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Abstract— Network utility maximization (NUM) problems pro-
vide an important approach to conduct network resource man-
agement such as end-to-end rate allocation. In the existing
literature, distributed implementations are typically achieved
by the means of the so-called dual decomposition technique.
However, the span of decomposition possibilities includes many
other elements which thus far have not been fully exploited such
as the use of the primal decomposition technique, the versatile
introduction of auxiliary variables, and the potential of multilevel
decompositions. This paper presents a systematic framework to
exploit the potential of the alternative decomposition structures
as a way to obtain different distributed algorithms, each with
a different tradeoff among convergence speed, message passing
amount and asymmetry, and distributed computation architec-
ture. Many specific applications are considered to illustrate the
proposed framework, including resource-constrained and direct-
control rate allocation, and rate allocation among QoS classes
and with multipath routing. For each of these applications,
the associated generalized NUM formulation is first presented,
followed by the development of novel alternative decompositions
and numerical experiments on the resulting new distributed
algorithms.

Keywords: Rate control, Congestion control, Resource allocation,
Mathematical programming/optimization, Network utility maximiza-
tion, Distributed algorithm, Network control by pricing.

I. INTRODUCTION

A. Motivation

Why would one care about a systematic theory of alternative
decompositions for variants of Network Utility Maximization
(NUM) problems? There are two main reasons: it leads to the
most appropriate distributed algorithm for a given network
resource allocation problem, and it quantifies the comparison
across architectural alternatives of distributed, layered network
control.

First, since the publication of the seminal paper [1] by
Kelly, Maulloo, and Tan in 1998, the framework of NUM
has found many applications in network resource allocation
algorithms and Internet congestion control protocols, e.g., [2],
[3], [4], [5], [6], [7]. The key innovation from this series
of work is to interpret source rates as primal variables, link
congestion prices as dual variables, and a TCP–Active Queue
Management (AQM) protocol as a distributed algorithm over
the Internet to solve an implicit, global utility maximization
and its Lagrange dual problem. Different TCP-AQM protocols
solve for different concave utility functions using different link

prices. This model implies that the equilibrium properties of
a large network under TCP/AQM control, such as throughput,
delay, queue lengths, loss probabilities, and fairness, can be
readily understood by studying the underlying nonlinear utility
maximization problem. In addition to this reverse engineering
direction, allocation of limited network resources, such as
power, bandwidth, and rate, among competing users can also
be formulated by generalizing the basic NUM in [1] to more
sophisticated formulations.

Almost all the papers in the vast, recent literature on NUM
use a standard dual-based distributed algorithm. Contrary to
the apparent impression that such a decomposition is the only
possibility, there are in fact many alternatives to solve a given
network utility problem in different but all distributed manners.
Each of the alternatives provides a possibly different tradeoff
among three important considerations: convergence speed,
amount and asymmetry of message passing’s communication
overhead, and architecture of distributed computation. There
is no universally ‘best’ way to distribute the solution process
across a network: which alternative is the most desirable de-
pends on the specific problem formulation. Thus motivated, we
develop a systematic framework of alternative decompositions
in this paper and apply it to four network rate allocation
problems motivated by practical needs and constraints.

Second, the framework of NUM has recently been substan-
tially extended from an analytic tool of reverse-engineering
TCP congestion control to a general approach of understand-
ing interactions across layers. One possible perspective to
rigorously and holistically understand layering is to integrate
the various protocol layers into a single coherent theory, by
regarding them as carrying out an asynchronous distributed
computation over the network to implicitly solve a global opti-
mization problem. Different layers iterate on different subsets
of the decision variables using local information to achieve
individual optimality. Taken together, these local algorithms
attempt to achieve a global objective. This approach exposes
the interconnection between protocol layers and can be used to
study rigorously the performance tradeoff in protocol layering,
as different ways to distribute a centralized computation.

Since the design of a complex system will always be
broken down into simpler modules, a ‘layering as optimization
decomposition’ theory will allow us to systematically carry out
this layering process and explicitly trade off design objectives.



Each different decomposition represents a new possibility of
network architecture. But to develop such a theory, alter-
native decompositions must be fully explored to understand
architectural possibilities, both ‘vertically’ across functional
modules, i.e., the layers, and ‘horizontally’ across disparate
network elements. This paper primarily studies alternatives of
horizontal decompositions, although some results are directly
applicable to vertical decompositions as well, e.g., the results
in Section VI can be readily applied to joint TCP and MAC
design in [8].

B. Existing Work

There are at least three levels of understanding as to what
it means to ‘efficiently solve’ a utility maximization problem.
First, a convex optimization (minimizing a convex function
over a convex constraint set) is easy to solve because a
local optimum must also be globally optimal, whereas a
nonconvex one is very difficult [9]. Second, there are prov-
ably polynomial-time but centralized algorithms, such as the
interior-point method, to solve a convex optimization. Third,
distributed algorithms can be found to converge to the global
optimum. It is the third level that we concern ourselves in this
paper.

There is indeed a large body of results on distributed
computation, some of which are summarized in standard
textbooks such as [10], [11], [12], [13] and others. Our goal
here is certainly not to survey these known general results in
linear programming, graph theory, or decomposable problems.
Instead we focus on the engineering problems of network rate
allocation through problems in the form of nonlinear, coupled
NUM, and develop novel distributed algorithms through a
systematic method of alternative decompositions.

The seminal paper [1] in 1998 outlines two major classes of
approaches to solve the basic version of NUM: primal-based
and dual-based. It is important to note that both approaches in
[1] adopt a differential equation technique, analyzed through
penalty function and Lyapunov argument, thus different from
the language of primal and dual decomposition in this paper.

Similar to one of the first publications in reverse-engineering
TCP congestion control [6], many recent papers on distributed
resource allocation with optimization models are based on
Lagrangian relaxation and one-level, full dual decomposition.
In fact, as illustrated in this paper through many applications,
this standard dual decomposition is only one of the many
choices one can make, including multi-level, indirect, and
hybrid primal-dual decompositions. Despite its popularity, the
standard dual decomposition may not be the best choice. It is
also important to notice that the term ‘primal-dual algorithm’
is used in [3] to describe the purely dual-based algorithm be-
cause both the primal problem and the Lagrange dual problem
are being solved simultaneously. This is different from both
the primal-dual interior-point method in centralized solution of
convex optimization [9] and the primal/dual decompositions
for distributed algorithms developed in this paper.

Primal decomposition has remained in the shadow of dual
decomposition and its employment is scarce, although it is just

TABLE I

SUMMARY OF THE DECOMPOSITIONS CONSIDERED IN THE APPLICATIONS

(• DENOTES EXISTING ALGORITHM AND � NEW ALGORITHM).

