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Abstract rimless wheels (compare with McGeer 1990; Coleman, Chat-
terjee, and Ruina 1997), RHex’s locomotion is driven by a
We apply the stability analysis for hybrid legged locomotion syssingle periodic “clock” signal split into phase and antiphase
tems, introduced in our companion paper in this issue, to a new sigopies for coordinating its alternating tripod gait. A simple
ple clock-driven SLIP model inspired by the robot RHex. We adoptD controller at each hip motor in a given tripod forces its leg
in stance phase the three-degrees-of-freedom (3DoF) spring loadgsitrack the alternately fast and slow clock reference signals
inverted pendulum (SLIP) model introduced in our companion paorresponding to presumed stance and swing phases. Exper-
per to capture RHex’s pitching dynamics in the sagittal plane. Thgnentally, RHex’s performance at various speeds over vari-
coordinating influence of RHex's open-loop clock controller is subgys terrains is strongly dependent upon the particular values
sumed into a leg placement strategy derived from a bipedal abstragf the clock parameters, and, as is typical within the feed-
tion of RHex. The “symmetric” factorization analysis introduced inforward control paradigm, each new situation demands its
our companion paper yields a necessary condition for gait stabibwn carefully tuned parameter set (Weingarten et al. 2004).
ity expressed in closed form, which can be imposed directly on tietter analytical understanding of the relationship between
clock parameter space. This represents the first reported analyticglock signal and steady-state gait should dramatically sim-
insight into how a dynamical runner might be stabilized by a complify the frequently lengthy empirical parameter tuning ex-
pletely feedforward rhythmic limb coordination pattern. Corresponercises presently required to achieve high-performance gaits
dence in steady-state gait location and stability characteristics witiweingarten et al. 2004).
an appropriately tuned 24DoF model of RHex provides numerical
evidence that the 3DoF SLIP model offers a descriptive explanation

for the robot's empirical running behavior. 1.1. RHex and the “ Simply-Stabilized” Pogo Stick

KEY WORDS—Ilegged locomotion, return map, springA complete account of the relationship between RHex’s in-

loaded inverted pendulum, stability ternal clock signal and mechanical gait in even the simplest
case would entail insight into the steady-state properties of an

1. Introduction underactuated high degree-of-freedom (DoF) hybrid mechan-

ical system whose Lagrangian dynamics switches among a set
In this paper we explore the applicability of theOf 2% possible holonomically constrained models depending

symmetry-factored stability analysis introduced in Altendor!Pon which feet are in contact with the ground. Fortunately,
fer, Koditschek, and Holmes (2004) to the design and in® growing body of numerical and empirical evidence (Al-

plementation of physically interesting running robots such dgndorfer et al. 2001a) suggests that RHex, when properly
RHex (Saranli, Buehler, and Koditschek 2001). Powered Byned, exhibits in stance phase sagittal plane behavior well
only six actuators, located at the “hips” to drive each of itgPProximated by the spring loaded inverted pendulum (SLIP)

six passively compliant legs, in the manner of single-spokedgpicted in Figure 1. Intuition suggests that the control of a
pogo stick like the SLIP would require full state feedback.
The International Journal of Robotics Research

Vol. 23, No. 10-11, October—-November 2004, pp. 1001-1012, However, RHeX’ runmn.g .m the O.pen_IOOp m.Ode described
DOI: 10.1177/0278364904047390 above, consistently exhibits a rapid return to its steady-state
©2004 Sage Publications gait pattern during runs with long aerial phases even in the
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presence of significant ground perturbations (Saranli, able simulation of the physical RHex robot (Saranli
Buehler, and Koditschek 2001; Weingarten et al. 2004). 2002);

On the other hand, there is recent numerical evidence
(Seyfarth et al. 2002) and analytical proof (Ghigliazza et al.
2003) that the SLIP dynamics actually does enjoy a “simply-
stabilized” regime of operation. However, the apparent free-
dom from explicit state feedback of that 2DoF SLIP model
and its variations (Seyfarth and Geyer 2002; Seyfarth, Geyer,
and Herr 2003) masks implementation details that would re-
quire inertial frame_sgnsors that RHex (_joes not possess. Ing 4 preliminary numerical study in Section 3 suggesting
contrast, the analysis m_AI_tendorfer, Koditschek, and Holmes  ihat our 3DoF SLIP model is a reasonably descriptive
(2904) allows the posglblllty t.h'at a purely mechanical effect model of the RHex-like 24 DoF model programmed in
might confer asymptotic stability in the 3DoF model of Fig- SimSect (Saranli 2000).
ure 1 by admitting stabilization via purely body frame sensing.

However, could the open-loop RHex clock coordinate a stabi- In the remainder of this section the SLIP model with its
lizing mechanical effect? In this paper, we show analyticallynodeling assumptions is introduced and its discrete time be-
that the answer is “yes” in the case of a slightly abstractduavior formalized. In Section 2 the factored stability analysis
version of the clock applied to a 3DoF SLIP model designeaf Altendorfer, Koditschek, and Holmes (2004) is applied to a
to capture RHex’s pitching dynamics as well as its center afew instance of the 3DoF SLIP model endowed with a RHex-
mass (COM) trajectories. We also present numerical evidenidee coordinating clock. The descriptive correspondence of
to suggest by the close correspondence of COM and pitchittys 3DoF SLIP model with a 24DoF model of RHex is estab-
dynamics that this may also explain the nature of the opelished by a numerical study in Section 3. We close with some
loop stability mechanism in RHex. brief concluding remarks in Section 4.

