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Abstract— The effect of jamming on multiuser transmission
in MIMO Gaussian multiple access and broadcast channels is
analyzed. A malicious jammer seeks to impair communication in
a multiuser channel by injecting a spatially-correlated Gaussian
interference signal. Full channel state information (CSI) is
assumed, but the jammer has no knowledge of the users’ signals.

In the broadcast channel, a worst-case throughput (sum rate) is
obtained as the Nash equilibrium of a certain strictly competitive
game; in the multiple access channel, a general weighted sum-rate
is similarly considered. Certain properties of the Nash equilibria
of each game are developed.

Keywords— Jamming, MIMO Broadcast Channel, MIMO Multi-
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I. INTRODUCTION

MIMO transmission techniques continue to mature both

theoretically and in practice. This paper considers interference

in MIMO Gaussian multiple access and MIMO Gaussian

broadcast channels under a jamming framework. For each

channel, a jammer seeking to impair transmission injects a

spatially-correlated Gaussian interference signal, while the

users attempt to best mitigate the jammer’s interference.

The game theoretic analysis of a single user channel with

a single jammer has been examined under various conditions

[1] [2] [3] [4]. In such analyses, the objective is commonly

channel mutual information [5], or a squared-difference error

criterion [6]. The terminology of “correlated jamming” has

been used to denote correlation between a legitimate user’s

signal and the jammer’s signal. Recently, multiple-access

channels under a throughput objective have been studied [7].

Potential applications of this analysis are MIMO wireless

systems and next-generation “vectored” DSL systems [8]; for

specificity, terminology from the former example is adopted

in the sequel.

The paper is organized as follows. Section II considers

the Gaussian multiple access channel model of upstream

transmission. The performance criterion in this setting is an

arbitrary non-negative weighting of the users’ rates. Section

III considers downstream transmission in a Gaussian BC, with

the performance criterion of channel throughput. Concluding

remarks are made in Section V.

A word on notation: for the matrix X , X � 0 denotes that

X is positive semidefinite, while for the vector x, xk denotes

the kth element and x � 0 designates that each element is

nonnegative. All capacities are given in nats.

II. MIMO MULTIPLE ACCESS CHANNELS

A. Channel and Coding Model

A total of K independent users, each equipped with NT an-

tennas, transmit to a common base station with NR antennas.

A malicious jammer has a total of NJ transmit antennas. The

linear discrete-time channel is governed by

y =
K∑

k=1

Hkxk + Gz + n, (1)

where Hk ∈ R
NR×NT is the gain between the kth user and

the receiver, G ∈ R
NR×NJ is the gain between the jammer

and the receiver, y ∈ R
NR is the channel output, and xk ∈

R
NT is kth user’s signal. A Gaussian jammer emits signal z,

where z ∼ N (0, Z). n ∈ R
NR denotes AWGN independent

of the users and jammer, distributed as n ∼ N (0, Λ) where

Λ ≻ 0. Each legitimate transmitter has a power constraint:

E[xT
k xk] ≤ P x

k , for all k = 1, . . . , K , as does the jammer:

E[zT z] ≤ P j .

All of the transmitters and the jammer are assumed to

have perfect CSI. Although the jammer may correlate its

interference in space (Z), eavesdropping by the jammer is not

allowed i.e. the jammer has no knowledge of the users’ signals

({xk}) and thus may not perform “correlated jamming”.

B. Gaussian MAC Capacity

First consider the case when the jammer is removed (NJ =
0 or P j = 0). In this case, the channel (1) corresponds to a

Gaussian Multiple Access Channel. The (Shannon) capacity of

this channel is well-known [9], and is given by the following

expression

CMAC(Λ) =
⋃

Tr(Xk) ≤ Pk,

Xk � 0,

k = 1, . . . , K

{
R : 2

∑

s∈S

Rs

≤ log
|
∑

m∈S HmXmHT
m + Λ|

|Λ|
∀S ⊂ E

}
,

(2)

where E = {1, . . . , K} is an index set, R ∈ R
K
+ is a vector

of user rates wherein Rk is the rate of user k, and Xk ∈



Player Objective Strategy Set

1 - Users max J {X1, . . . , XK : Xk � 0, Tr(Xk) ≤ P x
k
}

2 - Jammer minJ {Z : Z � 0, Tr(Z) ≤ P
j

k
, }

TABLE I

SUMMARY OF MULTIPLE ACCESS CHANNEL GAME M.

