Skip over navigation



An Integrated, Quantitative Introduction to the Natural Sciences

Lecture: Tues/Thurs, 1:30–2:50 p.m.  
Precept: Thurs, 7:30-8:50 p.m.

An integrated, mathematically and computationally sophisticated introduction to biochemistry, molecular biology, genetic, genomics and evolution. Students must enroll in 235 in the fall, and 236 in the spring. Prerequisites: ISC/CHM/COS/MOL/PHY 231-234 or equivalent preparation (MOL 214, COS 126, CHM 201-202 or 203-204, PHY 103-104 or 105-106) or by permission of the instructor. The course includes two hours and 40 minutes of lecture, one precept (one hour and 50 minutes), and a weekly evening problem session.

Faculty (2014-2015)

Amanda Amadeo (Lewis-Sigler Institute)
Peter Andolfatto (Ecology and Evolutionary Biology and the Lewis-Sigler Institute)
Megan McClean (Lewis-Sigler Institute)
Mala Murthy (Molecular Biology and the Princeton Neuroscience Institute)
Joshua Rabinowitz (Chemistry and Lewis-Sigler Institute)
Mona Singh (Computer a Science and Lewis-Sigler Institute)
Eric Wieschaus (Molecular Biology and Lewis-Sigler Institute)

Fall of sophomore year

ISC 235 provides an integrated treatment of organic and biological chemistry. Students will be introduced to the basic structures and reactivity of organic molecules, with a particular focus on reactions of high biological importance. Relationships to core physical principles are emphasized. The organic chemistry portion of the integrated course does not substitute for the more detailed treatment of organic chemistry provided in the chemistry department (CHM 301-302 or CHM 303-304). Students with a primary interest in chemistry generally take CHM 301 or CHM 303 concurrently and report finding the combination complementary.

Building from core knowledge of chemical reactivity and kinetics, the course explores the structures of proteins and nucleic acids and concludes with a rigorous treatment of cellular metabolism and its regulation. The ability to model the metabolic network via systems of differential equations is introduced.

For molecular biology majors, the course substitutes for MOL 345.

Spring of sophomore year

ISC 236 focuses on the application of genetic and genomic approaches to understanding life on earth and assaying gene activity from the level of populations to that of individual cells. The essential concepts are illustrated through quantitative examples and problems. The genetics of populations are analyzed with an emphasis on quantitative and theoretical aspect of evolution. The impact of population size is quantitatively assessed. Students gain an appreciation of the power of population genetics for understanding biology, ecology and even human history--for example, students will understand the quantitative analyses that lead to the conclusion that human life originated in Africa.

The course also provides an introduction to the basic computational genomic methods for analysis of biological systems. Genome sequencing and mapping strategies are presented, as well as tools for sequence alignment and whole genome comparisons.

The final section of the course covers experimental genetic approaches to understanding biological complexity in organisms ranging from viruses to model systems like Drosophila and C. elegans. The tools of mutational analysis are applied to understand the cell cycle of yeast and the development of multicellular organisms.

For molecular biology majors, the course substitutes for MOL 342.


Introduction to Genetics Analysis (GRIFFITHS), ISBN 978-1429229432

(Chapters 1-34), ed. 7 by Jeremy M. Berg, Lubert Stryer, John L. Tymoczko
From Neuron to Brain, 5th Edition, Nicholls et al
Organic Chemistry, Second Edition, Thomas Sorrell

(Also suggested: Solutions to Exercises, Organic Chemistry, Second Edition, Thomas Sorrell)
 *See instructors for updates and complete reading list*

**All textbooks will be on reserve at the Lewis Library**