We compare the performance of the SLIP model with a
24DoF numerical surrogate for RHex, both driven with tha 3 5| |p Dynamics
same RHex clock parameter settings. Lacking formal results ) )
bearing on this issue, we find it useful to introduce terminof-3-1. Modeling Assumptions

ogy summarizing the following intuitive distinction. We will |, this section we establish the specifics of the SLIP models
say that the correspondence is “descriptive”, since the salie¥nsidered in this paper. They are listed in terms of the cate-
properties observed in the complex model are also observgglies: geometry, trajectories, control, and potential forces.
in the template model fitted to it. We mean to distinguish

this outcome from a stronger “prescriptive” form of corre:Geometry. The 3DoF sagittal plane SLIP model is shown in
spondence where the controller design parameters (the ciddgure 1. It shows arigid body of magsand moment of iner-
settings) of the template model predict in detail the behavidid / With a massless springy leg with rest lengglattached at

of the Comp|ex model with the same design parameters_ a hlp jOint that coincides with the COM. The Strength of grav-
ity is g. The approximation of a leg with zero mass avoids

impact losses at touchdown and simplifies the control. For

convenience, all of the following expressions are formulated

The stability analysis for SLIP models using a symmetryin dimensionless quantities, i.e.,

factored return mapR as introduced in Altendorfer,

Koditschek, and Holmes (2004) allows a closed-form ex- 3 \/E
o

2. application of our factored stability analysis (Altendor-
fer, Koditschek, and Holmes 2004) to the 3DoF SLIP
model yielding for the first time analytical conditions
on the rhythmic excitation pattern necessary for the sta-
bility (and sufficient for instability) of a pseudo-clock-
controlled dynamical runner (Section 2.2);

1.2. Contributions of this Paper

pression for the determinant of the return map’s Jacobian at
a symmetric fixed point (to be explained in Section 1.3.2).
This closed-form expression yields a necessary condition for
asymptotic stability and a sufficient condition for instability
despite the non-integrability of the SLIP dynamics. The cen-
tral contributions of this paper arising from that result are the o
following:

1. a new 3DoF SLIP model based upon the RHex gait
generator (Saranli, Buehler, and Koditschek 2001; see .
Section 2.1) and a procedure for fitting it (Appendix A) A el
to a previously developed 24DoF “RHex-like” numeri-
cal model (programmed in SimSect; Saranli 2000) thalso shown are the pitch anghewith respect to the horizon-
continues to represent the most accurate currently avaidd and the parametrization of the COM in terms of Cartesian
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1 stride to stride. The only control authority consists in deter-
. mining the transitions between flight and stance by specify-
m. | ing the stance and flight time. The stance time is implicitly
.!",i't" determined by requiring the leg to undergo a compression—
| decompression cycle; hence, the only designable control au-
thority consists in specifying the flight time, which can be im-
plicitly parametrized by the free leg angle trajectagry, xo)
wherex, denotes the SLIP COM coordinates at liftoff. Due
to the massless assumption, the leg can be arbitrarily placed
during flight at no energetic cost.

oy

t-3

Potential forces.

P1 The potential energy is givenly, =z + V(y, z, 6).

P2 The non-gravitational potentidl is analytic and satis-
fies the symmetry relatioVi(y, z, 0) = V(—y, z, —0).
This condition does not seem to severely restrict our

Fig. 1. Coordinate convention of SLIP with pitching dynam- > )
choice of potentials.

ics. In the text, the COM coordinates are parametrized by
Cartesian coordinates, i.e.,= ¢ sin(y) andz = ¢ cogv). P3 V factorizes asV(y,z,0) = V.(¢)V,(y,z,0) with
In flight, the leg angle is, in general, a function of time and V.(1) = 0. This ensures that is zerg at touchdown

of the SLIP’s liftoff stateip (¢, xo). The figure is taken from and liftoff. Because of the masslessness of the 1&g,
Altendorfer, Koditschek, and Holmes (2004). remains zero during flight.

1.3.2. Discrete Time Behavior of SLIP Locomotion: Return
(v.z) and polar { = /y?+ 22, ¢ = arctar(y/z)) coordi-  Map, and Stability
nates with the coordinate origin at the foothold. The body is N _ ) .
assumed to remain in the sagittal plane and its configuratidhe stability properties of the SLIP hybrid dynamical systems

is parametrized by coordinates, z, ) or (¢, ¥, 6). can be assessed by a return nRmcting on a (reduced)
. . ) i ~ Poincaré sectior’:
Trajectories. A full stride consists of a stance and a flight

phase: in stance, we assume the foothold is fixed, the leg com- R-X > X. (2)
pressed and the body moves in the positieirectiony > 0;

in flight, the body describes a ballistic trajectory under th&he iterates of this return map—the function relating the
sole influence of gravity. In both phases, we choose the sainedy state at a periodically (at each stride) occurring event—
parametrization of the configuration space with phase spasemmarize all properties relevant to the goal of translating the
elements denoted by = (y.z,6,y.2,6)" € X. The stance body COM.

phase starts with the leg uncompressed and ends when thé\ SLIP stride consists of stance and flight, therefore its
leg has reached its rest lengttagain. Then the flight phase return map can be factorized & = R, o R,. The end of
begins and ends when the massless leg (appropriately plactidht is characterized by the touchdown event, detected by the
touches the ground. This is parametrized by a threshold furttreshold equation (1). However, as detailed in Altendorfer,
tion h, (for a general definition of threshold functions, sed&oditschek, and Holmes (2004) the dynamics &ns not
Altendorfer, Koditschek, and Holmes 2004) which becomegeriodic (y(¢) is monotonically increasing for trajectories as

zero when the toe touches the ground: defined in Section 1.3.1). Furthermore, by conservation of
R N total energy, the component oft’ is not independent of the
ha(Xo, 1) = 2(t) — COL (7, X)) (1) other components 6f. Therefore, the SLIP’s return map is

taken to act on a reduced Poincaré sectionwith x € X
being the projection of onto its “nony, y” components:
N:X—-X;, x—~x=1(06,z,0)".

Stability of R at a symmetric fixed point € X, i.e., a

If ¢ depends o, (the liftoff state), feedback control is em-
ployed. The design of the functiah constitutes the control
authority in our SLIP model. Stability investigations in this
paper are confined to trajectories that are in the vicinity %f

symmetric trajectories in both stance and flight, where, f rXed point of R that is also a fixed point ok, and R, can
Y J ght, ' cffe assessed by the location of the eigenvalueB,dt(x).

example, the liftoff and touchdown vertical heights are CaUG eigenvalues lie within the unit circle; is a locally at-

Control. No continuous control is exerted during stance anttacting fixed point ofR. While explicit expressions for these
flight; the corresponding vector fields do not change froraigenvalues are not known, a judicious use of a time reversal
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symmetryG of the equations of motion of the stance and flight A leg angle trajectory that only uses sensing with respect
dynamicsG : x — (z, —6, —z, 6)" allows an explicit, exact to the body reference frame, can be modeled by the following
expression ofdet(D, R(x))| in terms of the control authority output mapCs:

in the SLIP model, the leg angle trajecta¥yr, x,), as shown

in Altendorfer, Koditschek, and Holmes (2004): b5, arccogzo) + 6o
‘i’ =l -2+, | = Cy(x0) ©)
Bo A /1—:5

|det(D, R(x))| = [1+ 3)
AT 24 a4 . where gy, is the leg liftoff angle with respect to the body
1 — 25 (8: — Zodey — o) P (7, %0) + %o . normal (see Figure 1) anpk, is the leg’s angular velocity at
—/1—250,¢(t, x0) — Zo =2 liftoff measured in the body frame. Specifying this trajectory
v in the body frame yields

