
Bioorganic & Medicinal Chemistry Letters 18 (2008) 5967–5970
Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier .com/ locate/bmcl
Descriptor-free molecular discovery in large libraries by adaptive
substituent reordering

Scott R. McAllister a, Xiao-Jiang Feng b,*, Peter A. DiMaggio Jr. a, Christodoulos A. Floudas a,*,
Joshua D. Rabinowitz b, Herschel Rabitz b,*

a Department of Chemical Engineering, Princeton University, Princeton, NJ 08544, USA
b Department of Chemistry, Princeton University, Princeton, NJ 08544, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 27 June 2008
Revised 8 September 2008
Accepted 10 September 2008
Available online 21 September 2008

Keywords:
Molecular discovery
QSAR
Combinatorial library
Substituent reordering
Iterative operation
Global optimization
0960-894X/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.bmcl.2008.09.068

* Corresponding authors.
E-mail address: xfeng@princeton.edu (X.-J. Feng).
Molecular discovery often involves identification of the best functional groups (substituents) on a scaf-
fold. When multiple substitution sites are present, the number of possible substituent combinations
can be very large. This article introduces a strategy for efficiently optimizing the substituent combina-
tions by iterative rounds of compound sampling, substituent reordering to produce the most regular
property landscape, and property estimation over the landscape. Application of this approach to a large
pharmaceutical compound library demonstrates its ability to find active compounds with a threefold
reduction in synthetic and assaying effort, even without knowing the molecular identity of any
compound.

� 2008 Elsevier Ltd. All rights reserved.
The discovery of new molecular entities with desired properties collection of all potential library compounds and their property

is a key objective in the chemical sciences. Finding such molecules
can be a difficult task even with the assistance of combinatorial
chemistry and high-throughput screening given the enormous
number of potential candidate molecules.1–3 To enhance the
cost-effectiveness of molecular discovery, quantitative structure–
activity relationship (QSAR) methods are often employed.4–6 These
methods quantify molecular properties as multi-variable functions
of relevant molecular descriptors,7 whose associated coefficients
are usually determined from a training set of molecules, and the
resultant parameterized functions can be utilized to predict the
properties of structurally related molecules and guide laboratory
synthesis. Despite their widespread use, different descriptor sets
and functional forms are often needed for different classes of mol-
ecules and target properties, producing difficulties in many QSAR
applications.

The general strategy of optimal substituent reordering was re-
cently introduced to enable descriptor-free molecular discovery
using minimal a priori knowledge of the molecules and the target
properties.8,9 For a molecular library under synthesis with a com-
mon scaffold, N substitution sites on the scaffold and Si distinct
substituents (functional groups) on the ith site, the technique
expresses a specific molecular property y as an N-dimensional
function f of the substituents bonded to the sites (Fig. 1). The
ll rights reserved.
values then form an N + 1-dimensional property landscape. The
nature of the substituents is captured by assigning each of the Si

substituents on the ith site a random, but distinct, integer value
Xi 2 [1,Si]. As a result, the structure and property function value
of each molecule is uniquely associated with the integer assign-
ment for each substituent on each site. Note that this indexing
method does not require any traditional molecular descriptors.

Based on this substituent indexing scheme, molecular discovery
is performed by (1) randomly sampling the variables (i.e., synthe-
sizing a small random subset of the potential library molecules)
and measuring the targeted property value for each molecule
(Fig. 1, Step (1.a)), and (2) estimating/interpolating over the prop-
erty landscape to find molecules with desirable property values.
From an initial random integer assignment, however, the N + 1-
dimensional property landscape will most likely be highly irregular
(Fig. 1, Step (1.b)) and provide no estimation/interpolation capabil-
ity for finding the desired molecule(s). In order for the technique to
have predictive power, the critical operation in Step (2.a) identifies
the optimal substituent ordering (i.e., the optimal integer assign-
ment for each substituent) on each site that results in a property
landscape with regular structure. Property estimation/interpola-
tion over the landscape can then be readily implemented (Fig. 1,
Step (2.b)).8,9