Section Primal
Full
Dual

Partial
Dual Primal-Dual Dual-Dual

II-E - • - - -
III - - - • •
IV - - � � -
V • - � - -
VI - � • � -

starting to take off in wireless transceiver design and power
control problems. Recent examples include: [14], where linear
transceivers for communication through MIMO channels were
designed to minimize the average BER; [15], where linear
MIMO transceivers were designed for multicarrier systems;
[16] where different distributed algorithms were obtained in
the context of wireless power allocation; and [17], where
both a primal and a dual decomposition were considered
for resource allocation. However, none of these publications
present the decomposition alternatives for distributed rate
allocation problems in Sections IV, V, and VI of this paper.

C. Summary of Results

We first present a systematic framework in Section II for
alternative decompositions and how that would lead to an
array of choices of distributed algorithms. Section II thus
serves both as a review of the necessary background and a
summary of our new extensions in decomposition theorems.
In particular, Lemmas 1 and 3 extend existing results on
subgradients, and the techniques of multilevel and indirect
primal/dual decompositions are systematically introduced in
the context of NUM problems.

The core of this paper then consists of Sections III to
VI, covering four applications of distributed rate allocation:
power-constrained rate allocation in Section III, rate allocation
among different quality-of-service (QoS) groups in Section IV,
hybrid rate-based and pricing-based rate allocation in Section
V, and rate allocation with multipath routing in Section VI. In
particular, the distributed algorithms obtained in Subsections
IV-B, IV-C, V-C, VI-B, and VI-D are new. The types of
decompositions developed in each application are summarized
in Table I (when there are two levels of decompositions, they
are separated by a dash, and for simplicity of terminology,
we differentiate between full and partial dual decomposition
in the name only in decompositions with one level).

In all applications, after the optimization formulation is
clearly explained, we develop alternative decompositions and
show the benefits of fully exploring the space of possible
distributed algorithms. In some cases the distribution of com-
putational load and asymmetry of message passing are much
more desirable in one of the possible alternatives, and in other
cases the convergence can be accelerated as confirmed in the
numerical examples in Section VII.
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Master Problem

Subproblem 1 Subproblem N...

Original  Problem

Decomposition

...

prices/resources

Fig. 1. Decomposition of a problem into several subproblems controlled
by a master problem through prices (dual decomposition) or direct resource
allocation (primal decomposition).

II. SYSTEMATIC FRAMEWORK FOR DECOMPOSITIONS:
REVIEW AND EXTENSIONS

We first present a systematic framework to decompose a
given optimization problem. In the rest of this paper after
this section, we will see how different combinations of the
basic elements in Subsections II-A to II-C lead to different
distributed algorithms in network utility problems, among
which one will typically be preferable to the others depending
on the specific application.

While most of the concepts in this section are quick
summaries of known results (e.g., Subsections II-D and II-
E), a couple of extensions are also carried out (e.g., Lemmas
1 and 3) and some new techniques that will be very useful
later in this paper are introduced (e.g., Subsections II-B and
II-C).

The basic idea of a decomposition is to decompose the
original large problem into distributively solvable subproblems
which are then coordinated by a master problem by means of
some kind of signalling (see Fig. 1) [13], [18], [10]. Most of
the existing decomposition techniques can be classified into
primal decomposition and dual decomposition methods. The
former is based on decomposing the original primal problem,
whereas the latter based on decomposing the Lagrange dual
of the problem [19], [18]. Primal decomposition methods have
the interpretation that the master problem directly gives each
subproblem an amount of resources that it can use; the role
of the master problem is then to properly allocate the existing
resources. In dual decomposition methods, the master problem
sets the price for the resources to each subproblem which has
to decide the amount of resources to be used depending on
the price; the role of the master problem is then to obtain the
best pricing strategy.

A. Direct Primal and Dual Decompositions

A primal decomposition is appropriate when the problem
has a coupling variable such that, when fixed to some value,
the rest of the optimization problem decouples into several
subproblems. Consider, for example, the following problem:

maximize
y,{xi}

∑
i fi (xi)

subject to xi ∈ Xi

Aixi ≤ y
y ∈ Y.

∀i (1)

Clearly, if variable y were fixed, then the problem would de-
couple. Therefore, it makes sense to separate the optimization

in (1) into two levels of optimization. At the lower level, we
have the subproblems, one for each i, in which (1) decouples
when y is fixed:

maximize
xi

fi (xi)

subject to xi ∈ Xi

Aixi ≤ y.

(2)

At the higher level, we have the master problem in charge of
updating the coupling variable y by solving:

maximize
y

∑
i f�

i (y)

subject to y ∈ Y (3)

where f �
i (y) is the optimal objective value of problem (2)

for a given y. If the original problem (1) is convex (meaning
that the objective function is concave and the feasible set is
convex), then the subproblems as well as the master problem
are all convex.

If the function
∑

i f�
i (y) is differentiable, then the master

problem (3) can be solved with a gradient method. In general,
however, the objective function

∑
i f�

i (y) may be nondiffer-
entiable and a subgradient method is a convenient approach
which only requires the knowledge a subgradient 1 for each
f�

i (y) as given by [18, Sec. 6.4.2][13, Ch. 9]

si (y) = λ�
i (y) , (4)

where λ�
i (y) is the optimal Lagrange multiplier corresponding

to the constraint Aixi ≤ y in problem (2). The global
subgradient is then s (y) =

∑
i si (y) =

∑
i λ�

i (y). The
subproblems in (2) can be locally and independently solved
with the knowledge of y.

A dual decomposition is appropriate when the problem has
a coupling constraint such that, when relaxed, the optimization
problem decouples into several subproblems. Consider, for
example, the following problem:

maximize
{xi}

∑
i fi (xi)

subject to xi ∈ Xi∑
i hi (xi) ≤ c.

∀i, (5)

Clearly, if the constraint
∑

i hi (xi) ≤ c were absent, then the
problem would decouple. Therefore, it makes sense to relax
the coupling constraint in (5) as

maximize
{xi}

∑
i fi (xi) − λT (

∑
i hi (xi) − c)

subject to xi ∈ Xi ∀i
(6)

such that the optimization separates into two levels of opti-
mization. At the lower level, we have the subproblems, one
for each i, in which (6) decouples:

maximize
xi

fi (xi) − λT hi (xi)

subject to xi ∈ Xi.
(7)

1Given a convex function f , a vector s is a subgradient of f at a point x
if f (z) ≥ f (x) + (z − x)T s, ∀z [13], [18]. For a concave function, the
inequality in the previous condition is in the opposite direction.
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At the higher level, we have the master dual problem in charge
of updating the dual variable λ by solving the dual problem:

minimize
λ

g (λ) =
∑

i gi (λ) + λT c

subject to λ ≥ 0
(8)

where gi (λ) is the dual function obtained as the maximum
value of the Lagrangian solved in (7) for a given λ. This
approach is in fact solving the dual problem instead of the
original primal one. Hence, it will only give appropriate results
if strong duality holds (e.g., when the original problem is
convex optimization and there exists strictly feasible solutions
[9]).