S
NT

+ denotes the transmit covariance of user k. The notation

CMAC(Λ) is employed to denote explicitly the dependence of

the capacity region on Λ.

Turning to the more general case with the jammer present

(NJ > 0), denote the net (Gaussian) interference covariance

at the receiver by Ψ

Cov[n + Gz] = Λ + GZGT (3)

, Ψ(Z). (4)

We consider the problem of computing

max µT R
subject to R ∈ CMAC(Ψ(Z)),

(5)

where µ is a fixed non-negative weighting µ ∈ R
K
+ and

Z ≻ 0 is fixed. Note that the maximum is attained because

CMAC(Ψ(Z)) is closed and bounded. This optimization is

illustrated in Figure 1 as the intersection of a tangent plane

having normal vector µ with CMAC(Λ). It can be shown that

(5) is a convex optimization problem in the sense of [10];

without loss of generality, by assuming µ1 ≤ µ2 ≤ . . . ≤ µK

one has the equivalent problem [11]

max 1
2

∑K

k=1(µk − µk−1) log
|Ψ(Z)+

P

K

m=k
HmXmHT

m|
|Ψ(Z)|

subject to Tr(Xk) ≤ Pk,
Xk � 0,

(6)

where in a slight abuse of notation, we define µ0 = 0. Note

that the formulation (6) has only K total log | · | expressions,

which is a substantial simplification of the naive formulation of

(5) based on the 2K−1 convex inequalities defining CMAC(Λ)
(2).

C. Game-Theoretic Formulation

Suppose now that the jammer wishes to choose a fixed

transmit covariance Z so as to minimize the weighted rate

achievable by the transmitters. The jammer’s optimization is

infZ max{Xk}
1
2

∑K

k=1(µk − µk−1)

· log
|Ψ(Z)+

P

K

m=k
HmXmHT

m|
|Ψ(Z)|

subject to (X1, X2, . . . , XK) ∈ S1,
Z ∈ S2,

(7)

where we define S1 = {(X1, . . . , XK) : Xk � 0, Tr(Xk) ≤
P x

k , k = 1, . . . , K} and S2 = {Z : Z � 0, Tr(Z) ≤ P j}.

It is possible to obtain additional insight to the problem (7)

by appealing to game-theoretic results. Consider the following

µ

CMAC(Λ)

Fig. 1. Illustration of µ-weighted rate maximization over CMAC(Λ)
considered in multiple access game M.

two-player strictly-competitive game, as summarized in Table

I. The objective function of the game is

J(X1, . . . , XK , Z)

=
1

2

K∑

k=1

(µk − µk−1) log

∣∣∣Ψ(Z) +
∑K

m=k HmXmHT
m

∣∣∣
|Ψ(Z)|

.

(8)

The non-negative weighting µ ∈ R
K
+ is fixed. Player 1 (corre-

sponding to the legitimate users) chooses transmit covariances

(X1, . . . , XK) from the set S1 to maximize the objective

function (corresponding to their weighted rate). Player 2

(corresponding to the jammer) chooses a covariance (Z) to

minimize the objective function. The game M = (J,S1,S2) is

defined as the Multiple Access Channel Worst-Case Weighted

Rate game.

This game-theoretic formulation of (7) admits the applica-

tion of Nash equilibrium results from game theory. A Nash

equilibrium (in pure strategies) of the game M, denoted

(X⋆
1 , . . . , X⋆

K , Z⋆), has the physical interpretation of a worst

interference covariance (Z⋆) by the jammer, and the optimal

transmit covariance for the users (S⋆
1 , . . . , S⋆

k) under such

interference.