Anecessary condition for local asymptotic stabilityoditx is .
therefore| det(D, R(¥))| < 1, whereas a sufficient condition ¢ (t. x0) = ¢c, (1, Pry. P5,) — 0(2). (6)

for local asympitotic instability isdet(D, R(¥))| > 1. In summary, the 3DoF SLIP model allows the distinction of

. the “quality” of sensing required for a particular control input,
1.3.3. Notation which in turn enables an assessment of the “cost” of control.

The salient symbols used in this paper are next listed, with _
brief explanations of their meanings. 2. An RHex-Like 3DoF SLIP Model

SLIP system definitions In this section, we investigate a leg placement strategy for

)

o phase space the control of the 3DoF SLIP model. Its importance lies in
t,x  time, phase space element (dimensionless) the fact that this leg placement strategy is modeled after the
h threshold function open-loop controller employed in RHex (Saranli, Buehler, and
X reduced Poincare section Koditschek 2001) within the limitations of the 3DoF SLIP
R:, R, return map factors o model.

R returnmap

I projector rom¥'tox . 21.ALegAngle Trajectory Based on RHex's Clock
Vv conservative SLIP potential without gravity  controller

C output map

The angular reference trajectories prescribed by RHex’s open-
loop clock controller (Saranli, Buehler, and Koditschek 2001)
are specified by the (dimensionless) parameters ¢,, and

In general, an element or a map without the diacfitic
denotes an element of the reduced Poincaré sedfiam a

map on’. @oir; See Figure 2. For one-half of the clock perigdthe
reference trajectories for the left (L) and the right (R) tripod
1.4. Control and Sensor Modeling can be expressed as functions of time in the robot’s body frame

B) as
In SLIP models, control is parametrized by the leg anglg )
trajectory ¢ (¢, xo). The feedback loop is completed by the b5, ()
state vectory, taken at the leg liftoff event. In Altendorfer, )

Iy
Koditschek, and Holmes (2004) the sensory “cost” of con- ot 4+ Z(tlt(p&”) N Sitt z 2 (7)
trol was assessed by the “quality” of the sensed states used 4 2 Yot 2 = 2
in feedback. There, “quality” referred to the frame of refer-
ence of the feedback variables, since sensors implemented Pup (1) =
in the body frame are generally easier to instrument than in- —T + Ol + Qo 0<r<f3*
ertial sensing. This criterion was addressed in Altendorfer, ot =51~ w_f) - ”Zf_j tor st <G

Koditschek, and Holmes (2004) by rewriting the leg angular
trajectory¢ that is defined in an inertial frame (see Figure 1j'here
as

(2 21 — Ds
(,()Szt—<(,()f= I —1 .
(1, x0) = Pe(t, C(xo) — 0(0), 4) 3 e
These angular trajectories are depicted in Figure 2, and it
whereC is the output map of the SLIP’s discrete dynamicashould be understood that their values over the negative half
system and the second term in eq. (4) indicates ¢hais of the clock period are prescribed so as to make them odd
specified with respect to the SLIP’s body frame. functions over the entire clock period.
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g poorly modeled by the mechanics of Figure 1. Assumption
?‘ R2is justified by experiments and simulation studies of RHex

= Region 1 Region 2 Region 3 . operating in the relevant dynamical regime (Altendorfer et al.
5 2001a, 2001b, 2002). AssumptidR2 andR3 make the con-

< trolled SLIP model a pseudo-clock controlled system, where

:'L\ Liftoff (LO) of the clock signal is turned off during stance and turned on dur-

\: stance leg @a |ng f||ght

S T To develop a 3DoF SLIP model of a kind introduced in
» e 1% our companion paper (Altendorfer, Koditschek, and Holmes
S - 2004), yet with a RHex-motivated leg recirculation trajectory,
s / ot tigntieg consider first an explicitly bipedal version.

= bt " nitial angle Its kinematicsis identical to that depicted in Figure 1 except
N of flight leg i that there is an additional leg. Since this additional leg is also
[ ‘ ‘ assumed massless and stance phases where both legs touch

S‘g ke et ¢ the ground (double stance) are to be excluded by construction,
9

the dynamics of this model will prove to be identical to the
] ] ) ) original 3DoF SLIP model defined in Section 1.3.1, as we
Fig. 2. lllustration pf In‘tpff and touc_:hdown events in the bOdynow show. To complete the construction, we must specify the
frame of a RHex-inspired leg recirculation scheme (Saranfag angle trajectories for both legs: the stance (S) and flight
Buehler, and Koditschek 2001) for SLIP with pitching dy-F) |eg. Since RHex's reference trajectories are specified with
namics. respect to the body frame, we will give expressions for the
leg angle trajectories in this frame. The relation between the
They are enforced at each leg of the robot by a simple PpPdy and the inertial frame is given by
controller.
In order to implement this controller in a simplified 3DoF Pn=0+0 ®
SLIP controller, the following assumptions are made. In the following, the left leg (L) is chosen to be the stance leg.