If the dual function g (λ) is differentiable, then the master
dual problem in (8) can be solved with a gradient method.
In general, however, it may not be nondifferentiable and
a subgradient method is a convenient approach which only
requires the knowledge a subgradient for each g i (λ) as given
by [18, Sec. 6.1]

si (λ) = −hi (x�
i (λ)) , (9)

where x�
i (λ) is the optimal solution of problem (7) for a given

λ. The global subgradient is then s (λ) =
∑

i si (y) + c =
c −∑i hi (x�

i (λ))). The subproblems in (7) can be locally
and independently solved with knowledge of λ.

General Results. We now present (skipping the proof due
to space limit) the following new result to be used later in
the paper, which generalizes the known result in [18, Sec.
6.4.2][13, Ch. 9] (where the particular result in (4) is obtained)
and gives the subgradient for a more general case of primal
decomposition:

Lemma 1: Consider the following function defined as the
optimal value of a maximization problem:

f� (x) � sup
y:fi(x,y)≤0

f0 (x,y) (10)

where f0 is concave, the fi’s are convex, and strong duality2

holds for any given x.
Then, f � (x) is concave3 and a subgradient is given by

s�
x (x) = s0,x (x,y� (x)) − Sx (x,y� (x))λ� (x) (11)

where s0,x (x,y) is a subgradient of f0 (x,y) with respect
to x, Sx (x,y) is a matrix containing in the ith column
a subgradient of fi (x,y) with respect to x, y� (x) is the
value of y that achieves the supremum in (10) (assumed to
exist) for a given x, and λ� (x) is the optimal Lagrange
multiplier associated with the constraints fi (x,y) ≤ 0, ∀i,
of the maximization in (10) (which is obtained ‘for free’ each
time that f� (x) is evaluated at some point).

We will also later need the following well-known result:

2Strong duality can be shown, for example, by Slater’s condition, which
simply requires (for any given x) the existence of a point y that satisfies the
constraints with strict inequality fi (x,y) < 0, ∀i.

3Proving concavity of f� only requires concavity of f0 and convexity of
fi, ∀i.

Lemma 2: Consider the following dual function defined as
the supremum of a partial Lagrangian:

g (λ) � sup
x:gi(x)≤0

{
f0 (x) −

∑
i

λifi (x)

}
. (12)

Then, g (λ) is convex and a subgradient, denoted by sλ (λ),
is given by

sλi (λ) = −fi (x� (λ)) (13)

where x� (λ) is the value of x that achieves the supremum in
(12) (assumed to exist) for a given λ (which is obtained ‘for
free’ each time that g (λ) is evaluated at some point).

Note that if there is a unique value x� (λ) that achieves the
supremum in (12) for any given λ, then g (λ) is differentiable
and ∇g (λ) = sλ (λ) (this happens, for example, if f0 is
strictly concave and the fi;s are linear) [18, Prop. 6.1.1].

B. Indirect Primal and Dual Decompositions

Often the problem can be reformulated and more effective
primal and dual decompositions can be indirectly applied. The
introduction of auxiliary variables provides much flexibility in
terms of choosing a primal or a dual decomposition and the
resulting distributed algorithm.

The basic techniques are illustrated as follows. Problem (1)
contains a coupling variable and was decoupled in (2)-(3) via a
primal decomposition approach. However, it can also be solved
with a dual decomposition by first introducing the additional
variables {yi}:

maximize
{yi},{xi}

∑
i fi (xi,yi)

subject to xi ∈ Xi

Aixi ≤ yi

yi = y
y ∈ Y.

∀i
(14)

This way, we have transformed the coupling variable y into
a set of coupling constraints yi = y which can be dealt with
using a dual decomposition.

Consider now problem (5) which contains a coupling con-
straint and was decoupled in (7)-(8) via a dual decomposition.
By introducing again additional variables {y i} the problem
becomes:

maximize
{{yi}xi}

∑
i fi (xi)

subject to xi ∈ Xi

hi (xi) ≤ yi∑
i yi ≤ c.

∀i, (15)

This way, we have transformed the coupling constraint∑
i hi (xi) ≤ c into a coupling variable y =

[
yT

1 , · · · ,yT
N

]T
which can be dealt with using a primal decomposition.

C. Multilevel Primal and Dual Decompositions

An important technique that leads to alternatives of dis-
tributed architectures is to apply primal/dual decompositions
recursively: The basic decompositions are repeatedly applied
to a problem to obtain smaller and smaller subproblems as

4
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Subproblem 1

...
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First Level
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Second Level
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Subproblem N

prices / resources

Fig. 2. Example of a multilevel primal/dual decomposition with two levels.

illustrated in Fig. 2. For example, consider the following prob-
lem which includes both a coupling variable and a coupling
constraint:

maximize
y,{xi}

∑
i fi (xi,y)

subject to xi ∈ Xi∑
i hi (xi) ≤ c

Aixi ≤ y
y ∈ Y.

∀i
(16)

One way to decouple this problem is by first taking a primal
decomposition with respect to the coupling variable y and then
a dual decomposition with respect to the coupling constraint∑

i hi (xi) ≤ c. This would produce a three-level optimization
problem: a master primal problem, a secondary master dual
problem, and the subproblems. Observe that an alternative
approach would be to first take a dual decomposition and then
a primal one.

Another example that shows flexibility in terms of different
decompositions is the following problem with two sets of
constraints:

maximize
x

f0 (x)

subject to fi (x) ≤ 0
gi (x) ≤ 0.

∀i (17)

One way to deal with this problem is via the dual problem
with a full relaxation of both sets of constraints to obtain the
dual function g (λ, µ). At this point, instead of minimizing
g directly with respect to λ and µ, it can be minimized
over only one set of Lagrange multipliers first and then
over the remaining one: minλ minµ g (λ, µ). This approach
corresponds to first applying a full dual decomposition and
then a primal one on the dual problem. The following new
result (proved through Lemmas 1 and 2) characterizes the
subgradient of the master problem at the top level.

Lemma 3: Consider the following partial minimization of
the dual function

g (λ) = inf
µ

g (λ, µ) (18)

where g (λ, µ) is the dual function defined as

g (λ, µ) � sup
x∈X

{
f0 (x) −

∑
i

λifi (x) −
∑

i

µigi (x)

}
.

(19)

Then, g (λ) is convex and a subgradient, denoted by sλ (λ),
is given by

sλi (λ) = −fi (x� (λ, µ� (λ))) (20)

where x� (λ, µ) is the value of x that achieves the supremum
in (19) (assumed to exist) for a given λ and µ, and µ� (λ) is
the value of µ that achieves the infimum in (18) (also assumed
to exist).

Alternatively, problem (17) can be approached via the dual
but with a partial relaxation of only one set of constraint,
say fi (x) ≤ 0 ∀i, obtaining the dual function g (λ) to be
minimized by the master problem. Observe now that in order
to compute g (λ) for a given λ, the partial Lagrangian has to
be maximized subject to the remaining constraints g i (x) ≤ 0
∀i, for which yet another relaxation can be used. This approach
corresponds to first applying a partial dual decomposition and
then, for the subproblem, another dual decomposition.