The following two lemmata are useful in the subsequent

analysis:

Lemma 1 ( [4]): The function f : S
n
+ 7→ R defined as

f(Kz) = log (|Kx + Kz|/|Kz|) , (9)

is convex in Kz , where 0 � Kx ∈ S
n. Furthermore, the

convexity is strict if Kx ≻ 0.

Lemma 2 ( [4] [12]): The function g : S
n
+ 7→ R defined as

g(Kx) = log (|Kx + Kz|/|Kz|) , (10)

is strictly concave in Kx, where 0 ≺ Kz ∈ S
n.

Theorem 1: A pure-strategy Nash equilibrium of the game

M , denoted (X⋆
1 , . . . , X⋆

K , Z⋆), always exists. Also, the game

has a value.

Proof: The sets S1 and S2 are both compact and convex.

The function J is continuous, and each log |·| term in the sum-

mation (8) is convex in Z ∈ S2 for any fixed (X1, . . . , XK) ∈
S1 due to Lemma 1 and the affine composition property. The

differences µk − µk−1 are all nonnegative, and therefore J is



the nonnegative weighted sum of terms convex in Z; hence J
is convex in Z (for any fixed (X1, . . . , XK) ∈ S1). Also, for

any fixed Z ∈ S2, each log |·| term in the sum (8) is a concave

function of (X1, . . . , XK) on S1 due to Lemma 2 and the

affine composition property. Therefore J is the nonnegative

weighted sum of terms concave in (X1, . . . , XK) (for any

fixed Z ∈ S2). The necessary conditions of [13, Thm. 4.4] are

thereby satisfied and the result follows.

As a corollary, the infimum in (7) is achieved.

It can be shown that, in general, the Nash equilibrium of the

game M is not unique. However, the following result gives

conditions under which a certain “partial” uniqueness holds.

Theorem 2: Let (X⋆
1 , . . . , X⋆

K , Z⋆) be any Nash equilib-

rium of M. If the matrices H1, . . . , HK are each full column

rank and 0 < λ1 < . . . < λK , then for all (X̂1, . . . , X̂K , Ẑ)

that are Nash equilibria of M it holds X̂k = X⋆
k for every

k = 1, . . . , K .

Proof: By the interchangeability property,

(X̂1, . . . , X̂K , Z⋆) is also a Nash equilibrium. Define

(X̃1, . . . , X̃K) = 1
2 (X̂1, . . . , X̂K) + 1

2 (X⋆
1 , . . . , X⋆

K).
Because J is concave in (X1, . . . , Xk) with Z⋆ fixed and the

game has a value, it holds

J
(
X̃1, . . . , X̃K , Z⋆

)

=
1

2
J (X⋆

1 , . . . , X⋆
K , Z⋆) +

1

2
J

(
X̂1, . . . , X̂

⋆
K , Z⋆

)
. (11)

And because each term in the summation (8) similarly is

concave in (X1, . . . , Xk), it holds

(µk − µk−1) log

∣∣∣Ψ(Z⋆) +
∑K

m=k HmX̃mHT
m

∣∣∣
|Ψ(Z⋆)|

≥
1

2
(µk − µk−1) log

∣∣∣Ψ(Z⋆) +
∑K

m=k HmX⋆
mHT

m

∣∣∣
|Ψ(Z⋆)|

+
1

2
(µk − µk−1) log

∣∣∣Ψ(Z⋆) +
∑K

m=k HmX̂mHT
m

∣∣∣
|Ψ(Z⋆)|

, (12)

for each k = 1, . . . , K . Together (11) and (12) imply that the

inequality in (12) holds with equality. Because µk−µk−1 > 0
and Ψ(Z⋆) ≻ 0, Lemma 2 implies that

K∑

m=k

HmX̂mHT
m =

K∑

m=k

HmX⋆
mHT

m, (13)

for each k = 1, . . . , K . Consider now the case of k = K . Be-

cause HK has full column rank, it has a left inverse H†
K such

that H†
KHK = I . Then by (13), H†

KHKX̂KHT
K(H†

K)T =

H†
KHKHKX⋆

KHT
K(H†

K)T and hence X̂K = X⋆
K .