) ) . ~ Thetimer is reset to zero at the beginning of each stance and
R1 RHex’s clock should prescribe motions with (substannalﬁight phase.

flight phases, i.es, < 1./2. We model the position of the legs in stance phase as
R2 During stance, the effect of the stance tripod on RHex’s s () = Y@ +0() 0<t <ty (9)
rigid body is represented by a single (virtual) stance _ -1
leg which can be approximated by a SLIP; this means or(0) = b5, (95,00 () O<t<tio.  (10)
that RHex’s lateral motion is neglected and that thélere,yr () andd () are governed by SLIP’s stance phase dy-
effective torque on the virtual leg that is not due tanamics (see Altendorfer, Koditschek, and Holmes 2004) and
gravity can be modeled by a potential of the fd?@+P3  we effectively cancel out the independence of the flight leg
(see eq. (15) for the specific potential used in numericaly enslaving its “time” to that determined by the stance leg
simulations). via eqg. (10). The alternative of maintaining a true biped via
the application of the second of egs. (7) will yield a more
R3 The PD controller that enforces the angular reference trdomplicated model including, for example, periods of dou-

jectories (7) during flight has infinite gains and trackgle support whose stance phase is not described by the SLIP
those trajectories without errors. Hence, the flight trimechanics arising from Figure 1.

pod can be subsumed into a single flight leg. In conse- |n, fiight, the leg angles are described by the purely kine-
quence, as the present stance leg lifts off, the PD copsatic equations
troller can be assumed to have positioned the second
(present flight) leg at the exact angle with respecttothe  @s,(t) = @5, (1 +10) 0 <t <irp
first (present stance) leg specified by eq. (7). Incon- ¢, (1) = ¢z, (qb;Ll(quS(t))) O<t<trp (12)
trast, during stance, the angular position and velocity ) .
variables evolve according to the SLIP stance dynamid¥escribed by RHex's clock (7). The flight phase ends when
(see Altendorfer, Koditschek, and Holmes 2004). the flight leg with leg angleé;, (r) touches the groun_d. Atthe
start of the next stance phase, the stance and flight legs are
AssumptionR1 focuses attention on RHex's dynamicalrelabeled as flight and stance legs, respectively.
regime as opposed to the possibly quasi-static operation avail-The leg angles of massless legs during flight are not gov-
able to platforms with sufficiently high leg number and miterned by dynamical equations, hence the equations of mo-
igates against stance conditions with double support that aren of this bipedal SLIP version are identical to those of the
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Table 1. Functional Expressions for ¢(t, xo) and | det(D, R(x))| for Different Locations of the Liftoff and Touchdown
Event

(LO—~TD) @ (t, xo) | det(D, R(x))|
1-1 o Cepy (0312 - <
1 2) wst + 25 (arccoszo) + 6o) + gon (1 — 25— — 0(1) |1+ i ﬂ' > 1
2— 2 wyt + (Arcco%zg) + o) — “’—2‘(1 — Z—f) —1m —06() 1
1—3 wst + (arccoszo) + ) — 5 (1 — Z—;) — nf:—j —0(t) 1
2— 3 o v o (~3-04/1-22) (% D) b= e
3 3 @t + 2+ (Arcc0%zo) + o) + @or (1 — ) — 7w 2 — 6(1) 1+ Y Ez' < 1

monopedal SLIP model presented in Altendorfer, Koditschekuch ag2 — 1) are not listed as they would correspond to
and Holmes (2004). Moreover, the end of flight is solely demultiple revolutions of the leg which we do not consider.
termined by the flight leg with leg ang;, (¢); the flight leg Table 1 shows that the angular trajectory at any instant in
during stance and the stance leg during flight can therefore time has the general form

ignored. The complete expression for the effectively resulting

monopedal recirculation strategy now derives from egs. (11) ¢ (¢, xo) = wt + k (arccoszo) + 6) +a, — 6(r)  (13)

and (8): R

=98y

P, x0) = @, (1) = 0(1) = ¢y (t +110) —O(1) (12) with o € {o;, o}, andk € {o,/w;, 1, w;/w,}; the dif-

wherer, , = ¢EL1(¢0+90) is the time with respect to the RHex ferent vaILies ofx, can be rgad from Table 1. The vglue
clock when liftoff occurs angy, = arccosz,) is the angle of | detD.R(x))| = 1 fork = 1is the result of an underlying
the stance leg at liftoff in the inertial frame. This procedure i§Me reversal symmetry of the discrete flight map as shown in
illustrated within the body frame in Figure 2. appendlx A of Alteno_lo_rfer, Koditschek, and Holme_s (2004).
By inserting the expressions for the RHex clock trajectogh's opens the possibility of neutrally stable behavior of this
(7)into eq. (12), the angular trajectory for the 3DoF SLIP sys3DOF SLIP system analogous to the one proven for a 2DoF
tem is obtained. Since the leg angle trajectory, xo) (12) SLIP system in appendix C of Altendorfer, Koditschek, and
is based on two piecewise-defined functions (7), different efiolmes (2004). _ _
pressions fot (¢, x,) are derived depending on where liftoff  NOte that eq. (13) is of the form of eq. (6) with the body

and touchdown occurs. We distinguish three regions (see Ff§@me sensor model’s (xo) = arccogzo) + 6 = ¢x, i-€.,
ure 2) with respect to the RHex clock time: no body frame velocity measurement is required. Based on

the properties of symmetric orbits that we focus on in this
paper, a necessary condition on a RHex clock parameter for

region 1 asymptotic stability can now be derived.
t
0<t<=z, y .
2 2.2. A Necessary Condition for Asymptotic Stability
region 2 For symmetric orbits, the liftoff and touchdown leg angles in
Lo t.—t, the inertial frame are of equal magnitude but opposite sign:
2= r< 2 ¢o = —P(trp). This also holds for the pitching angle®: =
and region 3 —0(trp). Using eq. (8) to translate the liftoff and touchdown
angles to the body frame
o — 1 te
< —.
=r= 2 ds(tLo) = ¢o+ b6
We enumerate these different liftoff~touchdown combina- ¢s(trp) = ¢(trp) +0(trp)

tions by two numbers (LG~ TD) which denote the region .

in Figure 2 where liftoff and touchdown occurs. Six differentve obtaing; (7.0) + ¢5(trp) = 0. With the definitiong, =
cases together with the corresponding leg angle trajectory afie — @or as in Figure 2, this equality can be rewritten as
the absolute value of the determinant of the return map Jaco- N R

bian at a fixed point are listed in Table 1. “Backward” cases ¢5(tLo) + Ps(trp) = —2¢0- (14)
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Table2. Tableof Allowed Transitions(LO — TD) for Sym- 31 control of the Anchor by Controlling the Template
metric Orbits in Terms of the Sign of the Leg Offset Pa-

rameter g of the RHex Clock

We seek to assess the advantages and costs of imposing a

(LO — TD) @ort <O Yot =0 Yot > 0 hierarchical organization on the control and stabilization ar-
1-121 chitectures of complex, high-DoF mechanisms such as RHex.
1-2 no no yes In this paper, this assessment centers on exploring the notion
22— 2 of the template and anchor hierarchy introduced in Full and
(1- 3) yes yes yes Koditschek (1999).