When there is more than one level of decomposition, and all
levels conduct some type of iterative algorithms, such as the
subgradient method, convergence and stability are guaranteed
if the lower level master problem is solved on a faster
timescale than the higher level master problem, so that at
each iteration of a master problem all the problems at a lower
level have already converged. If the updates of the different
subproblems operate on similar timescales, convergence of the
overall system can still be guaranteed under certain technical
conditions [20], [10], and indeed is observed empirically in
the numerical examples to be presented later in this paper.

D. Review: Subgradient Method

After performing a decomposition, the resulting master
problem is generally nondifferentiable. Subgradient methods
arise then as excellent approaches to solve these nondiffer-
entiable problems: they simply require the value of a sub-
gradient at any given point [19], [18]. Subgradient methods
are distinguished by their simplicity, little requirements of
memory usage, and amenability for parallel implementation
[19], [18], which are precisely the main interests in this paper.
Consider the following general concave maximization over
convex constraint set:

maximize
x

f0 (x)

subject to x ∈ X .
(21)

The subgradient method generates a sequence of feasible
points {x (t)} as [18, Sec. 6.3.1]:

x (t + 1) = [x (t) + α (t) s (t)]X (22)

where s (t) is a subgradient of f0 (x) at x (t), [·]X denotes
the projection onto the feasible convex set X , and α (t) is a
positive scalar stepsize. Such an iteration looks like a gradient
projection method except that a subgradient is used instead
of the gradient (which may not exist). However, there is a
fundamental difference: each new iteration may not improve
the objective value as happens with a gradient method. What
makes the subgradient method work is that for sufficiently
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small stepsize α (t), the distance of the current solution x (t)
to the optimal solution x� decreases.

There are many results on convergence of the subgradient
method [19], [18]. For constant step size α (t) = α and
constant step length α (t) = α/ ‖s (t)‖, the subgradient
algorithm is guaranteed to converge to within some range of
the optimal value; in other words, the subgradient method finds
an ε-suboptimal point within a finite number of steps. For the
diminishing step size rule

α (t) =
1 + m

t + m
,

where m is a fixed nonnegative number, the algorithm is
guaranteed to converge to the optimal value.

E. Review: Standard Dual-Based Algorithm for Basic NUM

Before concluding this section on a systematic framework of
alternative decompositions, we briefly review the standard way
[3] to solve the basic NUM problem [1] for distributed end-
to-end rate allocation, which illustrates a simple application of
the one-level, full dual decomposition. In the rest of this paper,
we will see a number of more sophisticated NUM formulations
motivated by new application contexts and a much richer array
of decomposition alternatives, beyond the well-known problem
and solution method in this subsection.

Consider a communication network with L links, each
with a fixed capacity of cl, and S sources or nodes, each
transmitting at a source rate of xs. Each source s emits one
flow, using a fixed set of links L(s) in its path, and has a
utility function Us (xs). NUM is the problem of maximizing
the total utility

∑
s Us (xs), over the source rates x, subject

to linear flow constraints
∑

s:l∈L(s) xs ≤ cl for all links l:

maximize
x≥0

∑
s Us (xs)

subject to
∑

s:l∈L(s) xs ≤ cl ∀l
(23)

where the utilities Us are strictly concave functions (the
problem is therefore a convex optimization).

The standard distributed solution to (23) is based on a dual
decomposition. We first form the Lagrangian of (23):

L (x, λ) =
∑

s

Us (xs) +
∑

l

λl

⎛
⎝cl −

∑
s:l∈L(s)

xs

⎞
⎠

=
∑

s

⎡
⎣Us (xs) −

⎛
⎝ ∑

l∈L(s)

λl

⎞
⎠ xs

⎤
⎦+

∑
l

clλl

=
∑

s

Ls (xs, λ
s) +

∑
l

clλl (24)

where λl ≥ 0 is the Lagrange multiplier (link price) associated
with the linear flow constraint on link l, λs =

∑
l∈L(s) λl is the

aggregate path congestion price of those links used by source
s, and Ls (xs, λ

s) = Us(xs) − λsxs is the sth Lagrangian to
be maximized by the sth source.

The dual decomposition results then in each source s
solving, for the given λs:

x�
s (λs) = argmax

xs≥0
[Us (xs) − λsxs] ∀s (25)

which is unique due to the strict concavity of Us. The master
dual problem is

minimize
λ

g (λ) =
∑

s gs (λ) + λT c

subject to λ ≥ 0
(26)

where gs (λ) = Ls (x�
s (λs) , λs). Since the solution in (25) is

unique, it follows that the dual function g (λ) is differentiable
and the following gradient method can be used:

λl (t + 1) =

⎡
⎣λl (t) − α

⎛
⎝cl −

∑
s:l∈L(s)

x�
s(λ

s (t))

⎞
⎠
⎤
⎦

+

∀l

(27)
where t is the iteration index, α > 0 is a positive stepsize,
and [·]+ denotes the projection onto the nonnegative orthant.
Note that the term cl −

∑
s:l∈L(s) x�

s(λ
s (t)) is the gradient of

g(λ) with respect to λl.
The dual variable λ (t) will converge to the dual optimal

λ� as t → ∞ and, since the duality gap for (23) is zero and
the solution to (25) is unique, the primal variable x� (λ (t))
will also converge to the primal optimal variable x�.

Summarizing, the original basic NUM problem in (23)
can be distributively solved with the subgradient update in
(27) carried out independently by each the link and the
maximization in (25) solved independently by each source.
Notice that there is no need for explicit message passing since
λs can be measured by each source s as queuing delay and∑

s:l∈L(s) xs can be measured by each link l as the total traffic
load.

III. APPLICATION 1: POWER-CONSTRAINED RATE

ALLOCATION

We start the applications sections with the simplest and
recently studied extension of the basic NUM, before moving
on to more involved formulations and novel solutions in
Sections IV, V, and VI.

A. Problem Formulation

In some applications such as wireless broadcast or DSL
access, distributed rate allocation can be carried out over trans-
mission ‘pipes’ of different sizes, with the help of adaptive
resource allocation in the physical layer. This is an example
of balancing ‘supply’ of resources and ‘demand’ of link
capacities ‘built’ from the limited resources.

Consider now the basic NUM in (23) but with variable link
capacities {cl (pl)}, each of which depends on the allocated
resource pl, such as transmit power, with a constraint on the
maximum total resource PT . For many models such as TDMA
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or FDMA, cl is a strictly concave function4

maximize
x,p≥0

∑
s Us (xs)

subject to
∑

s:l∈L(s) xs ≤ cl (pl) ∀l∑
l pl ≤ PT .

(28)

Although only slightly more sophisticated than the basic
NUM, this problem already contains sufficient elements such
that one can try different decompositions. We will consider
two decompositions: a primal decomposition with respect to
the power allocation, and a dual decomposition with respect
to the flow constraints.