Now consider k = K − 1. By (13) it holds

K∑

m=K−1

HmX̂mHT
m =

K∑

m=K−1

HmX⋆
mHT

m. (14)

Because X̂K = X⋆
K this implies that HK−1X̂K−1H

T
K−1 =

HK−1X
⋆
K−1H

T
K−1. HK−1 also has full column rank and a left

inverse, whence X̂K−1 = X⋆
K−1. By an identical induction

argument, X̂k = X⋆
k for each k = 1, . . . , K , implying the

result.

In practical DSL systems, the full column rank condition

can be shown to hold in deployed loop channels [8] [14].

III. MIMO BROADCAST CHANNELS

This section considers a “dual” configuration whereby a

single transmitter (e.g. base station) wishes to communicate

with several independent receivers in the presence of hostile

Gaussian jamming.

A. Channel and Coding Model

A single transmitter, equipped with NT antennas, transmits

to K independent users; for clarity of exposition, it is assumed

that each user is equipped with NR antennas. The jammer has

a total of NJ transmit antennas.

The discrete-time channel is governed by the following

linear model:

yk = Hkx + Gkz + nk, (15)

where Hk ∈ R
NR×NT is the gain between the transmitter and

the kth user, Gk ∈ R
NR×NJ is the gain between the jammer

and user k, yk ∈ R
NR is the channel output observed by user

k, x ∈ R
NT is the transmitter’s signal, and zk ∈ R

NR is

AWGN observed by user k. The distribution of the AWGN,

which is independent of the jammer, is nk ∼ N (0, Λk) where

Λk ≻ 0 for all k = 1, . . . , K . The transmitter and jammer’s

power are upper-bounded: E[xT x] ≤ P x, E[zT z] ≤ P j . Both

the users and the jammer are assumed to have perfect CSI,

but again the jammer has no knowledge of x.

B. Sum Capacity

It has been shown [15] (see also [16] [17]) that without the

jammer (NJ = 0) in the channel (15), the sum capacity Csum
is given by:

maxX minΥ
1
2 log |HXHT + Υ| − 1

2 log |Υ|
subject to Υ[k] = Λk k = 1, . . . , K,

Tr(X) ≤ P x,
Υ � 0,
X � 0.

(16)

where the notation HT = [HT
1 , . . . , HT

k ] and Υ[k] denotes the

kth NR ×NR block-diagonal of the matrix Υ ∈ R
KNr×KNr .

An interpretation [15, Thm. 3] of the formulation (16) is a

strictly-competitive two-player game between the transmitter

(X) choosing an optimal transmit covariance and a “malicious

nature” (Υ) choosing a worst joint distribution for the broad-

cast channel; furthermore, solutions of (16) correspond to Nash

equilibria of the game. The sum capacity may be achieved

by e.g. dirty-paper coding [9], or trellis and convolutional

precoding [18].

Considering now the interference experienced from the

Gaussian jammer, the noise covariance seen by user k is given

by

Cov[nk + Gkz] = Λk + GkZGT
k (17)



Player Objective Strategy Set

1 - Users max K {X : X � 0, Tr(X) ≤ P x}
2 - Jammer, “Nature” minK {S, Z : Z � 0, Tr(Z) ≤ P j ,

Ψ(Z) + S � 0, S[k] = 0}

TABLE II

SUMMARY OF BROADCAST CHANNEL GAME B.

For notational convenience, define

Ψ(Z) ,



Λ1 + G1ZGT

1

. . .