(2—3) A template is a low-dimensional model of an abstract
(83— 13 yes no no mechanism operating within an idealized environment capa-

“Backward” transitions such a& — 1) are not considered adole of representing a specific task of interest. It generally must

they would correspond to multiple revolutions of the leg durirff -anchored” in some appropriate higher-dimensional phys-
flight. ical mechanism designed to actually carry out the task in the

real world. We seek controllers whose closed loops resultin a
“prescriptive” correspondence (defined in Section 1.1) of the
dynamics of the high- and low-DoF models. Hence, the con-
This equation constrains the allowed liftoff=touchdown trantroller must (a) force the high-dimensional anchor to follow
sitions between regions 1-3 in Figure 2 for symmetric orbitshe dynamics of the low-dimensional template (anchoring),
e.g.,¢o > 0 excludes transitions between the regi¢ds> and (b) control the template to achieve a certain task. For
3) and(3 — 3) because there we havg(t,0) > |¢s(trp)| example, Koditschek and colleagues have anchored a sim-
whereasp, (170)| > ¢5(10) by eq. (14). Table 2 shows which ple stable periodic vertical (1DoF) batting template (Buehler,
liftoff—-touchdown transitions are possible as a function of th&oditschek, and Kindlman 1990) to achieve a two-ball sta-
sign of RHex clock’s leg offset anglgy; . ble juggling task in planar (4DoF; Buehler, Koditschek, and
If 9_ < _f/ﬁ, the determinant for the transitionsKindh’nan 1994) and three-dimensional (6DOF, Rizzi, Whit-
(2 — 3)and(3 — 3)willbelessthanone. Hence, anecessargomb, and Koditschek 1992) environments. In these settings,
condition for asymptotic stability i®.s < O provided that @ continuous time controller is used to create within the total

§ < —3//I— 2. On the other hand, a sufficient conditionStat® space (formed by coupling the “host” physical mecha-
for instability (including neutral stability) igy > Oprovided NiSM with its task environment) an attracting invariant sub-
thaté_ YN - manifold whose restriction dynamics is a copy of the tem-

. . . é)late (Buehler and Koditschek 1990; Westervelt, Grizzle,
It should be emphasized that the expressions in Table 1 € Koditschek 2003). In other settings (e.g., in Nakanishi
independent of the specific 3DoF SLIP potentiabs long ' 9 9. '

as the general conditiorRl-P3 listed in Section 1.3.1 are Fukuda, and Koditschek 2000), we have simply approximated

o . the desired restriction dynamics. Recently, the SLIP tem-
obeyed. However, a specific SLIP model does influence th N . .
. . . . plate has been “approximately anchored” in a 24DoF SimSect
location of fixed pointg and therefore the numerical value of

the determinant for the cases4 1,1 — 2,2 - 3,3 — 3 model of RH?X (Saranli 2002). .
. . However, in all these cases, the anchoring controllers have
as well as the location of the eigenvalues.

. . . o . relied on “inverse dynamics” (the exact cancellation of un-
This analysis provides for the first time an analytical tool to . A ; .
- . - . anted dynamical terms and introduction of desired dynam-
assess the stability properties of a rigid-body RHex-like SLI . ) .
T : cel terms) that requires very high bandwidth accurate state
model. We now examine its relevance to the SimSect mo e
. eedback as well as very accurate robot models. In the present
of the open-loop clock-driven robot RHex. . . s o :
setting, with the limitation to individual hip angles sensed
o . . with respect to the body frame, there is not enough state in-
3. Application: Toward Hierarchical Control of formation to even approximate an inverse dynamics solution.
a Hexapedal Robot Yet it is an empirical fact that the physical machine anchors
some form of the SLIP template (Altendorfer et al. 2001a)
In this section we explore numerically the applicabilitythat seems to persist over a wide variation in clock parameter
of these ideas to the robot RHex (Saranli, Buehler, argkttings (Weingarten et al. 2004). The question now arises as
Koditschek 2001). In Section 3.1 we review the general ape how to derive proper advantage of this useful but presently
proach to hierarchical control (Full and Koditschek 1999) ipoorly understood fact. Whereas the nature of the anchoring
the specific context of a RHex-like anchor system comparedechanism remains open, the previous section provides the
to the SLIP template with a physically motivated stance phaseginnings of a method for commanding the behavior of the
potential and leg angle trajectory. In Section 3.2 we presetgmplate, and hopefully thereby the salient properties of the
simulation results and assess the degree of correspondegat of robot that anchors it. Namely, for the RHex clock pa-
between the simulated anchor and its putative template. rameter settings that lead to a stable steady-state gait in the
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physical machine itis natural to ask whether they will producegiven the gulf in dimension. Specifically, the trajectory fitting
the same gait in the anchored SLIP template. Short of answerrors are very small on average; the fixed points of the Sim-
ing that question in the physically realistic machine, we nowect simulations and the fitted SLIP models are within the
take a preliminary look at its resolution respecting our bestame order of magnitude, and the asymptotic behavior agrees
numerical simulation written in SimSect (Saranli 2000).  in almost all cases, as detailed below.

Specifically, we provide numerical evidence for the agree- However, while the fitted SLIP models provide good cor-
ment of the stability properties of an RHex-like model prorespondence once a specific SimSect operating point has been
grammed in the SimSect simulation environment (Sarardelected, it is not the case that a priori specification of clock
2000) with the stability properties of the 3DoF SLIP modeparameters yields a SLIP model whose fixed point locus and
introduced in Section 2.1. This numerical surrogate for thgtability predicts that observed in the SimSect model. In this
physical machine does not exactly predict RHex's empirsense, the present SLIP model provides a descriptive but not
cal performance in any specific regime, but exhibits generptescriptive representation of the SimSect dynamics.
enough correspondence to the robot’s qualitative behavior that
we use it regularly as a debugging tool prior to physical expex: . .
iments with a new controller (Weingarten et al. 2004). We nov%/'z'l' Correspondence of Trajectories
show that in a physically interesting operational regime, stahe quality of the fit is assessed for each stable simulation by
ble simulations in SimSect correspond to stable fixed pointse two fitting error numberayz,, andAg,, as described in
of the corresponding SLIP model. Appendix A3. The average fitting error and standard deviation