B. Primal-Dual Decomposition

Consider first a primal decomposition of (28) by fixing the
power allocation p. Clearly, the link capacities become fixed
numbers and problem (28) becomes a basic NUM like (23),
which can be solved via a dual decomposition as explained in
Subsection II-E. The master primal problem is

maximize
p≥0

U� (p)

subject to
∑

l pl ≤ PT ,
(29)

where U � (p) is the optimal objective value of (28) for a given
p. Since a subgradient of U � (p) with respect to cl is given
by the Lagrange multiplier λl associated with the constraint∑

s:l∈L(s) xs ≤ cl in (28), it follows that a subgradient of
U� (p) with respect to pl is given by λlc

′
l (pl). Therefore, the

master primal problem (29) can be solved with a subgradient
method by updating the powers as

p (t + 1) =

⎡
⎢⎣p (t) + α

⎡
⎢⎣

λ�
1 (p (t)) c′1 (p1 (t))

...
λ�

L (p (t)) c′L (pL (t))

⎤
⎥⎦
⎤
⎥⎦
P

(30)

where [·]P denotes the projection onto the feasible convex set
P � {p : p ≥ 0,

∑
l pl ≤ PT }, which is a simplex. Due to

the projection, this subgradient update cannot be performed
independently by each link and requires some centralized
approach. The projection of a point p0 (the expression inside
the outer bracket in (30)) onto the simplex P , i.e., p = [p 0]P ,
can be easily obtained in the following waterfilling form [15]:

pl =
(
p0

l − γ
)+ ∀l (31)

where the waterlevel γ is chosen as the minimum nonnegative
value such that

∑
l pl ≤ PT . Observe that only the compu-

tation of γ requires a central node since the update of each
power pl can be done at each link.

C. Dual-Dual Decomposition

Consider now a dual decomposition of (28) by relaxing the
flow constraints

∑
s:l∈L(s) xs ≤ cl (pl):

maximize
x,p≥0

∑
s

[
Us (xs) −

(∑
l∈L(s) λl

)
xs

]
+
∑

l cl (pl)λl

subject to
∑

l pl ≤ PT .
(32)

4A related and different model has been recently studied in [21]. The
primal-dual solution in Subsection III.B was first proposed in [17], and that
in Subsection III.C was first proposed in [22].

This problem decomposes into one maximization for each
source, as (25) in the basic NUM, plus the following additional
maximization to update the power allocation:

maximize
p≥0

∑
l λlcl (pl)

subject to
∑

l pl ≤ PT

(33)

which can be further decomposed via a second-level dual
decomposition yielding the following subproblems

maximize
pl≥0

λlcl (pl) − γpl (34)

with solution given by

pl = (c′l)
−1 (γ/λl) (35)

and a secondary master dual problem that updates the dual
variable γ as

γ (t + 1) =

[
γ (t) − α

(
PT −

∑
l

p�
l (γ (t))

)]+

. (36)

The master dual problem is updated as in the standard NUM
(27).

D. Summary

We have obtained two different distributed algorithms for
power-constrained rate allocation in (28):

• primal-dual decomposition: the master problem (29) is
solved with the subgradient power update in (30) carried
out by the links with a small central coordination (due
to the projection on the simplex) and then, for a given
set of powers, the resulting basic NUM is solved via the
standard dual-based decomposition in (25) and (27). This
implies two levels of decompositions: on the highest level
there is a master primal problem, on a second level there
is a secondary master dual problem, and on the lowest
level the subproblems.

• dual-dual decomposition: the master dual problem is
solved with the standard price update in (27) which is
carried out independently by each link and then, for a
given set of prices, each source solves its own subproblem
as in (25) and subproblem (33) is solved with some
central node updating the price with (36) and each link
obtaining the optimal power with (35). This approach
contains two levels of decompositions: on the highest
level there is a master dual problem, on a second level
there are rate subproblems and a secondary master dual
problem, and on the lowest level the power subproblems.

In both approaches, the only explicit signaling required
is the power-price γ from the central unit to the links and
possibly the powers from the links back to the central node.

E. Special Case: Cellular Downlink Power/Rate Control

An interesting special case of the signal model in (28)
arises in cellular downlink power/rate control with the flow
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constraints on each downlink connection modeled in the high
SNR regime of a CDMA system with orthogonal codes:

maximize
x,p≥0

∑
s Us (xs)

subject to xs ≤ log (gsps)∑
s ps ≤ PT

∀s (37)

where gs is the channel gain of the sth user. This problem
can be solved in many different combinations of multilevel
primal-dual decompositions, each with a different signalling
scheme and convergence speed (see Subsection VII-A for an
empirical comparison of the convergence of several methods).

IV. APPLICATION 2: QOS RATE ALLOCATION

A. Problem Formulation

Sometimes a rate allocation mechanism needs to differenti-
ate users in different QoS classes. For example, the total link
capacity received by each QoS class must lie within a range
prescribed in the service level agreement. Such constraints
introduce new coupling to the basic NUM problem and lead
to alternative decomposition possibilities. We will see in
this section two different distributed algorithms to solve this
type of QoS rate allocation problem, both with a differential
pricing interpretation to the new set of Lagrange multiplier
introduced. Therefore, these algorithms provide an intuitive
pricing alternative to the recent proposals of NUM-based rate
allocation among different QoS classes in [23], [24].

Consider now the basic NUM in (23) but with different
classes of users that will be treated differently. The idea of
having several classes of users is, for example, to impose limits
on the maximum rate and to guarantee a minimum rate for
each class. To simplify the exposition we consider only two
classes of users, but the results extend straightforwardly to
more classes of users. Denoting by y

(1)
l and y

(2)
l the aggregate

rates of classes 1 and 2, respectively, along the lth link, the
problem formulation is

maximize
x,y(1),y(2)≥0

∑
s Us (xs)

subject to
∑

s∈Si:l∈L(s) xs = y
(i)
l ∀l, i = 1, 2

y(1) + y(2) ≤ c
c(i)
min ≤ y(i) ≤ c(i)

max.
(38)

Observe that in the absence of the constraints c(i)
min ≤ y(i) ≤

c(i)
max, problem (38) becomes the basic NUM in (23). Also

note that if problem (38) is feasible, then the equality flow
constraints can be rewritten as inequality flow constraints, as
we will hereinafter assume. We will consider two decompo-
sitions: a primal decomposition with respect to the aggregate
rate of each class, and a dual decomposition with respect to
the total aggregate rate constraints from both classes.

B. Primal-Dual Decomposition

Consider first a primal decomposition of (38) by fixing
the aggregate rates y(1) and y(2). Problem (38) becomes two

independent subproblems, for i = 1, 2, identical to the basic
NUM in (23):

maximize
x≥0

∑
s∈Si

Us (xs)

subject to
∑

s∈Si:l∈L(s) xs ≤ y
(i)
l ∀l

(39)

where the fixed aggregate rates y
(i)
l play the role of the fixed

link capacities in the basic NUM of (23). These two indepen-
dent basic NUMs can be solved as explained in Subsection
II-E.

