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Abstract

We apply the stability analysis for hybrid legged locomotion sys-
tems, introduced in our companion paper in this issue, to a new sim-
ple clock-driven SLIP model inspired by the robot RHex. We adopt
in stance phase the three-degrees-of-freedom (3DoF) spring loaded
inverted pendulum (SLIP) model introduced in our companion pa-
per to capture RHex’s pitching dynamics in the sagittal plane. The
coordinating influence of RHex’s open-loop clock controller is sub-
sumed into a leg placement strategy derived from a bipedal abstrac-
tion of RHex. The “symmetric” factorization analysis introduced in
our companion paper yields a necessary condition for gait stabil-
ity expressed in closed form, which can be imposed directly on the
clock parameter space. This represents the first reported analytical
insight into how a dynamical runner might be stabilized by a com-
pletely feedforward rhythmic limb coordination pattern. Correspon-
dence in steady-state gait location and stability characteristics with
an appropriately tuned 24DoF model of RHex provides numerical
evidence that the 3DoF SLIP model offers a descriptive explanation
for the robot’s empirical running behavior.

KEY WORDS—legged locomotion, return map, spring
loaded inverted pendulum, stability

1. Introduction

In this paper we explore the applicability of the
symmetry-factored stability analysis introduced in Altendor-
fer, Koditschek, and Holmes (2004) to the design and im-
plementation of physically interesting running robots such as
RHex (Saranli, Buehler, and Koditschek 2001). Powered by
only six actuators, located at the “hips” to drive each of its
six passively compliant legs, in the manner of single-spoked
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rimless wheels (compare with McGeer 1990; Coleman, Chat-
terjee, and Ruina 1997), RHex’s locomotion is driven by a
single periodic “clock” signal split into phase and antiphase
copies for coordinating its alternating tripod gait. A simple
PD controller at each hip motor in a given tripod forces its leg
to track the alternately fast and slow clock reference signals
corresponding to presumed stance and swing phases. Exper-
imentally, RHex’s performance at various speeds over vari-
ous terrains is strongly dependent upon the particular values
of the clock parameters, and, as is typical within the feed-
forward control paradigm, each new situation demands its
own carefully tuned parameter set (Weingarten et al. 2004).
Better analytical understanding of the relationship between
clock signal and steady-state gait should dramatically sim-
plify the frequently lengthy empirical parameter tuning ex-
ercises presently required to achieve high-performance gaits
(Weingarten et al. 2004).

1.1. RHex and the “Simply-Stabilized” Pogo Stick

A complete account of the relationship between RHex’s in-
ternal clock signal and mechanical gait in even the simplest
case would entail insight into the steady-state properties of an
underactuated high degree-of-freedom (DoF) hybrid mechan-
ical system whose Lagrangian dynamics switches among a set
of 26 possible holonomically constrained models depending
upon which feet are in contact with the ground. Fortunately,
a growing body of numerical and empirical evidence (Al-
tendorfer et al. 2001a) suggests that RHex, when properly
tuned, exhibits in stance phase sagittal plane behavior well
approximated by the spring loaded inverted pendulum (SLIP)
depicted in Figure 1. Intuition suggests that the control of a
pogo stick like the SLIP would require full state feedback.
However, RHex, running in the open-loop mode described
above, consistently exhibits a rapid return to its steady-state
gait pattern during runs with long aerial phases even in the
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presence of significant ground perturbations (Saranli,
Buehler, and Koditschek 2001; Weingarten et al. 2004).

On the other hand, there is recent numerical evidence
(Seyfarth et al. 2002) and analytical proof (Ghigliazza et al.
2003) that the SLIP dynamics actually does enjoy a “simply-
stabilized” regime of operation. However, the apparent free-
dom from explicit state feedback of that 2DoF SLIP model
and its variations (Seyfarth and Geyer 2002; Seyfarth, Geyer,
and Herr 2003) masks implementation details that would re-
quire inertial frame sensors that RHex does not possess. In
contrast, the analysis in Altendorfer, Koditschek, and Holmes
(2004) allows the possibility that a purely mechanical effect
might confer asymptotic stability in the 3DoF model of Fig-
ure 1 by admitting stabilization via purely body frame sensing.
However, could the open-loop RHex clock coordinate a stabi-
lizing mechanical effect? In this paper, we show analytically
that the answer is “yes” in the case of a slightly abstracted
version of the clock applied to a 3DoF SLIP model designed
to capture RHex’s pitching dynamics as well as its center of
mass (COM) trajectories. We also present numerical evidence
to suggest by the close correspondence of COM and pitching
dynamics that this may also explain the nature of the open-
loop stability mechanism in RHex.