ΛK + GKZGT
K


 , (18)

where all the off block-diagonal terms are 0. For any fixed

Z � 0, the sum capacity Csum(Z) of the channel may be

written

minS maxX
1
2 log

∣∣HXHT + S + Ψ(Z)
∣∣

− 1
2 log |S + Ψ(Z)|

subject to S[k] = 0 k = 1, . . . , K,
Tr(X) ≤ P x,
Tr(Z) ≤ P j,
S + Ψ(Z) � 0,
X � 0,
Z � 0.

(19)

C. Game-Theoretic Formulation

Suppose that the jammer wishes to choose its covariance

Z so as to minimize the channel sum capacity Csum(Z). The

jammer’s optimization is

infZ minS maxX
1
2 log

∣∣HXHT + S + Ψ(Z)
∣∣

− 1
2 log |S + Ψ(Z)|

subject to X ∈ S1,
(S, Z) ∈ S2,

(20)

where S1 = {X : X � 0,Tr(X) ≤ P x} and S2 = {(S, Z) :
S[k] = 0, k = 1, . . . , K, Z � 0,Tr(Z) ≤ P j , Ψ(Z) � −S}.

The formulation (20) may be interpreted as a strictly-

competitive game, and is summarized in Table II. In this two-

player game, the objective function K : S1×S2 7→ R is given

by

K(X, S, Z)

=
1

2
log

∣∣HXHT + S + Ψ(Z)
∣∣ − 1

2
log |S + Ψ(Z)|.

(21)

Player 1 chooses X from the set S1 to maximize the objective,

while Player 2 chooses (S, Z) from the set S2 to minimize

the objective. The game B = (J,S1,S2) is defined as the

Broadcast Worst Throughput game. Observe that by setting

P j = 0, the Broadcast Worst Throughput game reduces to the

game (16) defined for broadcast channel sum capacity; thus

the former game generalizes the latter.

A pure-strategy Nash equilibrium represents a “worst”

choice transmit covariance (Z) by the jammer and channel

joint distribution (S) by “nature” [15], as well as the optimal

response (X) to this interference by the transmitter such that

neither player has a unilateral incentive to deviate its strategy.

It turns out that such a Nash equilibrium always exists in B.

Theorem 3: The game B has a Nash equilibrium in pure

strategies and a value.

Proof: We give only a sketch of the lengthy proof; the

crux of the approach is a result due to Diggavi and Cover [4]

that has been used similarly in [15]. With the identification

N = S+Ψ(Z) it can be shown that a Gaussian saddle point of

the mutual information expression I(X ; HX +N) exists over

a certain feasible set of distributions. Evaluating this mutual

information expression for the Gaussian case, one obtains the

log | · | expression of (21) and

min
(S,Z)∈S2

max
X∈S1

K(X, S, Z) = max
X∈S1

min
(S,Z)∈S2

K(X, S, Z).

(22)

Note therefore that the infimum in (20) is achieved.

In general, there need not exist a unique Nash equilibrium

of B. However, sufficient conditions are given in the following

Theorem for the uniqueness of X⋆.

Theorem 4: In the game B, if H has full column rank

and if there exists a Nash equilibrium (X⋆, S⋆, Z⋆) such that

Ψ(Z⋆) ≻ −S⋆, then for every Nash equilibrium (X̂, Ŝ, Ẑ), it

holds X̂ = X⋆.

Proof: The convex optimization problem

max 1
2 log |Q + S + Ψ(Z)| − 1

2 log |S + Ψ(Z)|
subject to Q ∈ S1,

(23)

has a unique solution [10], denoted Q⋆ because by Lemma 2,

the objective is strictly convex in Q. Therefore HX⋆HT =
Q⋆. By the exchangeability property of Nash equilibria,

(X̂, S⋆, Z⋆) is also a Nash equilibrium. Therefore by the iden-

tical argument above, HX̂HT = Q⋆ and hence HX̂HT =
HX⋆HT . Because H is full column rank, it has a left inverse

H†. Thus H†HX̂HT (H†)T = H†HX⋆HT (H†)T , which

simplifies to X̂ = X⋆.

