orthogonal to each
other. In the asynchronous case, the transmissions on different
tones are coupled together due to inter-carrier-interference. In
both cases, ASB utilizes the concept of a “reference line”, which
mimics a typical victim line in the interference channel. The basic
procedure in ASB algorithms is simple: each user optimizes the
weighted sum of the achievable rates on its own line and the ref-
erence line while assuming the interferences from other users as
noise. Users then iterate until the target rate constraints are met.
Good choices of reference line parameters are already available in
industry standards, and the ASB algorithm makes the intuitions
completely rigorous and theoretically sound. ASB is the first set
of algorithms that is fully autonomous, has low complexity, and
yet achieves near-optimal performance. It effectively solves the
nonconvex and coupled optimization problem of DSL spectrum
management, and overcomes the bottleneck of all previous DSM
algorithms.

EDICS: SPC-TDLS (Telephone networks & digital subscriber
loops), SPC-MULT (Multi-carrier, OFDM, and DMT communica-
tions)

I. INTRODUCTION

A. Motivation

Digital Subscriber Line (DSL) technologies transform tra-
ditional voice-band copper channels into broadband access
systems, which are capable of delivering data rates up to
several Mbps per twisted-pair over a distance of 10 kft in
the basic Asymmetric DSL (ADSL). Despite over 140 million
DSL lines worldwide as of 2005, the major obstacle for
performance improvement in modern DSL systems remains
to be crosstalk, which is the interference generated among
different lines in the same cable binder. The crosstalk is
typically 10-20 dB larger than the background noise, and
direct crosstalk cancelation (e.g., [2], [3]) are infeasible in
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Partial and preliminary results have appeared in [1].

many cases, due to the complexity issues (both amount of
computation needed and the requirements of new chip sets)
or as a result of unbundling (i.e., incumbent service providers
must rent certain lines to their competitors).

Recently, various dynamic spectrum management (DSM)
algorithms have been proposed to address this frequency-
selective interference problem by dynamically optimizing
transmission power spectra of different modems in DSL
networks. DSM algorithms can significantly improve data
rates over the current practice of static spectrum management,
which mandates spectrum mask or flat power backoff across
all frequencies (i.e., tones).

This paper develops, analyzes, and simulates a suite of DSM
algorithms for power allocation (or, equivalently, bit loading),
called Autonomous Spectrum Balancing (ASB). Overcoming
the bottlenecks in the state-of-the-art DSM algorithms, ASB
is the first set of algorithms that is both autonomous (dis-
tributed algorithm across the users without explicit information
exchange) with low complexity, provably convergent, and
achieving close to the globally optimal rate region in practice.

B. Related Work on DSM Algorithms

One of the first and most well known DSM algorithms
is the Iterative Water-filling (IW) algorithm [4], where each
line maximizes its own data rate by waterfilling over the
noise and interference from other lines. The IW algorithm
is a completely autonomous algorithm with a linear com-
plexity in the number of users. Although IW can achieve
near optimal performance in weak interference channels, it
is highly-suboptimal in the widely-encountered near-far sce-
narios (which will be described in details in Section II), such
as mixed central office and remote terminal deployments of
ADSL and upstream VDSL. This is in part due to the greedy
nature of the algorithm.

Recently two optimal but centralized DSM algorithms are
proposed, the Optimal Spectrum Balancing (OSB) algorithm
[5] and the Iterative Spectrum Balancing (ISB) algorithm [6],
[7]. The OSB algorithm addresses the spectrum management
problem through the maximization of a weighted rate-sum
across all users, which explicitly takes into account the damage
done to the other lines when optimizing each line’s spectra.
Unfortunately OSB has an exponential complexity in the
number of users, making it intractable for DSL network
with more than 5 lines. As an improvement over the OSB
algorithm, ISB is proposed to implement the weighted-rate
sum optimization in an iterative fashion over the users. This
leads to a quadratic complexity in the number of users, which
makes the ISB feasible for networks with a relatively large
number of users.
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However, the even more critical issue is that both OSB and
ISB are centralized algorithms, which rely on a centralized
network management center (NMC) to optimize the PSDs
for all modems. NMC requires knowledge of the crosstalk
channels between all lines and all background noise, which
is difficult to obtain due to the large number of lines. Identi-
fication and transmission of crosstalk channel measurements
back to the NMC are not supported in existing standards
either. Also, the operation of NMC requires a lot of overhead,
in terms of both bandwidth and infrastructure. Furthermore,
the regulatory requirements on “unbundling” service make
it impossible to perform a centralized optimization. Finally,
many lines in the same binder terminate on different quad
cards in the DSL Access Multiplexer because customers in
the same neighborhood sign up for service at different times,
which makes it impossible to have central coordination even
if one can tolerate the costs.

A semi-centralized DSM algorithm called SCALE is pro-
posed in [8]. SCALE algorithm achieves better performance
than IW with comparable complexity. However, the algorithm
is not autonomous since explicit message passing among users
is required. Such explicit message passing in an uncoordinated
fashion requires modems to have sophisticated processing
capabilities not available in DSL modems, including blind
synchronization, blind identification of the crosstalk channel,
blind detection of the transmit constellation used by the
crosstalk, and blind detection of the crosstalk signal.

In summary, there are currently no DSM algorithms that
provide both low complexity, autonomous operation and near-
optimal rate region. This paper overcomes this bottleneck
through the ASB algorithms.

IW, OSB, ISB, and SCALE mentioned above all assume
synchronous transmissions of the modems, which allows
crosstalk to be modeled independently on each tone. Unfortu-
nately, this synchronization is almost never true in practice.
Instead, the signal transmitted on a particular tone of one
modem will appear as crosstalk on a broad range of tones
on the other modems. This inter-carrier-interference (ICI)
significantly complicates the DSM problem further. The state-
of-art results for asynchronous transmissions are the two cen-
tralized greedy algorithms proposed in [9], bit-subtracting and
bit-adding algorithms. Both algorithms start from the power
spectrum density (PSD) obtained with the ISB algorithm in
the synchronous case, and search for local optimal solutions
in the neighborhood by taking ICI into account. But again
these are centralized algorithms.

C. Summary of Contributions
The suite of ASB algorithms proposed in this paper has

the following advantages compared with all the previous algo-
rithms. First of all, ASB is autonomous: it can be applied in a
distributed fashion across users with no explicitly information
exchange. Furthermore, the algorithm has low complexity in
both the number of users and tones, and is provably convergent
under reasonable conditions on the channel gains that are
often satisfied in practice. In the synchronous case, the ASB
algorithm has similar complexity as IW, but in the near-
far scenario achieves a performance much better than IW

TABLE I
COMPARISON OF VARIOUS DSM ALGORITHMS

Algorithm Operation Complexity Performance Reference
Synchronous Case

IW Autonomous O (KN) Suboptimal [4]
OSB Centralized O

�
KeN

�
Optimal [5]

ISB Centralized O
�
KN2� Near optimal [6], [7]

ASB-S1 Autonomous O (KN) Near optimal this paper
Asynchronous case

Greedy algm. Centralized O
�
N2K3� Suboptimal [9]

ASB-A1 Autonomous O
�

NK2 log2(K)
�

Suboptimal this paper

and close to ISB and OSB. In the asynchronous case, the
ASB algorithm reduces the complexity from those in [9],
and achieves significant better performance than the ASB
algorithm that does not consider the ICI. The comparisons
between ASB algorithms and other existing algorithms are
listed in Table I. It compares various aspects of different
DSM algorithms, where ASB attains the best tradeoff among
distributiveness, complexity, and performance. Here we use K
to denote the number of tones and N to denote the number
of users.

The key idea behind ASB is to leverage the fact that
DSL interference channel gains are very slowly time-varying,
which enables an effective use of the concept of “reference
line” that represents a typical victim line. Roughly speaking,
the reference line represents the statistical average of all
victims within a typical network, which can be thought as
a “static pricing”. This differentiates the ASB algorithm with
power control algorithms in the wireless setting, where pricing
mechanisms have to be adaptive to the change of channel
fading states and network topology, or Internet congestion
control, where time-varying pricing signals are used to align
selfish interests for social welfare maximization. By using
static pricing, no explicit message passing among the users
is needed and the algorithm becomes completely autonomous
across the users. When adapting its PSD, each line attempts
to achieve its own target rate while minimizing the damage it
does to the reference line. We show such mechanisms can
attain the balance between selfish and socially responsible
operation. On the other hand, each user keeps a local “dynamic
pricing” of the individual power constraint, which enables its
own optimization problem to be decoupled across the tones
within each user. We prove the convergence of ASB under
an arbitrary number of users, for both sequential and parallel
updates. Since IW can be recovered as a special case of ASB
in the synchronous case, our proof techniques extend previous
work on IW [4], [10].

