Skip over navigation




CEE 311/CHM 311/GEO 311/ENE 311Global Air PollutionStudents will study the chemical and physical processes involved in the sources, transformation, transport, and sinks of air pollutants on local to global scales. Societal problems such as photochemical smog, particulate matter, greenhouse gases, and stratospheric ozone depletion will be investigated using fundamental concepts in chemistry, physics, and engineering. For the class project, students will select a trace gas species or family of gases and analyze recent field and remote sensing data based upon material covered in the course. Environments to be studied include very clean, remote portions of the globe to urban air quality.Mark A. Zondlo
ENE 308/MAE 308/GEO 308Engineering the Climate: Technical & Policy ChallengesThis seminar focuses on the science, engineering, policy and ethics of climate engineering -- the deliberate human intervention in the world climate in order to reduce global warming. Climate/ocean models and control theory are introduced. The technology, economics, and climate response for the most favorable climate engineering methods (carbon dioxide removal, solar radiation management) are reviewed. Policy and ethics challenges are discussed.Egemen Kolemen
ENV 354/GEO 368Climate and Weather: Order in the Chaos(STN)This course focuses on the relationship between climate and weather events: each weather event is unique and not predictable more than a few days in advance, large-scale factors constrain the statistics of weather events, those statistics are climate. Various climatic aspects will be explored, such as the geographic constraints, energy and water cycling, and oceanic and atmospheric circulation, solar heating, the El Niño phenomenon, ice ages, and greenhouse gases. These climate features will be used to interpret the statistics of a number of weather events, including heat waves, tropical cyclones (hurricanes and typhoons) and floods.Gabriel A. Vecchi
GEO 103Natural Disasters(STL)An introduction to natural (and some society-induced) hazards and the importance of public understanding of the issues related to them. Emphasis is on the geological processes that underlie the hazards, with discussion of relevant policy issues tied to reading recent newspaper/popular science articles. Principal topics: Earthquakes, volcanoes, landslides, tsunami, hurricanes, floods, meteorite impacts, global warming. Intended primarily for non-science majors.Allan M. RubinEleanor J. BerrymanPaul P. Gauthier
GEO 202Ocean, Atmosphere, and Climate(STL)An introduction to the ocean, atmosphere, and climate from the perspective of oceanography. Covers coastal processes including waves, beaches, tides and ecosystems; open ocean processes including atmospheric circulation and its impact on the surface ocean, the wind driven circulation, and surface ocean ecosystems; and the abyssal ocean including circulation, the cycling of chemicals, and ocean sediments and what they tell us about the climate history of the earth. The final part of the course will cover humans and the earth system, including a discussion of ocean resources and climate change.Jorge L. SarmientoLaure ResplandyRobert H. Nazarian
GEO 360/ENV 356Geochemistry of the Human Environment(STL)Humans have profoundly altered the chemistry of Earth's air, water, and soil. This course explores these changes with an emphasis on the analytical techniques used to measure the human impact. Topics include the accumulation of greenhouse gases (CO2 and CH4) in Earth's atmosphere and the contamination of drinking water at the tap and in the ground. Students will get hands on training in mass spectrometry and spectroscopy to determine the chemical composition of air, water, and soil and will participate in an outreach project aimed at providing chemical analyses of urban tap waters to residents of Trenton, NJ.John A. Higgins
GEO 370/ENV 370/CEE 370Sedimentology(STL)This course presents a treatment of the physical and chemical processes that shape Earth's surface, such as solar radiation, deformation of the solid Earth, and the flow of water (vapor, liquid, and solid) under the influence of gravity. In particular,the generation, transport, and preservation of sediment in response to these processes is studied in order to better read stories of Earth history in the geologic record and to better understand processes involved in modern and ancient environmental change.Adam C. Maloof
GEO 419/PHY 419Physics and Chemistry of Earth's InteriorThis class will introduce students to the modern study of the structure, composition, and evolution of the Earth's interior. We will integrate findings from geophysical observations, laboratory experiments, and computational models to develop a holistic picture of the large-scale behavior of our planet. The course will be divided into four major sections: 1) origin and composition of the Earth; 2) physical and chemical properties of Earth materials; 3) global Earth structure; 4) Earth dynamics. The course will introduce current topics and the latest findings from the scientific literature.Thomas S. Duffy
GEO 428Biological OceanographyFundamentals of Biological Oceanography, with an emphasis on the ecosystem level. We will consider the organisms in the context of their chemical and physical environment; the properties of seawater, atmosphere and ocean dynamics that affect life in the ocean; primary production and marine food webs; global cycles of carbon and other elements; current research approaches. In addition to lectures by the professors, the course will delve deeply into the current and classic literature of oceanography and students will be expected to participate in seminar type presentations and discussions.Bess Ward
GEO 441/APC 441Computational GeophysicsAn introduction to weak numerical methods, in particular finite-element and spectral-element methods, used in computational geophysics. Basic surface & volume elements, representation of fields, quadrature, assembly, local versus global meshes, domain decomposition, time marching & stability, parallel implementation & message-passing, and load-balancing. In the context of parameter estimation and 'imaging', will explore data assimilation techniques and related adjoint methods. The course offers hands-on lab experience in meshing complicated surfaces & volumes as well as numerically solving partial differential equations relevant to geophysicsJeroen Tromp
GEO 464Quantifying Geologic TimeThis course explores the theory and application of the different ways that the vastness of geologic time is quantified and applied to understanding the rates and sequences of events in Earth history. It focuses on radiogenic isotope geochemistry and geochronology but also will cover other methods such as astrochronology and the geomagnetic polarity timescale. We apply these methods to understanding processes such as the origins of Earth and the Solar System, the rates and causes of mass extinctions and climate change, and the rates of plate tectonics, magmatism, and supereruptionsBlair Schoene