When the size of the molecular library is large, the most effi-
cient implementation of the reordering technique involves itera-
tive rounds of compound synthesis and data reordering, starting
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Figure 1. General operation of the adaptive substituent reordering technique. As an example, for a library with a common scaffold and two substitution sites, the property y
of any molecule is represented as a two-variable function f (with a priori unknown form) of the substituents (X1 and X2) on the two sites. Each substituent on each site is
represented by a distinct integer, hence the property of each compound is uniquely determined by the integer assignments on both sites. Step (1.a): Molecular discovery
begins with initial synthesis and property measurement of a random subset of the library, resulting in (most likely) an irregular property landscape (with little predictive
capability) from a random ordering of the substituents (i.e., the collection of random integer assignments for each substituent, Step(1.b)). Step (2.a): Suitable optimization
algorithms are employed to identify the substituent orderings that generate the most regular landscape. Step (2.b): The resultant smooth landscape can be used to make
property predictions of the unsynthesized compounds (the gray bars). The process operates iteratively (the dashed line) until desired property prediction is obtained. The 3-D
bar graphs are made from the data in Ref. 8 for a co-polymer library with y being the glass transition temperature; the gray bars are laboratory data placed at locations dicated
by the optimal orderings of the substituents associated with the red bars.
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with a minimal sampling of the library space (Fig. 1).9 In each iter-
ation, Step (2.b) provides an estimation/prediction of the library
domain most likely to be enriched in promising compounds. Com-
pound synthesis and property assaying can then be guided by this
estimate, providing additional data to further enhance the reliabil-
ity of substituent reordering and property prediction. This adaptive
operation can be viewed as a process of attaining enhanced resolu-
tion and regularity over the landscape with each iteration until the
full property landscape is revealed to the desired degree.

Previous applications of the reordering strategy were to small
compound libraries8,9 and without iterative operation. This arti-
cle provides the first illustration of the technique on a large
pharmaceutical compound library utilizing the adaptive reorder-
ing procedure, where the measured property is percent inhibi-
tion of a protein function.12 All of the compounds have a
common scaffold with N = 2 (S1 = 151 and S2 = 93). Of all the
14,043 potential library compounds, data is available for 4110
(29%) (Fig. 2(a)). The goal is to identify the high-inhibition com-
pounds over the whole library space from sampling a small
number of compounds.

In this work, the regularity of the property landscape is quanti-
fied by a global pairwise difference measure

Q ¼
XN

m¼1

XN

n¼1
n–m

XSn

j¼1

XSm

i¼1

XSm

i0¼1

1
wm
�
Sm � dm

i;i0

Sm � 1

 !
� ðam;n

i;j � am;n
i0 ;j
Þ2

2
4

3
5;
where N is the number of substitution sites, Sm and Sn are the total
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i0 ;j
is the property value of another compound that
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val-
ues are available from synthesis and property assaying over i and i0.
With this form, minimization of Q tends to place together com-
pounds with similar property values, resulting in the most regular
property landscape(s). Other appropriate forms of Q can be used
as well.8,9 The minimization of Q can be achieved by several deter-
ministic10 and stochastic11 optimization algorithms. The results
presented in this paper are from the deterministic method.

The effectiveness of the reordering technique without iterative
operation was first evaluated. We randomly selected 2055 com-
pounds (i.e., 50% of the available data and 15% of the whole library)
and determined the optimal substituent orderings (Fig. 2(b)) on
both sites that resulted in the most regular inhibition landscape.
Figure 2(c) applies the identified best ordering in Figure 2(b) to
all the available compounds in the library. In both figures, there
is a significant clustering of the high-inhibition compounds (red)
in the upper left corner of the property landscape.

The capability of the reordering technique is evident from con-
sideration of Figure 2(b) and (c). One can view Figure 2(b) as ‘pre-



Figure 2. Heat maps of inhibitor efficacies12 prior to, (a), and following, (b) and (c), substituent ordering optimization. Percentage inhibition is color coded (see key at right
side of figure) with white indicating unsynthesized compounds, dark red the best inhibitors, and light blue the worst inhibitors. Each square in the matrix reflects a specific
compound with different substituents at the two substitution sites. There are 151 substituents on site 1 and 93 on site 2. Data is available for 29% of the full library.12 Relative
data error is estimated to be �15% from repetitive measurements of some compounds; the mean inhibition values are used in the analysis. (a) The property landscape with a
random substituent ordering. (b) The optimal substituent ordering obtained by using a random subset of 15% of the library space (i.e., 50% of the available data in (a)). (c) The
library landscape containing all available data, using the optimal ordering shown in (b). Without knowing the identity of any compound, the algorithm predicts that
unsynthesized compounds located in the upper left corner of Figure 2(b) should be enriched in effective inhibitors. This is confirmed by the remaining data (Fig. 2(c)).
Performing synthesis in the indicated boxed region of Figure 2(b) is �50 times more effective than random synthesis for finding effective inhibitors (i.e., compounds with
>70% inhibition).