The rest of the paper is organized as follows. We introduce
the system model in Section II, for both synchronous and
asynchronous transmission cases. The spectrum management
problem and a general framework of ASB are outlined in
Section III. ASB algorithms for the synchronous and asyn-
chronous cases will be given in Sections IV and V, respec-
tively. We provide convergence proofs and simulation results
in Sections VI and VII. The complexity properties of the ASB
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algorithm and the IW algorithm are given in Section VIII, and
we conclude in Section IX.

II. SYSTEM MODEL

Results in this paper hold for any DSL systems topology.
To be concrete, we will often examine the typical near-
far deployment scenario for downstream ADSL transmissions
with a frequency band up to 1.1 MHz,1 as shown in Fig. 1.
There are two twisted-pair copper lines in the network. The
first line is from the Central Office (CO) to customer 1. Since
customer 2 is far away from CO, the service provider deploys
a Remote Terminals (RT) near the edge of the network, which
connects with customer 2 through a relatively short copper
line. In the downstream transmission case shown in the figure,
the transmitting modems (TX) are located at the CO and RT,
and the receivers (RX) are at the customer homes. Each DSL
modem transmits over multiple frequency tones (carriers).
Multiple lines sharing the same binder generate crosstalks
(interferences) to each other on all frequency tones. Although
RT extends the footprint of the DSL network, it also generates
excessive interference to the CO line due to the physical
proximity between the RT TX and the CO RX.2 However,
CO TX generates little crosstalk to RT RX due to the long
distance between them.

Similar near-far problem also occurs in the upstream trans-
mission for VDSL, which operates at a frequency band up to
12 MHz, and line lengths are typically limited to less than
1.2 km. As a result, VDSL modems are typically deployed at
one point in the network (e.g., a RT node), thus do not have
the mixed CO/RT problem in the downstream transmissions.
However, due to the difference in customer home locations,
shorter lines exhibit strong crosstalks into the longer lines
receivers in the upstream transmissions. Furthermore, in a
mixed VDSL/ADSL deployments, RT-deployed VDSL will
damage the CO-deployed ADSL signals in the downstream.

Next we formally introduce the mathematical models for
both synchronous and asynchronous transmission cases, fol-
lowing the notation in [5], [6], [9]. More details are given in
Section VI-B.4.

A. Synchronous Transmission

We consider a DSL network with a setN = {1, ..., N} users
(i.e., lines, transmitting modems) and K = {1, ...,K} tones
(i.e., frequency carriers). Assuming the standard synchronous
discrete multi-tone (DMT) modulation, transmissions can be
modeled independently on each tone k as follows:

yk = Hkxk + zk.

The vector xk , {xn
k , n ∈ N} contains transmitted signals on

tone k, where xn
k is the signal transmitted by user n at tone

1The near-far problem does not occur in the upstream ADSL case, where
the transmission frequency band is below 138 kHz and crosstalk is minimal
at such low frequencies.

2This type of crosstalk is called “FEXT”, which is generated between
signals traveling in the same direction in a cable. Another type of crosstalk is
called “NEXT” and is generated between signals traveling in different direc-
tions in a cable, e.g., a downstream transmission to an upstream transmission
in an overlapping frequency band.

DMT (Discrete Multi−Tone) Transmissions

Fiber

Copper Line

Downstream Transmission

IP and PSTN Network

crosstalk

TX

TX RX

RX

Customer 2

CO

RT

Customer 1

Fig. 1. Mixed CO/RT case (near-far scenario) for downstream transmission
in an ADSL network. The CO (Central Office) is connected to the IP and
PSTN Network via fiber; the RT (Remote Terminal) is connected to the CO
via fiber. The CO and RT terminate at end customer homes through copper
twisted-pair lines (telephone lines), where data rate is limited by crosstalk.

k. Vectors yk and zk have similar structures: yk is the vector
of received signals on tone k; zk is the vector of additive
noise on tone k and contains thermal noise, alien crosstalk
and radio frequency interference. We denote the channel gain
from transmitter m to receiver n on tone k as hn,m

k . We denote
the transmit Power Spectrum Density (PSD) sn

k , E
{
|xn

k |2
}

,
where E {·} denotes expected value. The vector containing the
PSD of user n on all tones as sn , {sn

k , k ∈ K}.
When the number of interfering users is large, the inter-

ference can be well approximated by a Gaussian distributed
random variable. The achievable bit rate of user n on tone k
is

bn
k , log

(
1 +

1
Γ

sn
k∑

m6=n αn,m
k sm

k + σn
k

)
, (1)

where αn,m
k , |hn,m

k |2 / |hn,n
k |2 is the normalized crosstalk

channel gain, and σn
k , E

{
|zn

k |2
}

/ |hn,n
k |2 is the normalized

noise power density. Here Γ denotes the SINR-gap to capacity,
which is a function of the desired BER, coding gain and noise
margin [11]. For notational simplicity, we absorb Γ into the
definition of αn,m

k and σn
k . The bandwidth of each tone is

normalized to 1. Each user n is typically subject to a total
power constraint Pn, due to the limitations on each modem’s
analog frontend:

∑
k∈K sn

k ≤ Pn. The data rate on line n is
thus Rn =

∑
k∈K bn

k .

B. Asynchronous Transmission
In practice, it is often difficult to maintain perfect syn-

chronization between different DMT blocks due to different
transmission delays on different lines. Compared with the
synchronous transmission case, here the received PSD of
user n on tone k, E

{
|yn

k |2
}

, also depends on other users’
transmission PSD on tones other than k,

E
n
|yn

k |2
o

= |hn,n
k |2 sn

k+
X
m6=n

 
KX

j=1

γ (k − j)
��hn,m

j

��2 sm
j

!
+E
n
|nn

k |2
o

.

Here γ (j) is the ICI coefficients estimated in the worst case
[9],

γ (j) =

{
1, j = 0
2

K2 sin2( π
K j) , −K

2 ≤ j < K
2 , j 6= 0 ,

and has the symmetric and circular properties, i.e., γ (−j) =
γ (j) = γ (K − j) . Then the achievable bit rate of user n on
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tone k in (1) needs to be revised as (with Γ set to 1)

bn
k , log


1 +

sn
k∑

m 6=n

(∑K
j=1 γ (k − j)αn,m

j sm
j

)
+ σn

k


 .

(2)
All the other system parameters and constraints are the same
as the synchronous case.

III. SPECTRUM MANAGEMENT PROBLEM AND A GENERAL
FRAMEWORK OF ASB

The spectrum management problem is defined as follows,

max
{sn,n∈N}

R1 s.t. Rn ≥ Rn,target, ∀n > 1, (3)

s.t.
∑

k∈K
sn

k ≤ Pn, ∀n.

Here Rn,target denote the target rate of user n, and we can pick
an arbitrary user to be user 1. Due to interference between
users, Problem (3) is nonconvex. Furthermore, it is highly
coupled across users (due to crosstalk) and tones (due to total
power constraint as well as ICI in the asynchronous case),
making it a very difficult optimization to solve. However, the
rate region achieved by all users is convex in the asymptomatic
case when number of tones becomes large [5]. Thus by
changing the values of Rn,target of all users n > 1, the solution
of Problem (3) can trace out the Pareto optimal boundary of
the rate region.

It appears that any algorithm that globally solves (3) must
have knowledge of all crosstalk channels and background
noise spectra, forcing it to operate in a centralized fashion.
In order to overcome this difficulty, we observe that, for
optimal solutions of (3) each user adopts a PSD that achieves
a fair compromise between maximizing their own data-rate
and minimizing the damage they do to other users. Based on
this insight, we introduce the concept of a “reference line”,
a virtual line that represents a “typical” victim user within
the DSL system. It turns out that it is adequate to make the
reference line correspond to the longest line in the network
(e.g. the CO line in a mixed CO/RT scenario in Section VII),
which has the weakest direct channel and receives relatively
stronger crosstalk from other users. Then, instead of solving
(3) , each user tries to maximize the achievable rate on
the reference line, subject to its own rate and total power
constraints.

Since the main purpose of introducing the reference line
is to characterize the “damage” that each user does to other
interfering users, we will make the achievable rate of the
reference line user-dependent. In other words, from user n’s
point of view, the reference line’s rate is Rn,ref ,

∑
k∈K b̃n

k ,
where the achievable bit rate on tone k in the synchronous
case is defined as

b̃n
k , log

(
1 +

s̃k

α̃n
ksn

k + σ̃k

)
, (4)

and, in the asynchronous case, as

b̃n
k , log

(
1 +

s̃k∑K
j=1 γ (k − j) α̃n

j sn
j + σ̃k

)
. (5)

The coefficients {s̃k, σ̃k, α̃n
k ,∀k, n} are parameters of the

reference line and can be readily obtained from long-term field
measurements. Since the crosstalk channel can be regarded as
time-invariant in DSL systems, the parameters of the reference
lines are known to users a priori. Intuitively, the reference line
serves as a penalty term in each user’s optimization problem
to align selfish behavior with social welfare maximization, and
eliminates the need of explicit message passing among users.