We compare the performance of the SLIP model with a
24DoF numerical surrogate for RHex, both driven with the
same RHex clock parameter settings. Lacking formal results
bearing on this issue, we find it useful to introduce terminol-
ogy summarizing the following intuitive distinction. We will
say that the correspondence is “descriptive”, since the salient
properties observed in the complex model are also observed
in the template model fitted to it. We mean to distinguish
this outcome from a stronger “prescriptive” form of corre-
spondence where the controller design parameters (the clock
settings) of the template model predict in detail the behavior
of the complex model with the same design parameters.

1.2. Contributions of this Paper

The stability analysis for SLIP models using a symmetry-
factored return mapR as introduced in Altendorfer,
Koditschek, and Holmes (2004) allows a closed-form ex-
pression for the determinant of the return map’s Jacobian at
a symmetric fixed point (to be explained in Section 1.3.2).
This closed-form expression yields a necessary condition for
asymptotic stability and a sufficient condition for instability
despite the non-integrability of the SLIP dynamics. The cen-
tral contributions of this paper arising from that result are the
following:

1. a new 3DoF SLIP model based upon the RHex gait
generator (Saranli, Buehler, and Koditschek 2001; see
Section 2.1) and a procedure for fitting it (Appendix A)
to a previously developed 24DoF “RHex-like” numeri-
cal model (programmed in SimSect; Saranli 2000) that
continues to represent the most accurate currently avail-

able simulation of the physical RHex robot (Saranli
2002);

2. application of our factored stability analysis (Altendor-
fer, Koditschek, and Holmes 2004) to the 3DoF SLIP
model yielding for the first time analytical conditions
on the rhythmic excitation pattern necessary for the sta-
bility (and sufficient for instability) of a pseudo-clock-
controlled dynamical runner (Section 2.2);

3. a preliminary numerical study in Section 3 suggesting
that our 3DoF SLIP model is a reasonably descriptive
model of the RHex-like 24 DoF model programmed in
SimSect (Saranli 2000).

In the remainder of this section the SLIP model with its
modeling assumptions is introduced and its discrete time be-
havior formalized. In Section 2 the factored stability analysis
of Altendorfer, Koditschek, and Holmes (2004) is applied to a
new instance of the 3DoF SLIP model endowed with a RHex-
like coordinating clock. The descriptive correspondence of
this 3DoF SLIP model with a 24DoF model of RHex is estab-
lished by a numerical study in Section 3. We close with some
brief concluding remarks in Section 4.

1.3. SLIP Dynamics

1.3.1. Modeling Assumptions

In this section we establish the specifics of the SLIP models
considered in this paper. They are listed in terms of the cate-
gories: geometry, trajectories, control, and potential forces.

Geometry. The 3DoF sagittal plane SLIP model is shown in
Figure 1. It shows a rigid body of massm̃ and moment of iner-
tia Ĩ with a massless springy leg with rest lengthζ̃0 attached at
a hip joint that coincides with the COM. The strength of grav-
ity is g̃. The approximation of a leg with zero mass avoids
impact losses at touchdown and simplifies the control. For
convenience, all of the following expressions are formulated
in dimensionless quantities, i.e.,

t = t̃

√
g̃

ζ̃0

, y = ỹ

ζ̃0

, ẏ =
˙̃y√
ζ̃0g̃

,

z = z̃

ζ̃0

, ż =
˙̃z√
ζ̃0g̃

, θ = θ̃ ,

θ̇ = ˙̃
θ

√
ζ̃

g̃
and I = Ĩ

m̃ζ̃ 2
0

.

Also shown are the pitch angleθ with respect to the horizon-
tal and the parametrization of the COM in terms of Cartesian
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Fig. 1. Coordinate convention of SLIP with pitching dynam-
ics. In the text, the COM coordinates are parametrized by
Cartesian coordinates, i.e.,y = ζ sin(ψ) andz = ζ cos(ψ).
In flight, the leg angleφ is, in general, a function of time and
of the SLIP’s liftoff state:φ(t, x0). The figure is taken from
Altendorfer, Koditschek, and Holmes (2004).