Figure 3. The number of desired compounds (i.e., those with >70% inhibition)
discovered through the iterative reordering procedure. The red, green, blue, and
purple curves correspond to initial samplings of 5%, 10%, 25%, and 50% of the
available data, respectively. Based on the predicted property values in each
iteration, 50 new compounds are then added. The horizontal black dashed line at
137 shows the total number of desired compounds. The orange dashed lines show
the number of compounds required for synthesis to discover 1/2 of the desired
compounds. Significantly, the algorithm is the most efficient by starting with
minimal initial sampling; only 650 compounds out of a total library of �14,000
potential compounds suffices when operating in this fashion.
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dicting’ that further synthesis in the upper left corner would be
more effective than anywhere else in the property landscape, and
utilization of the remaining data in Figure 2(c) confirms this pre-
diction. In order to quantitatively assess the algorithm’s prediction
capability, we conservatively select a box of size 40 � 30 at the
upper left domain of the library in Figure 2(b), which includes 52
out of 64 high-inhibition compounds (i.e., those with inhibition va-
lue greater than 70%). When all the remaining compounds are
placed in the landscape (Fig. 2(c)), this box includes 98 out of
121 high-inhibition compounds, corresponding to synthesis in this
domain being nearly 50 times more effective than if it were per-
formed elsewhere over the landscape.

Following the above test, the more efficient iterative reordering
procedure was examined, as iterative operation is most likely to
occur in practical applications. This test was performed by first
randomly selecting a small initial subset of the available com-
pounds. The optimal substituent ordering corresponding to this
subset was then determined, and linear interpolation was em-
ployed to estimate the 50 unsampled compounds with the highest
inhibition values. The laboratory data for these compounds were
then combined with that of the initial subset to improve the reli-
ability of substituent reordering and property estimation. This iter-
ative process was carried out until the data for 3000 compounds
were utilized.

Figure 3 shows the number of desired compounds (i.e., those
with >70% inhibition) discovered in the iterative process. Each
curve corresponds to a particular number of initially sampled com-
pounds. All curves exhibit a sharp slope in the beginning, indicat-
ing that most of the desired compounds may be discovered at the
early stage of the adaptive operation. Interestingly, starting from a
smaller initial sampling generally results in the most rapid discov-
ery of similar number of high-inhibition compounds. For example,
if the iterative process terminates when 1/2 of the available com-
pounds above 70% inhibition are found, then the number of com-
pounds needed to be synthesized is �650 for an initial sampling
of 5% of the available compounds, compared with >1,000 for the
initial sampling of 25% (Fig. 3). For the non-iterative method,
>2000 samples are required (starting point of the purple curve in
Fig. 3). Thus, a factor of �3 savings in synthesis and property assay-
ing effort arises from the iterative operation by starting from an
absolute minimal library, which can make a significant difference
in many circumstances.

The reordering technique has an important feature of
not requiring any traditional molecular descriptors. When the
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molecular scaffold and the substituents are chosen, the indexing
scheme always provides a complete and unambiguous set of
‘canonical descriptors’ to represent functionally related mole-
cules. One does not even need to know the structure of the mol-
ecules12 to apply the reordering technique, as all relevant
information lies in the encoded relationship between the substi-
tuent indices and the property measurements. In addition,
knowledge of the explicit form of the property–structure rela-
tionship function y = f(X1,X2, . . .,XN) is not necessary for the reor-
dering operation. Due to these features, the reordering technique
may be readily applied to a diverse array of molecular discovery
problems, regardless of molecular types (e.g., from small mole-
cules to peptides) or target properties (e.g., from electronic prop-
erties to biological attributes). The reordering technique can be
implemented to any case where (a) the library molecules can
be identified by site and substituent indices (i and Xi, respec-
tively) and (b) property data y is available for an adequate sub-
set of the molecules. In cases where the library molecules
contain more than one common scaffold or it is hard to define
a common scaffold, different means of uniquely encoding the li-
brary molecules are required. This topic is a subject of ongoing
research.

The reordering strategy and traditional QSAR methods should
not be viewed as competing techniques. Substituent reordering is
inherently an interpolation method, hence unlike QSAR, it cannot
extrapolate over substituents that are unsampled across all related
substitution sites. In addition, the reordering strategy does not di-
rectly provide structure–property relationships. However, the
strategy can enhance the effectiveness of QSAR methods by identi-
fying functionally similar substituents (with respect to the molec-
ular property of interest), which locate adjacently on a particular
substitution site in the optimal orderings. In this case the nature
of the compounds and property assay must be known. However,
the example in this paper shows that the substituent reordering
technique can successfully function even without this knowledge.
Considering their complementary advantages, suitable integration
of the reordering technique and standard QSAR methods is ex-
pected to synergistically benefit each other and enable more effi-
cient molecular discovery and more reliable understanding of
structure–property relationships.
In summary, the adaptive reordering technique provides a prac-
tical and easy-to-use means for a broad variety of molecular dis-
covery tasks. On the laboratory side, one only needs to randomly
sample a small subset of the target compound library, assign dis-
tinct random integers to the functional groups on each substitution
site, and measure the target property of the subset. The data is then
fed to the reordering algorithm(s), which will generate property
predictions and provide suggestions on further laboratory synthe-
sis and assaying. We are building an easily understandable graph-
ical user interface to the core algorithms for the convenience of the
end users.
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