Thus, instead of solving Problem (3) which requires global
information, we let each user n solve the following problem
in ASB algorithm:

max
sn

Rn,ref s.t. Rn ≥ Rn,target, (OPT1)

s.t.
∑

k∈K
sn

k ≤ Pn.

We want to emphasize that the each user autonomously solves
a different version of Problem (OPT1). For user n, Problem
(OPT1) only involves optimization over its own PSD sn,
which determines the achieved rates of itself (Rn) and the
reference line (Rn,ref ). The interference generated by other
users are considered as fixed background noise in the opti-
mization, and the achieved rates of other users in the network
do not need to be considered. After each user solves its
own version of Problem (OPT1), the crosstalk values change
accordingly. Then each user n has to solve Problem (OPT1)
again, repeating the process until the PSD converges. The
complete ASB algorithms will be given the Sections IV and V,
where each version of ASB deploys a unique way of solving
Problem (OPT1). In Section VII, we will use “area of the
rate region” as the performance metric when comparing ASB
algorithms with other existing DSM algorithms (e.g., [4]–[7],
[9]).

To facilitate the analysis in the following sections, we also
consider another variation of Problem (OPT1), where we relax
user n’s target rate constraint and replace the optimization
objective by a weighted rate sum of user n’s own rate and the
reference line’s rate seen by user n, i.e.,

max
sn

wnRn + (1− wn)Rn,ref s.t.
∑

k∈K
sn

k ≤ Pn. (OPT2)

Here the weight parameter wn ∈ [0, 1], where wn = 1 means
user n performs a pure selfish optimization, and wn = 0
means the reference line’s rate will be maximized.3 In the
synchronous case, it has been shown in [5] that the rate region
of Problem (OPT1) (in terms of Rn and Rn,ref ) is convex in
the asymptotic case with large number of tones, we can always
find a value of wn such that the optimal result of Problem
(OPT2) is the same as Problem (OPT1) (i.e., find a wn such
that the solution of Problem (OPT2) satisfies Rn = Rn,target) as
long as the latter is feasible. Thus the key challenge of the ASB
algorithm is to efficiently solve Problem (OPT2). The above
correspondence is not necessarily true in the asynchronous
case. In that case, we can still use Problem (OPT2) as an
approximation of Problem (OPT1) to derive an algorithm that
achieves good performance.

3Problem (OPT2) can be derived from Problem (OPT1) using standard
Lagrangian relaxation of user n’s target rate constraint, where the dual variable
is chosen to be wn/ (1− wn), which ranges from 0 to ∞.
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IV. ASB ALGORITHMS IN SYNCHRONOUS TRANSMISSION

In this section, we develop an ASB algorithm for the
synchronous case, where the achievable bit rates of user n
and the reference line (from user n’s perspective) are given
by (1) and (4). Since the transmissions on different tones are
orthogonal to each other here, we can use dual decomposition
to solve Problem (OPT2), defined for each user n. Although
Problem (OPT2) is nonconvex, we know from [5] that the
corresponding duality gap of Problem (OPT2) is zero in the
asymptotic case where the total number of tones is large, thus
solving the dual problem can lead to optimal primal solution.4

We name the algorithm in this section as ASB-S1, where
we solve Problem (OPT2) through a dual decomposition.
Each user n solves Problem (OPT2) by solving a nonconvex
problem on each of the K tones and choosing the dual variable
(i.e., dynamic price) such that the total power constraint is
tight. Then users take turns to perform this optimization until
the PSDs converge.

By incorporating the total power constraint into the objec-
tive function, we have the following relaxation of Problem
(OPT2),

Ln , (1− λn)
(
wnRn + (1− wn)Rn,ref

)− λn
∑

k∈K
sn

k .

Here λn ∈ [0, 1] and needs to be chosen such that
(
∑

k sn
k − Pn)λn = 0. Then Problem (OPT2) can be solved

by the following unconstrained optimization problem,

max
sn

Ln
(
wn, λn, sn, s−n

)
, (6)

where s−n =
(
s1

k, ..., sn−1
k , sn+1

k , ..., sN
k

)
denotes the PSD of

all users except user n. Further define

Ln
k = (1− λn)

(
wnbn

k + (1− wn) b̃n
k

)
− λnsn

k , (7)

then it is clear that Ln can be decomposed into a sum across
tones of Ln

k , Ln =
∑

k Ln
k . As a result, Problem (6) can be

decomposed into K subproblems, one for each tone k. The
optimal PSD that maximizes Ln

k is

sn,S1
k = arg max

sn
k∈[0,P n]

Ln
k

(
wn, λn, sn

k , s−n
k

)
, (8)

where s−n
k =

(
s1

k, ..., sn−1
k , sn+1

k , ..., sN
k

)
. Although Ln

k is
nonconvex in sn

k , the maximization is over a scalar variable
only, and the optimal value sn,S1

k can be easily found as
follows. First solve the first order condition, ∂Ln

k/∂sn
k = 0,

which is equivalent to

(1− λn) wn

sn,I
k +

∑
m 6=n αn,m

k sm
k + σn

k

− (1− λn) (1− wn) α̃n
k s̃k(

s̃k + α̃n
ksn,I

k + σ̃k

)(
α̃n

ksn,I
k + σ̃k

) − λn = 0. (9)

Equation (9) can be simplified into a cubic equation which has
three roots that can be written in close form. Then comparing
the value of Ln

k at each of these three roots, as well as checking

4Recent results in [12] show that the duality gap is already approximately
zero when there are only 8 tones, and the actual number of tones in the current
DSL standards is 2 to 3 orders of magnitude larger.

the boundary solutions sn
k = 0 and sn

k = Pn, we can find out
the corresponding value of sn,S1

k .
User n then updates λn to enforce the total power constraint,

and updates wn to enforce the target rate constraint. Both
parameters can be found by a simple bisection search. Users
then iterate until all PSDs converge. The complete ASB-S1
algorithm is given in Algorithm 1.

Algorithm 1 ASB Synchronous Version 1 (ASB-S1)
1: Initialize PSDs: sn

k ← Pn/K, ∀n ∈ N , k ∈ K.
2: repeat
3: for all user n ∈ N do
4: Initialize wn

min = 0, wn
max = 1

5: while |∑k bn
k −Rn,target| > ε do

6: wn = (wn
min + wn

max) /2
7: Initialize λn

min = 0, λn
max = 1

8: while |∑k sn
k − Pn| > ε do

9: λn = (λn
min + λn

max) /2
10: sn

k ← arg maxsn′
k ∈[0,P n] L

n
k , ∀k ∈ K.

11: if
∑

k sn
k > Pn then

12: λn
min = λn

13: else
14: λn

max = λn

15: end if
16: end while
17: if

∑
k bn

k > Rn,target then
18: wn

max = wn

19: else
20: wn

min = wn

21: end if
22: end while
23: end for
24: until all users’ PSDs converge

Remark 1: The ASB algorithm leverages strong design
points from both OSB and IW. Like OSB, ASB uses a
weighted rate-sum to account for the damage done to other
lines within the network when optimizing each line’s spectra.
This weighted rate-sum leads to near-optimal performance.
Like IW, ASB uses an iterative approach, optimizing the PSD
of each user in turn.

Remark 2: The concept of a reference line has been
employed extensively in heuristic-based DSM algorithms in
the industry, including the reference PSD method that is
currently mandated in the VDSL standards [13]–[15]. The
reference PSD method specifies that the received PSD of a
modem must match the so-called “reference PSD”.5 While in
industry standards the use of a reference line was motivated
by engineering intuitions and ad hoc developments, here we
apply the concept of the reference line from a theoretical

5In VDSL standard, different reference PSDs are defined for different
transmission bands (e.g., two bands in VDSL1 and three bands in VDSL2).
The referenced PSD is defined as the received PSD of a “typical line” that
would be operating in each particular band. The length of this typical line
determines its channel attenuation, and the corresponding received PSD. The
reference PSD method is used in upstream VDSL transmissions to mitigate
the near-far problem. A similar technique has also been recommended for
downstream transmissions in order to protect existing ADSL services from
RT distributed VDSL [16].
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foundation. We formulate Problems (OPT1) and (OPT2) based
on the reference line idea, and solve the problems based on
dual decomposition techniques and optimization theory. This
leads to the near-optimal performance of the ASB algorithm.
For example, in a two-user network, if the reference line is
set to the longest line in the network, the ASB algorithm
achieves a performance similar as the optimal but centralized
ISB and OSB algorithms. Simulations in Section VII show
that the performance of the ASB algorithm is insensitive to
inaccuracies or variations in the choice of the reference line
parameters.