(y, z) and polar (ζ = √
y2 + z2, ψ = arctan(y/z)) coordi-

nates with the coordinate origin at the foothold. The body is
assumed to remain in the sagittal plane and its configuration
is parametrized by coordinates(y, z, θ) or (ζ, ψ, θ).

Trajectories. A full stride consists of a stance and a flight
phase: in stance, we assume the foothold is fixed, the leg com-
pressed and the body moves in the positivey directionẏ > 0;
in flight, the body describes a ballistic trajectory under the
sole influence of gravity. In both phases, we choose the same
parametrization of the configuration space with phase space
elements denoted bŷx = (y, z, θ, ẏ, ż, θ̇ )� ∈ X̂ . The stance
phase starts with the leg uncompressed and ends when the
leg has reached its rest lengthζ̄ again. Then the flight phase
begins and ends when the massless leg (appropriately placed)
touches the ground. This is parametrized by a threshold func-
tion h2 (for a general definition of threshold functions, see
Altendorfer, Koditschek, and Holmes 2004) which becomes
zero when the toe touches the ground:

h2(̂x0, t) = z(t)− cos(φ(t, x̂0)). (1)

If φ depends on̂x0 (the liftoff state), feedback control is em-
ployed. The design of the functionφ constitutes the control
authority in our SLIP model. Stability investigations in this
paper are confined to trajectories that are in the vicinity of
symmetric trajectories in both stance and flight, where, for
example, the liftoff and touchdown vertical heights are equal.

Control. No continuous control is exerted during stance and
flight; the corresponding vector fields do not change from

stride to stride. The only control authority consists in deter-
mining the transitions between flight and stance by specify-
ing the stance and flight time. The stance time is implicitly
determined by requiring the leg to undergo a compression–
decompression cycle; hence, the only designable control au-
thority consists in specifying the flight time, which can be im-
plicitly parametrized by the free leg angle trajectoryφ(t, x0)

wherex0 denotes the SLIP COM coordinates at liftoff. Due
to the massless assumption, the leg can be arbitrarily placed
during flight at no energetic cost.

Potential forces.

P1 The potential energy is given byEp = z+ V (y, z, θ).

P2 The non-gravitational potentialV is analytic and satis-
fies the symmetry relationV (y, z, θ) = V (−y, z,−θ).
This condition does not seem to severely restrict our
choice of potentials.

P3 V factorizes asV (y, z, θ) = Vr(ζ )Vp(y, z, θ) with
Vr(1) = 0. This ensures thatV is zero at touchdown
and liftoff. Because of the masslessness of the leg,V

remains zero during flight.

1.3.2. Discrete Time Behavior of SLIP Locomotion: Return
Map, and Stability

The stability properties of the SLIP hybrid dynamical systems
can be assessed by a return mapR acting on a (reduced)
Poincaré sectionX :

R : X → X . (2)

The iterates of this return mapR—the function relating the
body state at a periodically (at each stride) occurring event—
summarize all properties relevant to the goal of translating the
body COM.

A SLIP stride consists of stance and flight, therefore its
return map can be factorized asR = R2 ◦ R1. The end of
flight is characterized by the touchdown event, detected by the
threshold equation (1). However, as detailed in Altendorfer,
Koditschek, and Holmes (2004) the dynamics on̂X is not
periodic (y(t) is monotonically increasing for trajectories as
defined in Section 1.3.1). Furthermore, by conservation of
total energy, thėy component of̂X is not independent of the
other components of̂x. Therefore, the SLIP’s return map is
taken to act on a reduced Poincaré sectionX with x ∈ X
being the projection of̂x onto its “non-y, ẏ” components:
� : X̂ → X ; x̂ �→ x = (z, θ, ż, θ̇ )�.

Stability of R at a symmetric fixed point̄x ∈ X , i.e., a
fixed point ofR that is also a fixed point ofR1 andR2, can
be assessed by the location of the eigenvalues ofDxR(x̄).
If all eigenvalues lie within the unit circle,̄x is a locally at-
tracting fixed point ofR. While explicit expressions for these
eigenvalues are not known, a judicious use of a time reversal
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symmetryGof the equations of motion of the stance and flight
dynamicsG : x �→ (z,−θ,−ż, θ̇ )� allows an explicit, exact
expression of| det(DxR(x̄))| in terms of the control authority
in the SLIP model, the leg angle trajectoryφ(t, x0), as shown
in Altendorfer, Koditschek, and Holmes (2004):

| det(DxR(x̄))| = |1+ (3)

−√1 − z2
0

(
∂ż0 − ż0∂z0 − θ̇0∂θ0

)
φ(t, x0)+ ż0

−√1 − z2
0∂tφ(t, x0)− ż0

∣∣∣∣∣
t=−2˙̄z
x0=G(x̄)

∣∣∣∣∣∣ .
A necessary condition for local asymptotic stability ofR atx̄ is
therefore| det(DxR(x̄))| < 1, whereas a sufficient condition
for local asymptotic instability is| det(DxR(x̄))| > 1.