The master primal problem is

maximize
y(1),y(2)≥0

U�
1

(
y(1)

)
+ U�

2

(
y(2)

)
subject to y(1) + y(2) ≤ c

c(i)
min ≤ y(i) ≤ c(i)

max i = 1, 2

(40)

where U �
i

(
y(i)
)

is the optimal objective value of (39) for a
given y(i), with a subgradient given by the Lagrange multiplier
λ(i) associated to the constraints

∑
s∈Si:l∈L(s) xs ≤ y

(i)
l in

(39). Observe that λ(i) is the differential set of prices for
the QoS class i. The master primal problem (40) can now be
solved with a subgradient method by updating the aggregate
rates as[

y(1) (t + 1)
y(2) (t + 1)

]
=

[[
y(1) (t)
y(2) (t)

]
+ α

[
λ�(1)

(
y(1) (t)

)
λ�(2)

(
y(2) (t)

)
]]

Y
(41)

where [·]Y denotes the projection
onto the feasible convex set Y �{(

y(1),y(2)
)

: y(1) + y(2) ≤ c, c(i)
min ≤ y(i) ≤ c(i)

max i = 1, 2
}

.
Nicely enough, this feasible set enjoys the property that it
already naturally decomposes into a Cartesian product for
each of the links: Y = Y1 × · · · × YL. Therefore, this
subgradient update can be performed independently by each
link simply with the knowledge of its corresponding Lagrange
multipliers λ

(1)
l and λ

(2)
l , which in turn are also updated

independently by each link as in Subsection II-E.

C. Partial Dual Decomposition

Consider now a dual decomposition of (38) by relaxing the
flow constraints

∑
s∈Si:l∈L(s) xs ≤ y

(i)
l :

maximize
x,y(1),y(2)≥0

∑
s∈S1

[
Us (xs) −

(∑
l∈L(s) λl

)
xs

]
+
∑

s∈S2

[
Us (xs) −

(∑
l∈L(s) λl

)
xs

]
+λ(1)T y(1) + λ(2)T y(2)

subject to y(1) + y(2) ≤ c
c(i)
min ≤ y(i) ≤ c(i)

max i = 1, 2.
(42)

This problem decomposes into one maximization for each
source, as (25) in the basic NUM, plus the following additional
maximization to update the aggregate rates:

maximize
y(1),y(2)≥0

λ(1)T y(1) + λ(2)T y(2)

subject to y(1) + y(2) ≤ c
c(i)
min ≤ y(i) ≤ c(i)

max i = 1, 2

(43)
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which can be solved independently by each link with knowl-
edge of its corresponding Lagrange multipliers λ

(1)
l and λ

(2)
l ,

which in turn are also updated independently by each link (c.f.
Subsection II-E).

The master dual problem corresponding to this dual de-
composition is updated with the following subgradient method
(similarly to (27)):

λ
(i)
l (t + 1) =

[
λ

(i)
l (t) − α

(
y
(i)
l (t) − ∑

s∈Si:l∈L(s)

x�
s(λ

(i)s (t))

)]+

∀l, i = 1, 2.
(44)

D. Summary

We have obtained two different distributed algorithms for
rate allocation among QoS classes in (38):

• primal-dual decomposition: the master problem (40) is
solved with the subgradient update for the aggregate rate
in (41) carried out independently by each of the links and
then, for a given set of aggregate rates, the two resulting
basic NUMs are independently solved via the standard
dual-based decomposition in (25) and (27). This implies
two levels of decompositions: on the highest level there
is a master primal problem, on a second level there is a
secondary master dual problem, and on the lowest level
the subproblems. There is no explicit signaling required.

• partial dual decomposition: the master dual problem is
solved with the standard price update for each class in
(44) which is carried out independently by each link
and then, for a given set of prices, each source solves
its own subproblem as in (25) and subproblem (43)
is independently solved by each link. This approach
contains only one level of decomposition and no explicit
signaling is required.

Observe that in the primal-dual decomposition approach
each link updates the aggregate rates on a slower timescale
and the prices on a faster timescale, whereas in the partial
dual decomposition approach each link updates the prices on
a slower timescale and the aggregate rates on a faster timescale
(actually in one shot); therefore, the speed of convergence of
the partial dual approach should be faster in general. In both
cases, the users are privy of the existence of classes and only
the links have to take this into account by having one price
for each class. In other words, this is a way to give each class
of users a different price than the one based on the standard
dual-based algorithm so that they can be further controlled.
The next application hinges on this observation.

V. APPLICATION 3: HYBRID RATE-BASED AND

PRICING-BASED RATE ALLOCATION

A. Problem Formulation

One extreme way to control the rate allocation process is
to directly give each source the rate they can use, at the
expense of a centralized computation. At the other extreme,
we can optimize the system in a fully distributed way via
pricing, as in the basic NUM of Subsection II-E, at the

expense of trusting the sources even though they can be non-
cooperative and try to obtain more bandwidth by using a
more aggressive utility function. Neither of these two extreme
approaches is completely satisfactory in all applications, and
hybrid solutions between rate-based and window-based rate
allocation are desirable for both robustness of fair allocation
against aggressive users and speed of converging to the correct
rate allocation equilibrium.

New congestion control protocols using direct rate alloca-
tion have recently been proposed, such as RCP [25] that is
based on a heuristic computation of the processor-sharing type
of rate allocation by each router that a flow traverses. We now
describe a systematic method to perform distributed and direct
rate allocation to each user. The key idea is to use the approach
of Section IV but with one class for each user.

The problem formulation becomes

maximize
x,{y(s)}≥0

∑
s Us (xs)

subject to xs ≤ y
(s)
l ∀s, l ∈ L (s)∑

s y(s) ≤ c
c(s)
min ≤ y(s) ≤ c(s)

max.

(45)

Note that if a source s does not use a path l, then y
(s)
l is taken

as zero in the constraint
∑

s y(s) ≤ c.

B. Primal Decomposition

If we now take a primal decomposition approach, then the
master primal problem will be in charge of the update of y

(s)
l

and each user will simply choose xs equal to the minimum of
the y

(s)
l along its path in order to satisfy xs ≤ y

(s)
l ∀l ∈ L (s).

This approach constitutes in fact one of the extreme methods
in which each user is directly given the amount of bandwidth
it can use.

C. Partial Dual Decomposition

We may also take a dual decomposition approach by relax-
ing the flow constraints

maximize
x,{y(s)}≥0

∑
s

[
Us (xs) −

(∑
l∈L(s) λ

(s)
l

)
xs

]
+
∑

s

∑
l∈L(s) λ

(s)
l y

(s)
l

subject to
∑

s y(s) ≤ c
c(s)
min ≤ y(s) ≤ c(s)

max ∀s.