Here, “correspondence” is established by fitting simulatiofor both errors for the 522 stable SimSect simulations for the
data to a 3DoF SLIP model with an RHex-like leg angle tra€artesian coordinates is smalyz,, = 3.82+ 0.42% and of
jectory (13) using the RHex clock parameters of the SimSegimilar magnitude as the fitting errors for 2DoF SLIP models
simulation. The stance phase potential used in this model observed in Altendorfer et al. (2002), whereas the average fit-

ting error for the pitch coordinatead,, = 93.65+ 25.76%,

V(y,z,0) = %({ — )% (1 + cos0® + oy 0¥ + cyy ¥ is considerably larger. As an illustration of the fitting results

(15) @ sample SLIP fit is presented in Figure 3. The data trajec-

tories of y(¢), y(¢), z(¢), 2(¢), 6(¢), 0(¢), ¢ (¢) are plotted to-

is the generalization of a potenti®#l(y,8) = (y/2)(¢ — 9gether with the trajectories of their fitted SLIP models.
1)2(1 + cp4y (@ + ¥)?), which could be implemented in a  The largeAd,, fitting error is an indication that the pro-
physical single-leg hopping robot by a passive leg spring afpsed 3DoF SLIP model is not a sufficiently accurate abstrac-
a passive torsional spring between the body and the leg. Tten of SimSect's pitching dynamics. A further contributing
generalized potential (15) would require passive springs dactor to 'Ehe size oA, is the fact that the magnitudes of both
tached to a “comoving” inertial frame, preventing a physicat (1) andd () trajectories are small, which makes the denom-
implementation with a one-legged robot. However, we believigator of the fitting errorA9,, (18) small. Another deviation
that this model reasonably approximates the moments dueaidthe dynamics of the fitted SLIP model from SimSect is ap-
the “outrigger” front and back legs, compressed against ti@rent in they(¢) trajectories of Figure 3, which is typical of
horizontal ground surface, in the tripod stance phase of RHex| fitted SLIP models. Here, the fitted SLIP trajectory is out
of phase with the SimSect COM trajectory; nevertheless, the
fitting error Ayz,, is small because of the large average value
of the SimSect trajectory that enters eq. (18). We believe that
the acceleration in the forward direction during the leg com-
Simulations of an RHex-like hexapedal robot were run in Sinpression phase seen in SimSect as opposed to a deceleration in
Sect (Saranli 2000) over a discretized range of clock parartiie corresponding SLIP model is due to the non-conservative
eters of RHex’s open-loop clock controller (Saranli, Buehlenature of the SimSect model, where energy is pumped into
and Koditschek 2001) that respect assumptiisR2, R3  the system by the hip torques, and then lost to damping and
of Section 2.17. € [0.235,0.245], ¢, € [0.84,1.04], ¢,z € friction (a similar discrepancy motivated the inclusion of dis-
[—0.16,0.04], d, € [0.52, 0.6], where the duty factod, is sipative losses and hip torques in a model of horizontal plane
defined asl; = (1, — 1,)/t.. Of the resulting 1815 SimSect insect locomotion; Schmitt and Holmes 2003).
simulations, 522+ 29%) were stable according to the crite-
ria ofA_ppendixAl. Then, a 3DoF SL_IP model with the _stanc%_z_z_ Correspondence of Fixed Points
potential (15) and the leg angle trajectory (13) was fitted to
those stable cases following the fitting procedure outlined iNext, we investigate whether the fixed point of the fitted
Appendix A2. SLIP model accurately predicts the fixed point of the corre-

We will show that the 3DoF SLIP model approximatesponding SimSect run. In general, the fitted SLIP model with
the 24DoF SimSect steady-state dynamics surprisingly wethe initial condition obtained from its SimSect simulation as

3.2. Correspondence Between RHex-Like Simulations and
Their Fitted SLIP Models
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Fig. 3. Trajectories of a stable SimSect simulation and the corresponding trajectories of the fitted SLIP model. The fitting
errors areAyz;, = 3.56% andAg,, = 5146%.

described in Appendix A3 will not operate at a fixed poinfor the six-legged SimSect model. The small offset of about
of its return mapR. Hence, a root-finding algorithm (Mat- 3% in the apex forward speeds can be explained by the phase
lab’s “fsolve”) is employed to determine the fixed paigt,»  shifts that are generally observed in th@) component of
(if it exists) of the return magR of the fitted SLIP model as the fitted SLIP with respect to the SimSect simulation data;
map: D, R(Xs.;p)- The fixed pointc,,» is then compared to In summary, the orders of magnitude of the components of
the “fixed point”xg,,, the appropriate projection of the initial the fixed points match well despite the simplicity of the SLIP
data point of the SimSect simulation stance data. Scatter plot®del with respect to the robot RHex.
of the components of the fixed points,,;, andxg;, of all
stable SimSect simulations are shown in Figure 4. For pef-5 3. correspondence of Stability at a Fixed Point
fect correspondence of the SimSect and SLIP dynamics, all
fixed point components should lie on the*48entity lines. Given the numerically determined eigenvalfes,-, .., of a
The fixed point components are, in general, well correlatditted SLIP model at its fixed poiriy, , », its local asymptotic
(correlation coefficientp > 0.5), except forz,,» andzy,,. Stability properties can be assessed. The magnitude of the de-
The fixed pointg;,, assume an almost constant value and tH€rminant|IT¢_ ;| agrees to a high numerical precision with
pitching components dfs, ; » tend to be of similar magnitude the appropriate expression in Table 1, predicting instability
but opposite sign of the pitching componentscgf.. for gor > 0 and allowing asymptotic stability faps < 0

The correspondence in terms of the apex coordinates according to Table 2 (the constraifit< —z/+/1 — 22 was
the apex height, angl,, the apex forward speed, is more persatisfied in all numerical simulations). Thus, the numerical
suasive (Figure 5); the scatter plots show strong correlati@mulation results for our 3DoF SLIP model correspond ex-
(correlation coefficientp > 0.85). This improvement might actly to the theoretical predictions, as the analysis of Section 2
be due to the fact that the apex event is unambiguously ddietates. In contrast, the correspondence between the stability
fined for both SimSect and SLIP simulations, whereas onlyf the SLIP and the SimSect models is somewhat blurred by
an effective touchdown event where at least one of the thré®e practicalities of the purely numerical analysis available to
stance legs touch the ground (see Section Al) can be definkd latter.
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Fig. 4. Scatter plots of components of the fixed points of stable SimSect simulations versus the corresponding fixed point
components of the fitted SLIP models. For perfect correspondence, all points should lie on the identity line.
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Fig. 5. Scatter plots of the apex height and apex forward velocity at fixed points of stable SimSect simulations versus the
corresponding apex coordinates of the fitted SLIP models.