1.3.3. Notation

The salient symbols used in this paper are next listed, with
brief explanations of their meanings.

SLIP system definitions

X̂α phase space
t, x̂ time, phase space element (dimensionless)
hα threshold function
X reduced Poincaré section
R1, R2 return map factors onX
R return map
� projector fromX̂ toX
V conservative SLIP potential without gravity
C output map

In general, an element or a map without the diacritic·̂
denotes an element of the reduced Poincaré sectionX or a
map onX .

1.4. Control and Sensor Modeling

In SLIP models, control is parametrized by the leg angle
trajectoryφ(t, x0). The feedback loop is completed by the
state vectorx0 taken at the leg liftoff event. In Altendorfer,
Koditschek, and Holmes (2004) the sensory “cost” of con-
trol was assessed by the “quality” of the sensed states used
in feedback. There, “quality” referred to the frame of refer-
ence of the feedback variables, since sensors implemented
in the body frame are generally easier to instrument than in-
ertial sensing. This criterion was addressed in Altendorfer,
Koditschek, and Holmes (2004) by rewriting the leg angular
trajectoryφ that is defined in an inertial frame (see Figure 1)
as

φ(t, x0) = φC(t, C(x0))− θ(t), (4)

whereC is the output map of the SLIP’s discrete dynamical
system and the second term in eq. (4) indicates thatφC is
specified with respect to the SLIP’s body frame.

A leg angle trajectory that only uses sensing with respect
to the body reference frame, can be modeled by the following
output mapCB :(

φB0

φ̇B0

)
=
(

arccos(z0)+ θ0

− ż0√
1−z20

+ θ̇0

)
= CB(x0) (5)

whereφB0 is the leg liftoff angle with respect to the body
normal (see Figure 1) anḋφB0 is the leg’s angular velocity at
liftoff measured in the body frame. Specifying this trajectory
in the body frame yields

φ(t, x0) = φCB (t, φB0, φ̇B0)− θ(t). (6)

In summary, the 3DoF SLIP model allows the distinction of
the “quality” of sensing required for a particular control input,
which in turn enables an assessment of the “cost” of control.

2. An RHex-Like 3DoF SLIP Model

In this section, we investigate a leg placement strategy for
the control of the 3DoF SLIP model. Its importance lies in
the fact that this leg placement strategy is modeled after the
open-loop controller employed in RHex (Saranli, Buehler, and
Koditschek 2001) within the limitations of the 3DoF SLIP
model.

2.1. A Leg Angle Trajectory Based on RHex’s Clock
Controller

The angular reference trajectories prescribed by RHex’s open-
loop clock controller (Saranli, Buehler, and Koditschek 2001)
are specified by the (dimensionless) parameterstc, ts , ϕs , and
ϕoff ; see Figure 2. For one-half of the clock periodtc, the
reference trajectories for the left (L) and the right (R) tripod
can be expressed as functions of time in the robot’s body frame
(B) as

φBL(t) ={
ωst + ϕoff 0 ≤ t < ts

2

ωf t + ϕs

2
(1 − ωf

ωs
)+ ϕoff

ts

2
≤ t < tc

2

(7)

φBR (t) ={ −π + ωf t + ϕoff 0 ≤ t < tc−ts
2

ωst − ϕs

2
(1 − ωs

ωf
)− π ωs

ωf
+ ϕoff

tc−ts
2

≤ t < tc

2

where

ωs = ϕs

ts
< ωf = 2π − ϕs

tc − ts
.