Remark 3: In considering only a single reference line,
the ASB algorithm makes an implicit assumption that, by
protecting the weakest line in the binder, a user will indirectly
protect other shorter lines (i.e., stronger lines). The ASB
algorithm could be extended in a straightforward way to
include multiple reference lines, which does not impact the
convergence properties and only leads to a small increase in
complexity. For each extra reference line introduced into ASB,
an extra local maxima will appear in the optimization of (8).
ASB algorithm evaluates the objective function at each local
maxima and chooses the global maximum. As the frequency
increases, we observe that the global optimal solution chosen
by the ASB algorithm jumps from a lower local optimal solu-
tion to a higher one. This is because, as frequency increases,
the longest reference lines becomes inactive due to weak
direct channel in the high frequency band, thus it is no longer
necessary to protect this line. A higher PSD is then chosen
that corresponds to a higher local optima. This new PSD
will protect the second longest reference line, which is now
the weakest line in the system for that particular frequency.
When there are M reference lines, the ASB objective function
exhibits up to M +1 local maxima. The first M local maxima
correspond to protecting each of the reference lines, while the
(M +1)st local maxima corresponds to the completely selfish
waterfilling solution, which is employed in the very highest
frequencies when all reference lines have switched off due to
weak direct channels. To simplify presentation, in this paper
we only focus on the approach of using a single reference line.

V. ASB ALGORITHMS IN ASYNCHRONOUS TRANSMISSION

In this section, we propose ASB algorithm for the asyn-
chronous case, where the achievable bit rates of user n
and the reference line (from user n’s perspective) are given
by (2) and (5). In this case, Problem (OPT2) is still non-
convex and highly coupled due to crosstalk. Different from
the synchronous case, a dual-based decomposition is not
even applicable here since the PSD across different tones are
coupled due to ICI.

We will introduce a greedy power shuffle algorithm into
the ASB framework, where each user n first initializes the
PSD level by solving Problem (OPT2) assuming synchronous
transmission (i.e., temporarily ignoring the ICI), then “shuffle”
its PSD sn (i.e., subtract a small amount from one tone and add
it back to another tone) to reach a locally optimal solution of
Problem (OPT2). Each user takes turns to perform this power
shuffling until the PSDs converge.

Let’s denote the objective function of Problem (OPT2) as

Jn (sn) = wn
∑

k

bn
k

(
sk

n

)
+ (1− wn)

∑

k

b̃n
k (sn) .

For notational simplicity, we ignore the dependence of Jn

on s−n (which is assumed to be fixed during user n’s PSD
optimization). Now, define 4s as the incremental amount of
power a user can change on a tone at a time. In other words,
4s defines the granularity of the power shuffle, which trades
off performance and convergence speed.

For each user n with fixed wn, each search iteration consists
of two phases: subtraction phase and addition phase. In the
subtraction phase, user n reduces its PSD by 4s on the tone
that yields the maximum increase in Jn (sn) (or the smallest
decrease if decreasing 4s on any tone leads to a decreased
objective). In the addition phase, user n increases its PSD by
4s on the tone that yields the maximum increase in Jn (sn)
(or smallest decrease similar as in the subtraction phase). This
iteration repeats until the net change of Jn (sn) in the last
iteration (i.e., the sum of changes in both phases) is zero.
Note that the net change of objective function will never be
negative in a single iteration, since in the addition phase a
user can always add 4s back to the same tone chosen in the
subtraction phase and recover the PSD level as in the previous
iteration.

The complete ASB-A1 algorithm is given in Algorithm 2.
Line 7 computes user n’s PSD similar as in the synchronous
case, given fixed transmission PSDs of other users, s−n. Lines
8 to 10 refine the value of sn several times by taking ICI
into explicit consideration. For each value of granularity 4s,
we apply the Power Shuffle (PS) subroutine (Algorithm 3) to
update sn until convergence is reached, which occurs once
no further greedy power swap can increase the objective. In a
similar fashion to the barrier method [17], we use the optimal
solution from the previous refinement as the initial position in
the current refinement. By using diminishing values of 4s, we
achieve a much faster convergence rate and higher accuracy
than can be achieved with a single PSD granularity. Finally,
user n updates wn in lines 11 to 15 using bisection search to
make the target rate constraint tight.

The PS subroutine is specified in Algorithm 3. Line 3 finds
the set of tones on which a decrease of PSD will not lead to
a negative PSD. Lines 4 to 10 perform the subtraction phase,
and lines 11 to 17 perform the addition phase. Since the value
of Jn (sn) increases in each iteration and is upper-bounded,
it must converge. Therefore, it is clear that the following is
true:

Proposition 1: The PS subroutine always converges.
The convergence of the ASB-A1 algorithm is difficult to

show in general, due to the nonconvexity of Problem (OPT2)
and the fact that the PS subroutine can only reach a local
optimal solution. In our simulation, however, the ASB-A1
algorithm always converges.

Remark 4: At the end of each iteration of the PS subroutine,
the power constraint of user n is always tight. This is because
we take 4s away from one tone in the subtraction phase, and
put it back to one tone in the addition phase. Thus the resource
is always fully utilized and no power violation occurs. This is
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Algorithm 2 ASB Asynchronous version 1 (ASB-A1): Greedy
Power Shuffle Algorithm

1: Initialize PSDs: sn
k ← Pn/K, ∀n ∈ N , k ∈ K.

2: repeat
3: for all user n ∈ N do
4: Initialize wn

min = 0, wn
max = 1

5: while |∑k bn
k −Rn,target| > ε do

6: wn = (wn
min + wn

max) /2
7: Compute sn as Lines 7 to 16 in ASB-S1
8: for all 4s = 0,−1, ...,−100dBm/Hz do
9: sn ← PS (n, wn, sn, s−n,4s) .

10: end for
11: if

∑
k bn

k > Rn,target then
12: wn

max = wn

13: else
14: wn

min = wn

15: end if
16: end while
17: end for
18: until all users’ PSDs converge

Algorithm 3 Power Shuffle (PS) subroutine
1: procedure PS(n,wn, sn, s−n,4s)
2: repeat
3: Kpos

n ← {k : sn
k ≥ 4s} .

4: for all k′ ∈ Kpos
n do

5: s̃n ← sn

6: s̃n
k ← s̃n

k −4s
7: 4Jn

− (k′) ← Jn (s̃n)− Jn (sn)
8: end for
9: kopt

− = arg maxk′ 4Jn
− (k′)

10: sn
kopt
−
← sn

kopt
−
−4s

11: for all k′ ∈ K do
12: s̃n ← sn

13: s̃n
k ← s̃n

k +4s
14: 4Jn

+ (k′) ← Jn (s̃n)− Jn (sn)
15: end for
16: kopt

a = arg maxk′ 4Jn
+ (k′)

17: sn
kopt
+
← sn

kopt
+

+4s

18: 4Jn = 4Jn
−

(
kopt
−

)
+4Jn

+

(
kopt
+

)
19: until 4Jn = 0
20: return sn

21: end procedure

different from the bit-addition and bit-subtraction algorithms
in [9], where the power constraints are either loose or violated
during the whole process of the algorithm before convergence.

Remark 5: Each user n always achieves a better objective
Jn (sn) at the end of the PS subroutine, compared with the one
achieved by using ASB-S1 algorithm before the PS subroutine.
This is due to the monotonic increase of Jn (sn) during the
iterations of the subroutine.

VI. CONVERGENCE ANALYSIS

In this section we prove convergence for various versions
of ASB. We will only consider the rate adaptive (RA) mode,
where users fix their weights w and aim at maximizing their
rates under a total power constraint [11].6 We notice that
all previous DSL literature (e.g., [4]–[10]) also focus on the
RA mode when discussing convergence.It is worth noting that
extensive simulations show that all algorithms proposed in this
paper always converge, even when w adapts to enforce target
rate constraints.

We first discuss the convergence of ASB-S1 in a two-user
case. The convergence of ASB-A1 has been briefly mentioned
in Proposition 1 for PS subroutine. We then consider the high
Signal-to-Noise-Ratio (SNR) regime for the reference line,
under which we prove stronger convergence results in both
synchronous and asynchronous cases.

A. Convergence of ASB-S1 Algorithm

Here we discuss the convergence of ASB-S1 algorithm,
where the nonconvexity of (9) makes it difficult to prove
the convergence. In the two-user case, we can still show the
following.

Theorem 2: Consider a two-user system with fixed w and
λ. There exists at least one fixed point of ASB-S1, and the
algorithm converges if users start from initial PSD values(
s1

k, s2
k

)
=

(
0, P 2

)
or

(
s1

k, s2
k

)
=

(
P 1, 0

)
on all tones.