(46)

This problem decomposes into one maximization for each
source, as (25) in the basic NUM, with λs =

∑
l∈L(s) λ

(s)
l

being the aggregate path price specific for user s, plus the
following additional rate-bounding maximization to obtain the
y
(s)
l , for each link l:

maximize
{y

(s)
l

}≥0

∑
s:l∈L(s) λ

(s)
l y

(s)
l

subject to
∑

s:l∈L(s) y
(s)
l ≤ cl

c
(s)
l,min ≤ y

(s)
l ≤ c

(s)
l,max ∀s : l ∈ L (s) .

(47)
This problem can be solved independently by each link as a
way to distribute its capacity cl among the sources using the

9



link according to the weights given by the prices λ
(s)
l , which

are different for each source.
The master dual problem corresponding to this dual decom-

position is solved with the following subgradient price update
step (similarly to (27)):

λ
(s)
l (t + 1) =

[
λ

(s)
l (t) − α

(
y
(s)
l (t) − x�

s (λs (t))
)]+

∀l, s : l ∈ L (s) .
(48)

D. Summary

We have explored different decompositions for the hybrid
rate/pricing-based rate allocation in (45):

• primal decomposition: it leads to a direct rate allocation
and is based on one level of decomposition. This ap-
proach requires the signaling to inform each user what
rate to transmit at.

• partial dual decomposition: the master dual problem is
solved with the price update in (48) which is carried
out independently by each link and then, for a given set
of prices, each source solves its own subproblem as in
(25) and the bounding rates of subproblem (47) are also
obtained independently by each link. This approach only
shows one level of decomposition and does not require
any explicit signaling. It is a hybrid of rate-bounding and
pricing-feedback mechanisms.

VI. APPLICATION 4: MULTIPATH-ROUTING RATE

ALLOCATION

A. Problem Formulation

Consider now a more general setup of the basic NUM of
Subsection II-E where each source can choose among several
possible paths (possibly using a weighted combination of
them). The structure of a network with S sources, L links, and
J paths can be summarized with the L × J path availability
0 − 1 matrix H defined by

[H]l,j =
{

1
0

if the jth path uses the lth link
otherwise

together with the J × S path choice nonnegative matrix W 5

defined by

[W]j,s =
{

wjs

0
if the sth source uses the jth path
otherwise

where wjs indicates the percentage of the rate of the sth user
allocated to the jth path and has to satisfy wjs > 0 and∑

j wjs = 1. These two matrices can be combined into the
routing matrix R = HW that tells how much each source is
using each link.

5This notation follows that in [26]. However, the problem being considered
here is to design rate allocation algorithm with a fixed H and W, whereas
the problem considered in [26] is to analyze the effect of joint routing and
rate allocation with W being a variable.

To start with, the problem can be directly formulated with
the routing matrix R like the basic NUM in (23):

maximize
x≥0

∑
s Us (xs)

subject to Rx ≤ c
(49)

and then the standard dual-based decomposition algorithm can
be used. We will later see that it may be more flexible to
formulate the problem alternatively in terms of H and W as
follows:

maximize
x,y≥0

∑
s Us (xs)

subject to Wx ≤ y
Hy ≤ c

(path constraint)
(link constraint)

(50)

where yl contains the aggregate rate along the lth path.

B. Primal-Dual Decomposition

We can now consider a primal decomposition approach of
(50) by fixing the path rates y. Problem (50) becomes then a
basic NUM where y plays the role of the link capacities in
(23). This problem can be solved via the standard dual-based
algorithm as reviewed in Subsection II-E.

The master primal problem is

maximize
y≥0

U� (y)

subject to Hy ≤ c
(51)

where U � (y) is the optimal objective value of (50) for a
given y, with subgradient given by the Lagrange multiplier
λ associated to the constraints Wx ≤ y in (50). As usual, the
master primal problem (51) can be solved with a subgradient
method by updating the path rates as

y (t + 1) = [y (t) + αλ� (y (t))]Y (52)

where [·]Y denotes the projection onto the feasible convex
set Y � {y : y ≥ 0,Hy ≤ c}. In principle, this subgradient
update cannot be performed independently by each path due
to the projection onto Y , which makes it impractical.

C. Partial Dual Decomposition

We can also take a partial dual decomposition of (50) by
relaxing only the constraint Wx ≤ y (similarly to [8]):

maximize
x,y≥0

∑
s Us (xs) + γT (y − Wx)

subject to Hy ≤ c.
(53)

This problem decomposes into one maximization for the
sources as in (25) for the basic NUM:

maximize
x≥0

∑
s [Us (xs) − γsxs] , (54)

where γs = γT W:,s =
∑

j∈J(s) γjwjs is the aggregate price
for the sth source, plus one maximization for the path rates:

maximize
y≥0

γT y

subject to Hy ≤ c
(55)

which has to be solved in a centralized way.
The master dual problem updates the prices as

γ (t + 1) = [γ (t) − α (y − Wx (γ (t)))]+ . (56)
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D. Full Dual Decomposition

Yet another different way to solve problem (50) is with a
full dual decomposition by relaxing both constraints Wx ≤ y
and Hy ≤ c:

maximize
x,y≥0

∑
s Us (xs) + γT (y − Wx) + λT (c − Hy)

(57)
which can be rewritten as

maximize
x,y≥0

∑
s [Us (xs) − xsγ

s] +
∑

j yj

(
γj − λj

)
+ λT c

(58)
where λj = λT H:,j =

∑
l∈L(j) λl is the aggregate price

of the jth path and γs = γT W:,s =
∑

j∈J(s) γjwjs is the
aggregate price for the sth source. This problem separates
into a maximization over x, as in (25) for the basic NUM,
and a maximization over y, which is unbounded unless
γj = λj . Therefore, the optimal choice for the master dual
problem is γj = λj and then γs =

∑
j∈J(s) λjwjs =∑

j∈J(s) wjs

∑
l∈L(j) λl. Hence, this approach reduces to the

standard dual-based algorithm applied to problem (49).
Now consider a variant of this rate allocation problem

with multipath-routing, where the objective of Internet Service
Provider (ISP) is combined with the end user utility objective.
In today’s operating environment of the Internet, the ISP
controlling each Autonomous System tries to minimize a total
convex cost function of the link utilizations [27]. Suppose the
cost function is quadratic, and the network utility maximiza-
tion is now formulated as maximizing the weighted difference
between end user utility and ISP cost:∑

s

Us(xs) − θyT y (59)

where θ is the weight. Observe that by taking θ sufficiently
small the quadratic term becomes negligible and we are back
to the original problem (50).

Repeating the same full relaxation as before, one gets the
following maximization problem:

maximize
x,y≥0

∑
s [Us (xs) − xsγ

s]
+
∑

j yj

(
γj − λj

)− θyT y + λT c.
(60)

This problem separates as before into a maximization over x,
as in (25) for the basic NUM, and a maximization over y with
optimal solution given by

yj =
1
2θ

(
γj − λj

) ∀j. (61)

Then, the master dual problem has to update two sets of
prices:

λ (t + 1) = [λ (t) − α (c − Hy (t))]+ (62)

γ (t + 1) = [γ (t) − α (y (t) − Wx� (γ (t)))]+ (63)

where y (t) � y� (λ (t) , γ (t)) is the optimal y for the given
λ (t) and γ (t) as in (61). Note that the matrix-vector products
can be conveniently written as [Hy]l =

∑
j:l∈L(j) yj and

[Wx]j =
∑

s:j∈J(s) wjsxs.