Note that in contrast to Theorem 4, no conditions on the Nash

equilibria themselves (i.e. Ψ(Z⋆) ≻ −S⋆) are required by

Theorem 2.

IV. NUMERICAL EXAMPLES

This section gives numerical examples arising from the

games M and B. Nash equilibria of these games may be

efficiently computed by convex optimization techniques [10].

A. Gaussian Vector MAC Example

Let K = 2, NT = NR = 2, P x
1 = P x

2 = 1, P j = 1,

µ = [1 1]T and

H1 =

[
0.2 0.1
−0.2 1.0

]
, H2 =

[
−0.3 0.0
0.5 0.6

]
,

G =

[
0.2 0.1
−0.3 0.15

]
,

Λ = I. (24)



The following is a Nash equilibrium of M with these param-

eters

X⋆
1 =

[
0.017 −0.130
−0.130 0.983

]
,

X⋆
2 =

[
0.570 0.495
0.495 0.429

]
,

Z⋆ =

[
0.822 −0.383
−0.383 0.178

]
,

J(X⋆
1 , X⋆

2 , Z⋆) = 0.475. (25)

Note that the jammer uses full power (Tr(Z⋆) = P j = 1) as

does Player 1 (Tr(X1) = P x
1 , Tr(X2) = P x

2 ).

When the jammer is removed (P j = 0), it may be verified

(e.g. by a modified waterfilling algorithm [11]) that the sum

capacity of the resulting MAC is 0.508; thus, the jammer

has reduced throughput by a nominal amount. Because the

jammer’s interference power GZ⋆GT is not large compared

to the AWGN (Λ = I), it is intuitive that the throughput loss

is not substantial in this example.

B. Gaussian Vector BC Example

This example considers a multiple-input single-output

(MISO) broadcast channel. Let K = 3, NT = 3, NR = 1,

NJ = 2, P x = 5, P j = 5, and

H =




1.0 −0.3 0.2
−0.4 2.0 0.5
−0.1 0.2 3.0


 ,

G =




0.1 −0.2
2.0 0.4
0.1 0.6


 ,

Λ1 = Λ2 = Λ3 = 1. (26)

The game B with these parameters has the following Nash

equilibrium

X⋆ =




1.734 −0.480 0.032
−0.480 0.671 0.126
0.032 0.126 2.596



 ,

Z⋆ =

[
0.873 1.898
1.898 4.127

]
,

S⋆ =




0 0.034 0.469

0.034 0 −2.979
0.469 −2.979 0



 ,

K(X⋆, (S⋆, Z⋆)) = 1.765. (27)

It was shown in [15] that without the jammer (P j = 0), the

BC sum capacity is 2.895. Thus in this example, the jammer

causes a significant reduction in rate. This example also shows

that even when Ψ(Z⋆) ≻ −S⋆, the jammer’s Nash equilibrium

strategy may be rank-deficient (Z⋆ 6≻ 0) as

Z⋆ =

[
0.873 1.898
1.898 4.127

]
= 5

[
0.418
0.906

] [
0.418 0.906

]
. (28)

V. CONCLUSION

The properties of Gaussian jamming in MIMO multiple

access and broadcast channels has been examined from the

standpoint of game theory. Worst-case interferences and op-

timal responses thereto were obtained from Nash equilibria

of suitably-defined strictly competitive games: in the multiple

access channel, arbitrary weightings of users’ rates were

adopted as the performance criterion. In the broadcast chan-

nel, throughput is considered, in a generalization of a game

previously formulated for Gaussian sum capacity.

Partial uniqueness properties of these Nash equilibria have

been developed. Under appropriate conditions, the Nash equi-

librium strategies of the legitimate users were shown to

be unique; such strategies therefore may be interpreted as

“robust” transmit covariances that afford protection against a

hostile Gaussian jammer.
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