The proof of Theorem 2 uses supermodular game theory
[18] and strategy transformation similar to [19], and is omitted
here due to space limitation. Supermodular game theory can
be used to deal effectively with nonconvexity problems, and
the convergence result in Theorem 2 does not require any
condition on the crosstalk channels. However, it is only for
the case of fixed λ, and users have to initialize their PSD at
particular values.

B. Convergence under High SNR Regime of the Reference Line

To reduce the computation complexity and gain more insight
into the solution structure, we simplify the problem under high
SNR approximation of the reference line as shown below.

1) Synchronous Transmission Case: The reference line rate
can be written as a linear function of the transmission power
of user n under additional assumptions. First, from (4) we
know that the reference line’s rate b̃n

k is a decreasing and
concave function in user n’s transmission power sn

k , and we
can approximate b̃n

k with the following linear lower bound:

b̃n
k (sn

k ) ≈ b̃n
k (0) +

∂b̃n
k (sn

k )
∂sn

k

∣∣∣∣∣
sn

k =0

· sn
k

= log
(

1 +
s̃k

σ̃k

)
− α̃n

k

σ̃k

s̃k

s̃k + σ̃k
sn

k . (10)

In other words, this gives the upperbound on the rate loss of
the reference line due to the interference from user n. Second,

6The second main category of the spectrum balancing operation is Fixed
Margin (FM) mode, where users try to minimize their power consumption
under a minimum target rate constraint.
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if we assume that the reference line operates in the high SNR
regime whenever it is active, i.e., if s̃k > 0 then s̃k À σ̃k,
then (10) can be further simplified as

b̃n
k (sn

k ) ≈
(

log
(

s̃k

σ̃k

)
− α̃n

ksn
k

σ̃k

)
1{s̃k>0}, (11)

where 1{A} is the indictor function and equals to one when
event A is true. Under (11), Problem (OPT2) becomes a con-
vex optimization problem. Especially, user n’s maximization
objective function on tone k in (7) is approximated by

Ln
k

�
wn, λn, sn

k , s−n
k

�
= (1− λn)

�
wnbn

k − (1− wn) α̃n
ksn

k

σ̃k
1{s̃k>0}

�
− λnsn

k + (1− λn) (1− wn) log

�
s̃k

σ̃k

�
1{s̃k>0},

thus the corresponding optimal PSD can be found in close
form as

sn
k

�
wn, λn, s−n

k

�
=

24 wn (1− λn)

λn + (1− wn) (1− λn)
α̃n

k
σ̃k

1{s̃k>0}
−
X
m6=n

αn,m
k sm

k − σn
k

35+

,

(12)

where [x]+ = max{x, 0}. This is a water-filling type of
solution, with different water-filling levels for different tones.
We name it frequency selective waterfilling. Solution (12) is
intuitively satisfying. The PSD for user n should be smaller
when the power constraint is tighter (i.e., λn is larger), or
the crosstalk channel to the reference line α̃n

k is higher, or
the noise level on the reference line σ̃k is smaller, or there
is more interference plus noise

∑
m6=n αn,m

k sm
k + σn

k on the
current tone.

This leads to a second version of the ASB algorithm in the
synchronous case, ASB-S2 algorithm as shown in Algorithm
4.

Algorithm 4 ASB-S2: ASB-S1 algorithm under reference line
high SNR approximation

1: Replace Line 10 in Algorithm 1 with

sn
k ←

[
wn (1− λn)

λn + (1− wn) (1− λn) α̃n
k

σ̃k
1{s̃k>0}

−
∑

m 6=n

αn,m
k sm

k − σn
k




+

.

The ASB-S2 algorithm turns out to be a special case of the
ASB-A2 introduced next for the asynchronous case, of which
the convergence results will be presented in Sect. VI-B.3.

2) Asynchronous Transmission Case: Due to the coupling
induced by ICI, it is very difficult to find the global optimal
solution of Problem (OPT2) in the asynchronous case. How-
ever, if we also assume high SINR regime on the reference

line as in the synchronous case, we have

b̃n
k = log

(
1 +

s̃k∑K
j=1 γ (k − j) α̃n

j sn
j + σ̃k

)

≈
(

log
(

s̃k

σ̃k

)
−

∑
j γ (k − j) α̃n

j sn
j

σ̃k

)
1{s̃k>0}. (13)

Similarly, Problem (OPT2) becomes not only convex but also
with a objective function that is separable across tones., i.e.,

Jn (sn) =
∑

k


wnbn

k − (1− wn) α̃n
k

∑

j

γ (j − k)
σ̃j

1{s̃j>0}sn
k




+ (1− wn)
∑

k

log
(

s̃k

σ̃k

)
1{s̃k>0},

and the corresponding optimal PSD that solves Problem
(OPT2) is given as

sn
k

(
wn, λn, s−n

)

=


 wn (1− λn)

λn + (1− λn) (1− wn) α̃n
k

∑
j

γ(j−k)
σ̃j

1{s̃j>0}

−
∑

m 6=n


∑

j

γ (k − j)αn,m
j sm

j


− σn

k




+

, (14)

where λn is chosen to make the total power constraint tight,∑
k sn

k = Pn. This is a generalization of the frequency
selective waterfilling solution of ASB-S2. The complete ASB-
A2 algorithm is given in Algorithm 5.

Algorithm 5 ASB-A2: ASB algorithm under reference line
rate approximation in the asynchronous case

1: Replace Line 10 in Algorithm 1 with

sn
k ←


 wn (1− λn)

λn + (1− λn) (1− wn) α̃n
k

∑
j

γ(j−k)
σ̃j

1{s̃j>0}

−
∑

m6=n


∑

j

γ (k − j)αn,m
j sm

j


− σn

k




+

.

3) Convergence of Algorithms ASB-S2/A2: We first con-
sider the convergence in a two-user case where users sequen-
tially optimize their PSD levels.

Theorem 3: The ASB-A2 algorithm globally converges to
the unique fixed point in a two-user system under fixed w, if
maxk α1,2

k maxk α2,1
k < 1/ (

∑
k γ (k))2 .

Proof of Theorem 3 is given in Appendix A. The key idea
behind the proof is that the ASB-A2 algorithm leads to a
contraction mapping in the PSD updates, when the maximum
product of the crosstalk channel gains is small enough. One
extreme case is in a practical CO/RT mixed deployment
case, where the crosstalk from CO to RT is negligible (i.e.,
maxk

{
α1,2

k

}
maxk

{
α2,1

k

}
¿ 1). We note that the value
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of
∑

k γ (k) is around 1.66 for a wide range of K (i.e.,
32 ≤ K ≤ 4096).

It is straightforward to show the following result for ASB-
S2.

Corollary 4: The ASB-S2 algorithm globally and geometri-
cally converges to the unique fixed point in a two-user system
under fixed w, if maxk α2,1

k maxk α1,2
k < 1.

Corollary 4 recovers the convergence results for iterative
water-filling in the two-user case [4] as a special case (by
letting the reference line to be inactive).

We further extend the convergence results to a system with
an arbitrary N > 2 of users. We consider both sequential and
parallel PSD updates of the users. In the more realistic but
harder-to-analyze parallel updates, time is divided into slots,
and each user n updates its PSD simultaneously with other
users in each time slot according to (14) based on the PSDs
from the previous time slot, and the λn is adjusted such that
the power constraint is tight.

Theorem 5: Assume maxm 6=n,k αn,m
k < 1

(N−1)
P

k γ(k) ,
then the ASB-A2 algorithm globally and geometrically con-
verges to the unique fixed point in an N -user system under
fixed w, with either sequential or parallel updates.

Proof of Theorem 5 is given in Appendix B. For ASB-S2
algorithm, we have

Corollary 6: If maxm6=n,k αn,m
k < 1

N−1 , then the ASB-S2
algorithm globally and geometrically converges to the unique
fixed point in an N -user system under fixed w, with either
sequential or parallel updates.

Corollary 6 recovers the convergence results for iterative
water-filling in an N -user case with sequential updates (proved
in [10]) as a special case. Interestingly, the convergence proof
for the parallel updates turns out to be simpler than that for
sequential updates.

4) Physical Meaning of Convergence Conditions: The con-
vergence conditions in Theorems 3 and 5 and Corollaries 4
and 6 can be translated into constraints on the DSL network
topologies. In downstream ADSL, the constraint can be trans-
lated into the maximum distance between the transmitters of
RT and the CO, which limits the degree of crosstalk the RT
transmitter can generate to CO receiver. In upstream VDSL,
this means that lines cannot have lengths that are too different
from one another, otherwise the near-far effect from the short
lines into the long lines will cause severe crosstalk.