Undergraduates are able to take graduate courses (500+) with permission from course professor.

Graduate Studies

GEO 503/AOS 503Responsible Conduct of Research in Geosciences (Half-Term)Course educates Geosciences and AOS students in the responsible conduct of research using case studies appropriate to these disciplines. This discussion-based course focuses on issues related to the use of scientific data, publication practices and responsible authorship, peer review, research misconduct, conflicts of interest, the role of mentors & mentees, issues encountered in collaborative research and the role of scientists in society. Successful completion is based on attendance, reading, and active participation in class discussions. Course satisfies University requirement for RCR training.Jeroen TrompJorge L. SarmientoTullis C. OnstottGerta KellerSamuel G. PhilanderLeo DonnerThomas S. DuffyRong ZhangSonya A. LeggGabriel A. VecchiBlair SchoeneStephan A. Fueglistaler
GEO 505Fundamentals of the GeosciencesA yearlong survey, in sequence, of fundamental papers in the geosciences. Topics in 505 (Spring) include the origin and interior of the Earth, plate tectonics, geodynamics, the history of life on Earth, the composition of the Earth, its oceans and atmospheres, past climate. Topics in 506 (Fall) include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, rock fracture and seismicity. A core course for all beginning graduate students in the geosciences.Tullis C. OnstottGerta KellerAllan M. RubinStephan A. Fueglistaler
GEO 523/CEE 572GeomicrobiologyHigh throughput sequencing has transformed environmental microbiology, but dealing with the massive datasets is daunting. This course familiarizes students with the approaches used in assembly and annotation of metagenomes, single-cell genomes and metatranscriptomes and how to utilize the processed data to address phylogenetic and functional diversity in the environment. The course uses a combination of lectures, readings drawn from the literature, and hands-on processing of genomic datasets using a variety of freeware tools, R and Python. Upperclassmen are welcome.Tullis C. Onstott
GEO 570SedimentologyThis course presents a treatment of the physical and chemical processes that shape Earth's surface, such as solar radiation, deformation of the solid Earth, and the flow of water (vapor, liquid, and solid) under the influence of gravity. In particular, the generation, transport, and preservation of sediment in response to these processes is studied in order to better read stories of Earth history in the geologic record and to better understand processes involved in modern and ancient environmental change. Taught in parallel with GEO 370.Adam C. Maloof