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

Evolution of λ
4
 for all methods

iteration

Method 1 (subgradient)
Method 2 (Gauss−Seidel for all lambdas and gamma)
Method 3 (Gauss−Seidel for each lambda and gamma sequentially)
Method 4 (subgradient for gamma and exact for all inner lambdas)
Method 5 (subgradient for all lambdas and exact for inner gamma)
Method 6 (Gauss−Seidel for all lambdas and exact for inner gamma)
Method 7 (Jacobi for all lambdas and exact for inner gamma)

Fig. 3. Evolution of λ4 for the seven methods based on a dual decomposition.

E. Summary

We have explored several possibilities for distributed algo-
rithms for rate allocation with multipath-routing possibilities
in (50):

• standard dual decomposition: by reformulating the prob-
lem as in (49) we recover the basic NUM formulation and
the standard dual-based algorithm can be readily used.

• primal-dual decomposition: the master primal problem
(51) is solved with the path rate subgradient update
in (52) and then, for a given set of path rates, the
resulting basic NUMs is solved via the standard dual-
based decomposition in (25) and (27). Unfortunately, due
to the projection in (52) a centralized computation is
required, which makes this approach impractical.

• partial dual decomposition: the master dual problem is
solved with the price update in (56) and then, for a given
set of prices, each source solves its own subproblem as in
(54) and subproblem (55) is solved in a centralized way,
making this approach also inconvenient.

• full dual decomposition: the master dual problem is
solved with the price updates in (62)-(63) and then, for a
given set of prices, each source solves its own subproblem
as in (54) and the path rates are obtained as in (61). This
approach contains one level of decomposition: on the
higher level the master dual problem and on the lower
level the source-rate and path-rate subproblems. Explicit
signaling is required for the update of the price γ (t) in
(63), and for the computation of the path rate in (61)
(which can be done either at the receiver of the path
or through heuristic-based computation distributed across
routers along the path).

11



Source 1

Source 2

Source 3

Source 4

Class 1

Class 2

Destination
 5

3

2

3

2

Fig. 4. Block diagram of the considered example of NUM with priorities.

VII. NUMERICAL EXAMPLES

A. Downlink Power/Rate Control

The purpose of this subsection is to illustrate the conver-
gence behavior of different decomposition approaches can
be quite different, using the downlink power/rate control
formulated in (37) as the context. Fig. 3 shows the evolution
of one of the dual variables (λ, γ) under the iterations for
seven methods based on various combinations of primal/dual
multilevel decompositions and variants of Gauss-Seidel and
Jacobi iterations of subgradient calculations. Without going
into the details due to space limit, the seven methods are
respectively based on the following decompositions: full dual
+ subgradient for λ and γ, full dual + Gauss-Seidel for λ and
γ, full dual + Gauss-Seidel for each λi and γ, dual-primal (for
λ and γ), dual-primal (for γ and λ), dual-primal + Gauss-
Seidel, dual-primal + Jacobi.

B. QoS Rate Allocation

To illustrate the distributed algorithms for a rate allocation
among QoS classes (as in Section IV), we consider a simple
example consisting of four sources transmitting to the same
destination and sharing a common link as shown in Fig. 4.
Users in class 1 are very aggressive, with utility functions
U1 (x) = 12 log (x) and U2 (x) = 10 log (x), whereas users
in class 2 are not aggressive, with utility functions U3 (x) =
2 log (x) and U4 (x) = log (x). If no QoS control is included
in the design and the standard dual-based distributed algorithm
of Subsection II-E is used, then the aggressive users of class
1 get most of the available capacity in the common link. In
particular, class 1 gets a rate of 4.5 out of the total available
rate of 5, leaving class 2 only with a rate of 0.5. This is
precisely the kind of unfair behavior that can be avoided with
QoS control.

Figs. 5 and 6 show the evolution of the rates of the sources
when QoS control is included in the distributed algorithms
based on a primal decomposition and on a dual decomposition,
respectively (as described in Section IV). In particular, the rate
for each class has been limited to 3. As can be observed, the
rate of class 1 now tends to the limit of 3 and, since the link
capacity is 5, class 2 is left with a rate of 2 (as opposed to 0.5
obtained without QoS control). Hence, the distribution of the
total rate between both classes is more fair. Both primal-based
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Fig. 5. Evolution of the rates with the primal-based algorithm for a NUM
with QoS control.
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Fig. 6. Evolution of the rates with the dual-based algorithm for a NUM with
QoS control.

and dual-based algorithms show a similar convergence (a
constant stepsize of 0.05 was used for all subgradient updates).
Note that the primal-based algorithm contains two levels of
subgradient updates and, in principle, the inner subgradient
algorithm should run until convergence before updating the
outer subgradient. In practice, however, this is not necessary
and both subgradients can run simultaneously (in general using
a smaller stepsize for the outer subgradient so that it works
on a slower timescale).

C. Multipath-Routing Rate Allocation

We now consider a NUM with different grouping of the path
and link constraints as described in Section VI. In particular,
we generate a random network topology with S = 4 sources,
J = 12 paths, and L = 36 links, such that each user uses 3
paths and each path uses 5 links.

Fig. 7 shows the evolution of the rates of the sources for the
standard dual-based algorithm based directly on the routing
matrix R = HW. Fig. 8 shows the evolution of the rates
of the sources with a full dual-based algorithm (including
the quadratic term −θyT y with θ = 0.001), which follows
closely the performance of the standard algorithm. In practice,
the optimal solution for the path rates in (61) leads to a
large dynamic range that can lead to instability; this can be
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Fig. 7. Evolution of the rates with the standard dual-based algorithm for a
NUM based directly on the routing matrix R.
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Fig. 8. Evolution of the rates with the full-dual-based algorithm for a NUM
based on the path-link H and link-source W matrices.

easily avoided by providing the update with some memory
(controlled by the forgetting factor β):

yj (t + 1) = β
1
2θ

(
γj (t) − λj (t)

)
+ (1 − β) yj (t) ∀j.

(64)
The other two methods described in Section VI, based on

a primal decomposition and on a partial dual decomposition,
provide similar convergence trajectories. However, their com-
plexity and the need for centralized computation make them
impractical (due to the projection in (52) and to the resolution
of problem (55), respectively).

VIII. CONCLUSIONS

Recent focus in the literature on the standard dual-based
method notwithstanding, there are more than one way to solve
a network utility maximization in a distributed manner. A
systematic framework is developed in this paper to explore
alternative decompositions, and four specific rate allocation
applications are presented. Implications of these results include
designing faster distributed algorithm with the right distribu-
tion of computation and communication load across network
elements, developing five new congestion control algorithms
under various practical constraints, and understanding archi-
tectural tradeoffs in distributed network control.
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