To make the physical meaning more concrete, let us con-
sider a detailed DSL channel model that relates the channel
gain to the network topology. The direct channel can be mod-
eled hn,n

k = e−βkd, where βk is the line propagation constant,
which depends on tone index k, and d is the line length.
The value of βk is well understood, and very accurate models
exist based on frequency, and the line diameter, construction,
materials, etc. The crosstalk channel, on the other hand, is
not as well understood. However, worst 1% case models for
the crosstalk channel have been developed, with which we
can develop bounds that will guarantee convergence in 99%
of lines. To be specific, the channel gain from transmitter m
to receiver n in the worst 1% case crosstalk model is ( [13],
[14]) hn,m

k = Kfextlcouplingfke−βklcrosstalk . Here constant
Kfext = 10−45/20, lcoupling is the length (in km) over which

l (For TX m to RX n)

lcoupling

crosstalkl (For TX n to RX m)

lcort

TX m RX m

TX n RX n

crosstalk

Fig. 2. Physical parameters of the DSL network: lcoupling is the length
over which line m and n come into close contact, lcrosstalk is the distance
from the transmitter of the interferer to the receiver of the victim line, and
lcort the distance from CO TX to RT TX.
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Fig. 3. Convergence conditions always satisfied in the two-user case (i.e.,
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k maxk αRT,CO
k < −2.2dB for asynchronous transmissions

and maxk αCO,RT
k maxk αRT,CO

k < 0dB for synchronous transmissions).

line m and n come into close contact and electromagnetic
coupling can occur, fk is the frequency on tone k (in MHz),
and lcrosstalk is the distance from the transmitter of m to
the receiver of line n (in km). An graphic illustration of the
notations is shown in Fig. 2 .

The convergence conditions for ASB-S2/A2 are based on
normalized channel gains αn,m

k = hn,m
k /hn,n

k . First con-
sider the 2 user downstream ADSL case. For the channel
from the CO TX to the RT RX, lcrosstalk = lcort + lrt,
where lcort is the length from the CO TX to the RT TX,
and lrt is the length of the RT line. In this case, we
have αRT,CO

k = Kfextlcouplingfke−βk(lcort+lrt)/e−βklrt =
Kfextlcouplingfke−βklcort . For ADSL, the maximum deploy-
ment length is typically 5 km, so we can use this to
bound lcoupling ≤ 5km−lcort, i.e., αRT,CO

k ≤ Kfext(5 −
lcort)fke−βklcort . For any particular value of lcort, the up-
perbound of αRT,CO

k can be maximized across k, which is
typically achieved at k = 256 which corresponds to the highest
frequency at 1.1 MHz (i.e., interference is most severe on high
frequencies). Next, consider the channel from the RT into the
CO, αCO,RT

k = Kfextlcouplingfke−βk(lco−lcort)/e−βklco =
Kfextlcouplingfkeβklcort , where lcouping = lco − lcort ≤
5 − lcort. We can again maximize αCO,RT

k across k (up to
1.1 MHz) for any particular value of lcort. To satisfy the con-
vergence conditions in Theorem 3 and Corollary 4, we need to
find lcort such that maxk αCO,RT

k maxk αRT,CO
k < 1 = 0dB

in the synchronous case and maxk αCO,RT
k maxk αRT,CO

k <

1/ (
∑

k γ (k))2 ≈ 1
1.66 = −2.2dB in the asynchronous case.

It turns out that all values of lcort ∈ [0, 5] km satisfy the
convergence conditions as shown in Fig. 3, which means ASB-
S2/A2 always converge in the 2-user case for all deployment
scenarios.
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Similarly we can translate the convergence conditions in
the N user case into the constraint on the maximum distance
between the CO TX and RT TX. For example, for a network
with 5 users, we need to have lcort < 1225 m in the
synchronous case and lcort < 1009 m in the asynchronous case
to satisfy the convergence conditions. We want to emphasize
that the sufficient conditions for convergence can be loose, and
in practice the ASB algorithms always converge.

VII. SIMULATION RESULTS

In this section, we show the performance of the ASB
algorithms, using a realistic simulator based on semi-empirical
channel models developed in standards and used extensively in
the industry [13]–[15]. We only simulate the performances of
the ASB-S1 and ASB-A1 algorithms, which do not involve any
high SNR assumptions. These two algorithms always converge
in our extensive simulations.

A. Synchronous Transmission Case

Here we summarize a typical numerical example, rep-
resentative of many experiments we tried, comparing the
performance of the ASB-S1 algorithms with IW, OSB, and
ISB in the synchronous transmission case. A four-user mixed
CO/RT scenario has been selected to make a comparison with
the highly complex OSB algorithm possible. As depicted in
Fig. VII-A, user 1 is CO line, while the other three users are
RT lines. ANSI noise model A [20] has been used, which
consists of 16 ISDN, 4 HDSL and 10 conventional (non-DSM
capable) ADSL disturbers.

Due to the different distances among the corresponding
transmitters and receivers, the RT lines generate strong in-
terferences into the CO line, while experiencing very little
crosstalk from the CO line. The target rates of users 2 and 3
have both been set to 2 Mbps. User 4 changes its target rate
from 0 to 8 Mbps, and user 1 (the CO line) does not have a
target rate constraint and always sets its weight coefficient wco

equal to unity in ASB-S1 (i.e., maximizes its own rate without
protecting the reference line). The reference line is chosen to
match the longest line in the network (i.e., the CO line) in
terms of background noise and crosstalk channel gains with
users in the network. The reference PSD is chosen according to
single-user waterfilling without considering the interferences
from other users. Based on this reference line definition, we
get the rate regions shown in Fig. VII-A.7 We can see that
ASB achieves a near-optimal performance, almost identical to
rate regions attained by the globally optimal OSB and ISB,
and significant gains over IW. As a typical example, with a
target rate of 1 Mbps on user 1, the rate on user 4 reaches
7.3 Mbps under ASB algorithm, which is a 143% increase
compared with the 3 Mbps achieved by IW.

Compared with IW, ASB exploits the special structure of
the DSL channel and thus achieves much better performance.
Since the direct channel gets worse with increasing frequency
and length, long lines cannot effectively utilize high frequen-
cies. Crosstalk channel strength, on the other hand, increases

7Note that only ASB uses the reference lien idea.
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Fig. 4. A four-user mixed CO/RT deployment topology.

0 1 2 3 4 5 6 7 8
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

User 4 achievable rate (Mbps)

U
se

r 
1 

ac
hi

ev
ab

le
 r

at
e 

(M
bp

s)

Optimal Spectrum Balancing
Iterative Spectrum Balancing
Autonomous Spectrum Balancing
Iterative Waterfilling

Fig. 5. Rate regions obtained by various DSM algorithms (ASB represents
ASB-S1).

with frequency. In the ASB algorithm, the RT lines transmit
with high power in the low frequencies where there is little
crosstalk, reduce power in the middle frequencies to protect
the reference line, and switch to high power again in the
high frequencies where reference line is not active. In the IW
algorithm, however, the power allocation is as follows (using
the notations in this paper):

sn
k =


wn (1− λn)

λn
−

∑

m 6=n

αn,m
k sm

k − σn
k




+

,

where the adjustable part wn(1−λn)
λn is the same on all frequen-

cies. User n first adjusts λn such that its total power constraint
is tight. If the achieved rate Rn is larger than the target rate
Rn,target, it performs equal power-backoff at all frequencies
(i.e., increase the value of λn), which unnecessarily reduce
the power at the very low (where little crosstalk is generated
to the CO line) and high frequencies (where the CO line is
inactive). As a result, the IW algorithm leads to highly sub-
optimal performance, especially in near-far scenarios. As an
example, we plot the PSD allocations under the ASB, IW and
ISB/OSB algorithms in Fig. 6, with the achievable rates of
four users as R1 = 1Mbps, R2 = R3 = 2Mbps, R4 = 3Mbps
for IW and 7.3Mbps for ASB-A1/ISB/OSB.

We also simulate the ASB and IW algorithms in a network
with 10 lines, with the line length equal to 5km for the CO
line, and 4.5 km, 4.1875 km, . . . , 2 km for the RTs. The RTs
are located 2, 2.25, . . . , 4 km from the CO. The target rate for
the CO modem was specified as 1.6 Mbps. With this in mind,
the target rates for the RT modems, which are set equally on all
RTs, are reduced until the CO modem achieves its target rate.
With IW, the RTs are forced to reduce their rates to 0.8 Mbps
in order for the CO to achieve it’s target. With ASB, due to
the more intelligent allocation of the RT transmit spectra, the
RTs can maintain a rate of 2.0 Mbps while still ensuring that
the CO modem achieve 1.6 Mbps. ASB algorithm achieves a
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(a) PSD under ASB-S1 algorithm.

(b) PSD under IW algorithm.

(c) PSD under ISB/OSB algorithm.