SimSect simulations that are stable in the sense of Apreliminary numerical study (appropriate to the approximate
pendix Al are found with similar frequency of occurrenceelationship between RHex’s physical performance and the
for por > 0 as well as forp,; < O for the range of clock SimSect model) demonstrate good correspondence between
parameters considered. However, this discrepancy in num&k:IP and SimSect model stability properties over the regimes
ical classification does not necessarily indict the accuracy ekamined, but are insufficiently precise for a complete assess-
the SLIP stability predictions since most of the unstable SLIRent of the quality of fit.
instances in this regime had very weak instability with eigen-
values just barely exceeding unity magnitude; for examplg, :

M| < 1.05i = 1,...,4 for 92% of the 522 SimSect runsa' Conclusions

that were classified as “stable”. Indeed, SLIP simulations im this paper we apply the factored stability analysis of Al-

this regime would require many iterations to detect instabitendorfer, Koditschek, and Holmes (2004) to a particular
ity according to the numerical criteria applied to the Sim3DoF SLIP model with pitching dynamics and an RHex-like

Sect trajectories. For example, see figure 3(b) in Altendorfdeg recirculation strategy that satisfies the theoretically de-
Koditschek, and Holmes (2004) for a “weakly” unstable trarived necessary condition for asymptotic stability in certain

jectory of a 2DoF SLIP model withk;| = |A,| ~ 1.007. parameter regions.

Thus, the practical instability criteria of the numerical This is the first reported use of analytical methods to help
study (the first two criteria of Appendix A1) would fail to de- account for the stabilizing (or destabilizing) influence of RHex
tect SLIP instability. In summary, the stability criteria of thisclock parameter settings driving any physical mechanism in



Altendorfer, Koditschek and Holmes / Clock-Driven Rigid-Body SLIP 1011

an open-loop manner. We also offer preliminary results dit to the simulation data of the selected stride. The sim-
an accompanying numerical study intended to shed light aiation data required for fitting are given by time series
how close this newly tractable 3DoF SLIP model may CoM@ectorsj .., . ¥, ¥sims Zsims Zsims Zsim: @ sims Osims O sim WhiCh

to serving as a template for the physical robot, RHex, itsefhrm the part of the stride trajectory where at least one of the
(Saranli, Buehler, and Koditschek 2001). Numerical resuliree legs of the stance tripod of the SimSect model is on the
indicate that the SLIP model indeed captures the salient &gnund whereas all three legs of the flight tripod are in the air
pects of the steady-state dynamics (small Cartesian fitting #fstance phase™ Here, they-coordinate denotes the forward
rors and order of magnitude agreement of fixed points) ¢fosition of SimSect's COM; denotes the vertical position of

the SimSect model. It also accurately predicts the SimSege robot's COM, and denotes the pitch angle of the robot
model's stability properties within the limitations of the finitejn, the sagittal plane.

time and finite iteration stability criteria of Appendix Al.
This example application of the symmetry factored stabila2. Fitting Procedure

ity analysis of Altendorfer, Koditschek, and Holmes (2004}¢ equations of motion of SLIP’s stance phase (see Altendor-
begins to suggest the advance over solely empirical tunifg, Koditschek, and Holmes 2004) and the equation for the

(Weingarten et al. 2004) to be made by strengthening thgia| conserved energy in terms of dimensional variables can
theoretical foundations of locomotion control. It seems cleaje \yritten as

that further extensions of the theory capable of addressing the

consequences of energy increasing (e.g., actuators) and de- 7y = —&V(J,Z,0)

creasing (e.g., friction) influences will be required before we ;% + g = -3V, 3,0

have a body of theory that can directly inform the design of o B

controllers for useful physical machines like RHex. f@ = —V(.z2,0) (16)
I :2 ~ - n - .
50 = E—VG.20) —mgi- 26 +1)

Appendix A: SLIP Fitting Protocol
Al. SSimSect Simulations \iV|th V(y, Z’ é) = %(E - 50)2(];"‘ Cﬁeéz + ngé& + wal/}z)y
The following criteria must be met by a SimSect simulatiod = v (3(; + Ay th andy = akrctan(y +AY/2). We
(for a detailed discussion of the SimSect simulation enviroyant to determine the a priori unknown parametess=

ment, see Saranli 2000) that has aerial phases and that is cén-os Coo> Cou» Cuy, AF, Eo) by fitting the numerical data of
sidered stable. a single stance phase of a SimSect simulation to egs. (16).

The first five components of; are parameters that determine
1. A simulation must successfully complete 10 s of simthe SLIP potential/. The sixth component\y, resets the-
ulation time without crashing, i.e., by maintaining up-coordinate origin and hence determines ghgosition of the
right forward locomotion. foothold of the fitted virtual SLIP with respect to the stance
data. The fitting parameters also include the total enékgy
2. A simulation must be stable over the last 20 strides. Because in SimSect the total energy is not constant due to
stride is a part of the trajectory between two isolatedamping, frictional losses and hip motor torques.
maxima of thez-component of the COM trajectory.  In order to determine the fitting parameteysa nonlinear
Stability is measured in terms of the maximal deviatiofitting procedure (using Matlab’s “Isqcurvefit”) is employed
of averaged linear and angular velocities at the minthat computes
mum of thez-component of the COM trajectory for the _ L
last 20 individual strides with respect to the respective min{[Fri(cr, %) = X pullz 17
averaged quantities over those strides. ) i "
3. The secondtolaststride ofthe simulation is selected ar%hfre x~ . Osiny Zsim: ?S'm Jom + Zam, Freo =
is required to exhibit a flight phase at the two isolated™Ysin 1 Zsin + &), 105in, (1/2)8,,), andFy; (¢, X) is the
maxima delimiting a stride, i.e., none of SimSect's spEXPression obtained t?y insertimgnto the rlght-hand_3|de of
legs touches the ground over a finite amount of timU- (16). Once a solutiary has been found, the quality of the

around these maxima. In addition, at the minimum offt Must be quantified.
the z-component of the COM trajectory all three legs i
of the stance tripod are required to touch the grouno’?fs' Fitting E”F’r Assessn en.t ) )
whereas all three legs of the flight tripod must be offtstead of using the residual (17), which lacks an intu-

the ground. itive physical interpretation and does not represent an error

. . . 1. The stance tripod of RHex and the SimSect model is formed by those three
Once a SimSect simulation has passed all of the above Cgys that are simultaneously in the slow phase of the RHex clock controller.