Fig. 6. Power spectrum density of 4 users under different DSM algorithms
in the synchronous transmission case.

gain of 122% in RT rate with respect to IW.

B. Asynchronous Transmission Case

Now consider the case of asynchronous transmission. Here
we summarize a typical numerical example comparing the
performances of ASB-A1 algorithm with ASB-S1 algorithm.
As depicted in Fig. 7, the scenario consists of downstream
transmission with two ADSL modems, one 5 km CO line, and
one 3 km RT line. The RT TX is deployed 4 km downstream
from the CO TX.

crosstalk

CO TX CO RX

RT TX RT RX

3 km4 km

5 km

Fig. 7. An example of mixed CO/RT deployment topology for asynchronous
transmissions.

Fig. 8. PSD under ASB-A1 algorithm for asynchronous transmissions.

Fig. 9. PSD under ASB-S1 algorithm for asynchronous transmissions.

Figs. 8 and 9 show an example of the PSDs generated by
ASB-A1 and ASB-S1. The target rate for the RT is set to
3.85 Mbps. Using ASB-S1, which does not take the effects of
the ICI into account when optimizing the transmit spectra, the
CO achieves 1.3 Mbps. Using ASB-A1, the CO rate increases
to 1.6 Mbps. With ASB-A1, the transmit power is shifted
further into the high-frequencies to prevent excessive ICI to
the CO line. Also, since the ICI creates an unavoidable “noise”
floor of at around -90 dBm/Hz, it is possible to increase the
transmit PSD between 340 KHz and 680 KHz with minimal
degradation to the CO line.

Fig. 10 shows the increase in performance relative to IW
achieved by ASB-S1 and ASB-A1 respectively in an asyn-
chronous environment. As we see, even when the modems
are not synchronized, ASB-S1 achieves significant gains over
IW. Furthermore, if the transmit spectra are further refined
through the application of ASB-A1, even further performance
gains are possible. For example, if the CO rate is set at 1.4
Mbps, applying ASB-S1 increases the RT rate by 48% over
IW. Applying ASB-A1 leads to a further increase in the RT
rate of 186%, leading to a total gain of 234% over IW.
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Fig. 10. Performance gains of ASB-S1 and ASB-A1 over IW for asyn-
chronous transmissions.
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C. Sensitivity Analysis of the Reference Line Choices
In all previous simulation examples, we choose the ref-

erence line to match the longest line in the network. Here
we study the sensitivity of the performance to the choice
of reference line length. We run simulations in a two user
scenario as in Fig. 7, and modems operate synchronously. We
vary the reference line length from 4010m up to 6000m to
examine the effect on rate region.

Fig. 11 shows the achievable rate regions with the dif-
ferent reference line length. Obviously, optimal performance
is achieved by setting the reference length to 5000 m, the
length of the weaker CO distributed line. We notice that
the performance is relatively insensitive to the choice of the
reference line length, especially during the range of 4050 m
to 6000 m. Only when the reference line becomes extremely
inaccurate (i.e., around 4020 m or less), which seldom happens
in practice, performance starts to degrade rapidly.8 Overall
speaking, it is seen that, except in extreme cases, ASB
performs well for a broad range of choices of the reference
line length.
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Fig. 11. Sensitivity of the performance of ASB-S1 with respect to the choice
of reference line length

VIII. COMPLEXITY ANALYSIS

Here we compare the complexity of ASB-S1 algorithm
with the IW algorithm, which is summarized in Table II.9

Running time is measured based on the results of Matlab
programs running on an MS-windows machine with a P4-
2.8 GHz processor. Real time operations based on hardware
implementation would be several orders of magnitude faster.
The example we simulated includes a total of K = 256 tones
and N = 2 lines. Cycles till convergence is number of outer-
cycles required through all of the users before convergence
occurs. We typically see that only three outer-cycles are
necessary for the rates to converge within 1% of the previous
cycle.

A. Complexity Analysis for IW

Iterative waterfilling consists of an outer cycle that iterates
through users, and an inner loop that adjusts the total power

8This is because with a 4020 m reference line, the ASB algorithm assumes
that the RT TX is located only 20 m from the reference line RX (recall that
the RT RX is actually 4000 m from the CO RX). This will lead to a huge
crosstalk channel from RT to the reference line, and the RT is forced to reduce
power in the entire frequency band within which the CO transmits.

9The complexity result of ASB-A1 algorithm is given in Table I, and the
corresponding analysis details are omitted due to space limitation.

TABLE II
COMPLEXITY COMPARISON BETWEEN IW AND ASB-S1

Algorithm Complexity Cycles till Operations Running Time
Order conv. (v) per cycle (secs)

IW O (NK) 3 238NK 0.01
ASB-S1 O (NK) 3 50864NK 0.09

of the current user until the target rate is achieved. For each
user n, we use a bisection on λn within the inner loop, which
is both efficient and robust. In the inner loop, each user needs
to find the power required to hit its target rate constraint.
Typically achieving a precision of 10−10 in the total power
setting is sufficient to hit the target rate with high accuracy.
This requires log2

(
1/

(
10−10

))
= 34 iterations of bisection

search.
For each iteration within the inner loop under a fixed value

of λn, a standard waterfilling algorithm must be applied with
the following complexity:10

1) Find the optimal water level such that the total power
constraint is satisfied and allocated power is positive on
all active tones: 3K operations [21].

2) Calculate sn
k based on the optimal water level: K

operations.
3) Calculate corresponding integer bitloading: 3K opera-

tions.
Hence the total complexity of a single waterfilling is 7K

operations, where one operation is either an addition or a
multiplication. Considering the 34 iterations of the bisection
search, the iteration through all of the users, and the iteration
of the whole process until convergence, the total complexity
of IW is then: v ∗ N ∗ 34 ∗ 7K = 238vNK, where v is the
number of cycles required until convergence.

B. Complexity Analysis for ASB-S1

ASB-S1 consists of three levels of iterations, with the
outmost cycle iterating through users. Within each cycle, each
users runs an outer loop where it updates wn until the target
rate is achieved, and an inner loop where tit updates λn until
the total power constraint is satisfied. The bisection search is
used in both loops. To achieve a precision of 10−10 in both wn

and λn, we need a total of 342 = 1156 iterations. Within each
iteration, the complexity is dominated by finding the roots of a
cubic equation (e.g., solving (9)), which requires 44 operations
in total [22]. This has to be repeated on all tones, leading
to a total complexity of 44K. Hence the total complexity of
ASB-S1 is v ∗ N ∗ 1156 ∗ 44K = 50864vNK. High SNR
approximation would further reduce the operations count.

It is important to realize that the order of complexity for
ASB is the same as IW: O(NK), and the actual running time
of ASB is still well within the bounds for practical implemen-
tation. This implementation viability is in sharp contrast to the

10Also, the inverse Channel-Signal-to-Noise-Ratio (CSNR) must be calcu-
lated, and the tones sorted according to the CSNR. However this only needs
to be done once for each outer cycle, and can be re-used for all inner-loop
iterations. Hence this has minimal impact on complexity.
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higher complexity order and centralized schemes of OSB and
ISB, which do not offer much rate region gains over ASB.

IX. CONCLUSIONS

This paper presents the Autonomous Spectrum Balancing
(ASB) algorithm, the first suite of DSM methods that is
simultaneously low complexity, completely autonomous, prov-
ably convergent under certain conditions, and achieving close-
to-optimal performance in DSL systems. It achieves large
performance gain over the state-of-art autonomous algorithm
IW, and close-to-optimal performance (established by the
centralized OSB algorithm) in a wide range of scenarios. The
convergence of ASB is proven for an arbitrary number of users
and under channel conditions that are typically satisfied in
DSL deployments. In particular, ASB includes IW as a special
case, thus the convergence proof of our algorithm extends and
generalizes the convergence proof of IW. ASB can improve
system performance in both synchronous and asynchronous
transmission case, where the latter is a particularly under-
explored research area where only limited, high-complexity
heuristics were available.

The key concept that enables ASB to successfully tackle the
nonconvex and coupled optimization problem is the “reference
line”, which allows each user to optimize its transmit spectra to
achieves its own target rate while minimizing the degradation
caused to other users in the frequency-selective interference
channel of DSL. ASB applies this approach of “static pricing”
coordination in a rigorous manner with provable theoretical
properties, leading to significantly enlarged rate region com-
pared with IW. This “reference line” idea can be readily
implemented using existing DSM/PBO techniques mandated
by DSL standards. Since good choices for reference lines have
been made in standards, we can readily apply these in our
algorithms. Although we have focused mainly on ADSL in
this paper, ASB is also applicable in VDSL systems and lead
to significant performance gains as well.
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APPENDIX

A. Proof of Theorem 3

The following Lemma is useful for proving Theorem 3.
Lemma 7: Consider any non-decreasing function f (x) and

non-increasing function g (x). If there exists a unique x∗

such that f (x∗) = g (x∗) , and the functions f(x) and
g(x) are strictly increasing and strictly decreasing at x = x∗

respectively, then x∗ = arg minx {max{f (x) , g (x)}}.
Proof of Lemma 7: For any ∆x > 0, f (x∗ + ∆x) >

f (x∗) = g (x∗) > g (x∗ + ∆x). Similarly for any ∆x < 0,
f (x∗ + ∆x) < f (x∗) = g (x∗) < g (x∗ + ∆x). It then can
be verified that x∗ = arg minx {max{f (x) , g (x)}} . ¥

Denote sn,t
k as the PSD of user n on tone k after iteration

t, where
∑

k sn,t
k = Pn is satisfied at the end of any iteration

t for any user n. One iteration is defined as one round of
updates of all users. The PSD update in the two-user case can
be written as follows:

sn,t+1
k =

[
wn

(
1− λn,t+1

)

λn,t+1 + (1− λn,t+1) (1− wn)βn
k

−
∑

j

γ (k − j)αn,m
j sm,t

j − σn
k




+

, (15)

where βn
k = α̃n

k

∑
j

γ(j−k)
σ̃j

1{s̃j>0}, n,m ∈ {1, 2}, m 6=
n and ∀k, t, and [x]+ = max (x, 0). Also define [x]− =
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max (−x, 0). Without loss of generality, we assume that the
total power constraint is always satisfied at the end of any
iteration.11 Then it is clear that

∑

k

[
sn,t

k − sn,t′

k

]+

=
∑

k

[
sn,t

k − sn,t′

k

]−
,∀n, t, t′. (16)

Also define

fn,t (x) =
∑

k

[[
wn (1− x)

x + (1− x) (1− wn)βn
k

−
∑

j

γ (k − j)αn,m
j sm,t

j − σn
k




+

− sn,t
k



−

,

and

gn,t (x) =
∑

k

[[
wn (1− x)

x + (1− x) (1− wn)βn
k

−
∑

j

γ (k − j)αn,m
j sm,t

j − σn
k




+

− sn,t
k




+

,

where n, m ∈ {1, 2}, m 6= n and ∀k, t. It is clear that fn,t (x)
(gn,t (x) , respectively) is non-decreasing (non-increasing) in
x, and strictly increasing (strictly decreasing) at x = λn,t+1

(unless fn,t
(
λn,t+1

)
= gn,t

(
λn,t+1

)
= 0, which means the

PSD converges). From (16) we always have fn,t
(
λn,t+1

)
=

gn,t
(
λn,t+1

)
. Now we can show that

max

{∑

k

[
s1,t+1

k − s1,t
k

]+

,
∑

k

[
s1,t+1

k − s1,t
k

]−}

=max
{
f1,t

(
λ1,t+1

)
, g1,t

(
λ1,t+1

)}
(17)

≤max
{
f1,t

(
λ1,t

)
, g1,t

(
λ1,t

)}
(18)

≤max





∑

k


∑

j

γ (k − j)α1,2
j

(
s2,t

j − s2,t−1
j

)



+

,

∑

k


∑

j

γ (k − j)α1,2
j

(
s2,t

j − s2,t−1
j

)


−


 (19)

=max





∑

j

[∑

k

γ (j − k)α1,2
k

(
s2,t

k − s2,t−1
k

)]+

,

∑

j

[∑

k

γ (j − k)α1,2
k

(
s2,t

k − s2,t−1
k

)]−

 (20)

11In general, the total power constraint needs not to be tight, e.g., when
summation of sn

k (which is determined by (12)) over all tone k is less than
the power constraint P n even when λn = 0. This might happen in the case
where wn is small enough (i.e., user n’s target rate is small). However, we
can make the power constraint tight in this case by defining an extra “virtual
tone”. The data rate achieved by user n on the virtual tone is ε ·sn

virtual, where
ε is a very small number and sn

virtual is the PSD allocated to the virtual tone.
Furthermore, the reference line is chosen to be inactive on the virtual tone
(i.e., s̃virtual = 0). Now from the perspective of any actual line, loading power
on the virtual tone has very small yet positive impact on its own total rate
(with very small value ε), and has no impact on the reference line’s rate.
Hence the user will always take any left over power and load onto the virtual
tone, and always operate at full power.

≤max





∑

j

∑

k

γ (j − k) α1,2
k

[
s2,t

k − s2,t−1
k

]+

,

∑

j

∑

k

γ (j − k)α1,2
k

[
s2,t

k − s2,t−1
k

]−


 (21)

=max





∑

k

α1,2
k

[
s2,t

k − s2,t−1
k

]+ ∑

j

γ (j − k) ,

∑

k

α1,2
k

[
s2,t

k − s2,t−1
k

]−∑

j

γ (j − k)



 (22)

≤

∑

j

γ (j)


max

k

{
α1,2

k

}

·max

{∑

k

[
s2,t

k − s2,t−1
k

]+

,
∑

k

[
s2,t

k − s2,t−1
k

]−}
(23)

≤
(∑

k

γ (k)

)2

max
k

{
α1,2

k

}
max

k

{
α2,1

k

}

·max

{∑

k

[
s1,t

k − s1,t−1
k

]+

,
∑

k

[
s1,t

k − s1,t−1
k

]−}
(24)

< max

{∑

k

[
s1,t

k − s1,t−1
k

]+

,
∑

k

[
s1,t

k − s1,t−1
k

]−}
, (25)

where (17) follows from the definition of fn,t and gn,t,
(18) follows by using Lemma 7 and letting x = λ1,t, (19)
follows from the definition of fn,t and gn,t, the expression
of s1,t

k in (15), and the fact that [x+ − y+]+ ≤ [x− y]+

and [x+ − y+]− ≤ [x− y]− for any x and y, (20) fol-
lows by exchanging indexes k and j, (21) follows by using∑

k [xkyk]+ ≤ ∑
k xk [yk]+ for all xk ≥ 0 and yk, (22)

follows by exchanging the summation order of k and j,
(23) follows by using the circulant property of γ (24), i.e.,∑

j γ (j − k) =
∑

j γ (j), (24) by applying the arguments
from (17) to (23) again, and finally (25) follows by the condi-
tion in Theorem 3. This shows that the ASB-A2 algorithm is a
contraction mapping form an initial PSD values, thus globally
converges to a unique fixed point [23, Page 183]. ¥

B. Proof of Theorem 5

We first prove the convergence in the parallel update case.
The PSD of user n in tone k after iteration t + 1 is

sn,t+1
k =

[
wn

(
1− λn,t+1

)

λn,t+1 + (1− λn,t+1) (1− wn)βn
k

−
∑

m 6=n


∑

j

γ (k − j) αn,m
j sm,t

j


− σn

k




+

.
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The rest of the proof can be obtained similar as in Theorem
3 with the following:

max
n

max

{∑

k

[
sn,t+1

k − sn,t
k

]+

,
∑

k

[
sn,t+1

k − sn,t
k

]−}

≤max
n

max





∑

j


 ∑

m 6=n

(∑

k

γ (j − k)αn,m
k

(
sm,t

k − sm,t−1
k

))


+

,

∑

j


 ∑

m 6=n

(∑

k

γ (j − k)αn,m
k

(
sm,t

k − sm,t−1
k

))

−




≤max
n

max

{(∑

k

γ (k)

)
(N − 1) max

m 6=n,k
αn,m

k

∑

k

[
sm,t

k − sm,t−1
k

]+

,

(∑

k

γ (k)

)
(N − 1) max

m6=n,k
αn,m

k

∑

k

[
sm,t

k − sm,t−1
k

]−}

≤
(∑

k

γ (k)

)
(N − 1) max

m 6=n,k
αn,m

k

·max
n

max

{∑

k

[
sm,t

k − sm,t−1
k

]+

,
∑

k

[
sm,t

k − sm,t−1
k

]−}

<max
n

max

{∑

k

[
sm,t

k − sm,t−1
k

]+

,
∑

k

[
sm,t

k − sm,t−1
k

]−}
.

For the sequential update case, the convergence
can be proved by combining Lemma 7 and proof
of Theorem 3.4.1 in [10]. First, define Dst,st′ (n) =

max
{∑

k

[
sn,t

k − sn,t′

k

]+

,
∑

k

[
sn,t

k − sn,t′

k

]−}
, and

Dst,st′ =
{

Dst,st′ (n), ∀n
}

. Using induction, we can find
an N × N matrix H such that Dst+1,st ≤ HDst,st−1 . The
final step is to show the maximum eigenvalue of matrix H
is less than 1, which guarantees that ASB-A2 algorithm is
an contraction mapping in the sequential updates. Details are
omitted due to space limitations. ¥