ditions, it is called stable. Then a 3DoF SLIP model ighe flight tripod is formed by the other three legs that are in the fast phase.
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measure in phase space, we compute fitting errors asBunehler, M., Koditschek, D.E., and Kindlman, P.J. 1994. Plan-
Schwind (1998) and Altendorfer et al. (2001b). The assess- ning and control of robotic juggling and catching tadks.
ment of the quality of the fit proceeds in two steps. First,a SLIP ternational Journal of Robotics Researt8(2):101-118.
simulation over the same period of time as the data trajectoBoleman, M.J., Chatterjee, A., and Ruina, A. 1997. Motions of
is run with the fitted value of,. The initial conditions are arimless spoked wheel: a simple 3D system with impacts.
taken to be the positions and velocities of the data trajectory Dynamics and Stability of Syste):139-160.

at the minimum og;,.> Secondly, the resulting SLIP trajec- Full, R., and Koditschek, D.E. 1999. Templates and anchors:
tONEST s, p Vg 1ps Zsirms Zsiirs Osirms Osiyp are comparedto  N€Uromechanical hypothesis of legged locomotion onland.

the data trajectories b, percent errors: Journal of Experimental Biolog83:3325—-3332.
Ghigliazza, R.M., Altendorfer, R., Holmes, P., and

AX,, = 100||XS""1 _ XSUP”Z. (18) Koditschek, D.E. 2003. A simply stabilized running model.
’ N X sim |2 SIAM Journal on Applied Dynamical Syste@(®):187—
218.

Here,X  {y.y.2,2,6.8} and]| - ||, is the standard 2-norm. \;ceer, T. 1990. Passive dynamic walkirgternational
In an effort to simplify the assessment of the fitting error, the Journal of Robotics Researélf2):62—82.

quality of the fit is reported as two numbers: the averge pNakanishi. J.. Fukuda. T.. and Koditschek. D.E. 2000.

percent error of the Cartesian coordinates:;, = (Ay,, + A brachiating robot controllerlEEE Transactions on

Az, + Ay, + Az.,)/4, and the averagk, percenterror of  Robotics and Automatiob6(2):109-123.

the p|tch CoordinateAng — (AéLg + AéLz)/z Rizzi, A., Whitcomb, L.L., and Koditschek, D.E. 1992. Dis-
tributed real-time control of a spatial robot jugglEEE

Saranli, U. 2000. SimSect hybrid dynamical simulation envi-
This work is supported in part by DARPA/ONR Grant ronment. Technical Report CSE-TR-437-00, University of
N00014-98-1-0747 and DoE grant DE-FG02-95ER25238 (PH) Michigan.

Saranli, U. 2002. Dynamic Locomotion with a Hexapod
References Robot. PhD thesis, University of Michigan at Ann Arbor.
Altendorfer, R., Moore, N., Komsagd, H., Buehler, M., Saranli, U., Buehler, M., and Koditschek, D.E. 2001. RHex:

Brown, H.B. Jr, McMordie, D., Saranli, U., Full, R., and a simple and highly mobile hexapod robbtternational

. i . . L Journal of Robotics Resear@9(7):616—631.
Koditschek, D.E. 2001a. RHex: a biologically inspire : : .
hexapod runneAutonomous Robotkl :207—213. dSchm|tt, J., and Holmes, P. 2003. Mechanical models for in-

Altendorfer, R., Saranli, U., Komsgti, H., Koditschek, sect locomotion: active muscles and energy loBiedog-

. ical Cybernetic89:43-55.
D.E., Brown, H.B. Jr, Buehler, M., Moore, N., McMordie, Schwind, W.J. 1998. Spring Loaded Inverted Pendulum Run-

D., and Full, R. 2001b. Evidence for spring loaded in="" . """ ; ) . L
verted pendulum running in a hexapod roliotperimental gltrjgr}r?APrlk?(?rt Model. PhD thesis, University of Michigan
oot VISpnge e, Befn g 291 302 vt . o Geyer 2002 et conol of i
Koditsch’ek D E 2002 Exp;loiting [;assive sta,bility,for hi- like running — optimized self-stabilizatioRroceedings of
N, S ! the 5th International Conference on Climbing and Walking
erarchical controlProceedings of the 5th International Robots (CLAWAR 2002paris, France, pp. 81-85
Conference on Climbing and Walking Robots (CLAWAEeyfarth A., Geyer, H GUnther’M and ’Blici<han R- 2002. A

2002) Paris, France, pp. 177-184. L . : )
Altendorfer. R.. Koditschek. D.E.. and Holmes. P. 2004. Sta- movement criterion for runninglournal of Biomechanics
s o " ) 35:649-655.

bility analysis of legged locomotion models by symmetry- .
factored return mapdnternational Journal of Robotics Seyfarth, A., Geyer, H., and Herr, H. 2003. Swing-leg retrac-

Researct23(10-11):979-999. tion:; a simple control model for stable runnirdgurnal of

. Experimental Biologp06:2547—-2555.
Buehler,. M and .Kod|tsch.ek, D'.E' 1990. From sﬁtable te\leingarten, J.D., Lopes, G.A.D., Buehler, M., Groff, R.E.,
chaotic juggling: theory, simulation, and experimeRta- and Koditschek, D.E. 2004. Automated gait adaptation for
ceedings ofthe IEEE International Conference on Robotics o ' g P

and Automation (ICRAXCincinnati, OH, pp. 1976-1981 legged robotsProceedings of the International Confer-
Buehler M Koditschek, DE and Kir;dlm.an PJ 1990 ence on Robotics and Automation (ICRNew Orleans,

A family of robot control strategies for intermittent dy- Wel_s?érz?all.t SI'Eplg ' 261;’23;21?\}\, and Koditschek D.E. 2003
namical environmentdEEE Control Systems Magazine P Y v '

10(2):16-22 Hybrid zero dynamics of planar biped walkel&EE
i i Transactions on Automatic Contré8(1):42-56.
2. Since total energy is not constant over a stance phase in SimSect, the

y-component of the initial conditions is scaled to the fitted total endigy