These angular trajectories are depicted in Figure 2, and it
should be understood that their values over the negative half
of the clock period are prescribed so as to make them odd
functions over the entire clock period.
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Region 1 Region 2 Region 3 

Liftoff (LO) of
stance leg

Touchdown (TD)
of flight leg 

Initial angle 
of flight leg 

tts

2
tc−ts

2

π

−π

ϕs

2

−ϕs

2

φ̂
B

L
(t

)
=

φ
B

L
(t

)
−

ϕ
o
ff

φ̂
B

R
(t

)
=

φ
B

R
(t

)
−

ϕ
o
ff

Fig. 2. Illustration of liftoff and touchdown events in the body
frame of a RHex-inspired leg recirculation scheme (Saranli,
Buehler, and Koditschek 2001) for SLIP with pitching dy-
namics.

They are enforced at each leg of the robot by a simple PD
controller.

In order to implement this controller in a simplified 3DoF
SLIP controller, the following assumptions are made.

R1 RHex’s clock should prescribe motions with (substantial)
flight phases, i.e.,ts < tc/2.

R2 During stance, the effect of the stance tripod on RHex’s
rigid body is represented by a single (virtual) stance
leg which can be approximated by a SLIP; this means
that RHex’s lateral motion is neglected and that the
effective torque on the virtual leg that is not due to
gravity can be modeled by a potential of the formP1–P3
(see eq. (15) for the specific potential used in numerical
simulations).

R3 The PD controller that enforces the angular reference tra-
jectories (7) during flight has infinite gains and tracks
those trajectories without errors. Hence, the flight tri-
pod can be subsumed into a single flight leg. In conse-
quence, as the present stance leg lifts off, the PD con-
troller can be assumed to have positioned the second
(present flight) leg at the exact angle with respect to the
first (present stance) leg specified by eq. (7). In con-
trast, during stance, the angular position and velocity
variables evolve according to the SLIP stance dynamics
(see Altendorfer, Koditschek, and Holmes 2004).

AssumptionR1 focuses attention on RHex’s dynamical
regime as opposed to the possibly quasi-static operation avail-
able to platforms with sufficiently high leg number and mit-
igates against stance conditions with double support that are

poorly modeled by the mechanics of Figure 1. Assumption
R2 is justified by experiments and simulation studies of RHex
operating in the relevant dynamical regime (Altendorfer et al.
2001a, 2001b, 2002). AssumptionsR2 andR3 make the con-
trolled SLIP model a pseudo-clock controlled system, where
the clock signal is turned off during stance and turned on dur-
ing flight.

To develop a 3DoF SLIP model of a kind introduced in
our companion paper (Altendorfer, Koditschek, and Holmes
2004), yet with a RHex-motivated leg recirculation trajectory,
consider first an explicitly bipedal version.

Its kinematics is identical to that depicted in Figure 1 except
that there is an additional leg. Since this additional leg is also
assumed massless and stance phases where both legs touch
the ground (double stance) are to be excluded by construction,
the dynamics of this model will prove to be identical to the
original 3DoF SLIP model defined in Section 1.3.1, as we
now show. To complete the construction, we must specify the
leg angle trajectories for both legs: the stance (S) and flight
(F) leg. Since RHex’s reference trajectories are specified with
respect to the body frame, we will give expressions for the
leg angle trajectories in this frame. The relation between the
body and the inertial frame is given by

φB = φ + θ (8)

In the following, the left leg (L) is chosen to be the stance leg.
The timet is reset to zero at the beginning of each stance and
flight phase.

We model the position of the legs in stance phase as

φBS (t) = ψ(t)+ θ(t) 0< t < tLO (9)

φBF (t) = φBR
(
φ−1
BL
(φBS (t))

)
0< t < tLO. (10)

Here,ψ(t) andθ(t) are governed by SLIP’s stance phase dy-
namics (see Altendorfer, Koditschek, and Holmes 2004) and
we effectively cancel out the independence of the flight leg
by enslaving its “time” to that determined by the stance leg
via eq. (10). The alternative of maintaining a true biped via
the application of the second of eqs. (7) will yield a more
complicated model including, for example, periods of dou-
ble support whose stance phase is not described by the SLIP
mechanics arising from Figure 1.

In flight, the leg angles are described by the purely kine-
matic equations

φBS (t) = φBL (t + tLO) 0< t < tTD

φBF (t) = φBR
(
φ−1
BL
(φBS (t))

)
0< t < tTD (11)

prescribed by RHex’s clock (7). The flight phase ends when
the flight leg with leg angleφBF (t) touches the ground. At the
start of the next stance phase, the stance and flight legs are
relabeled as flight and stance legs, respectively.

The leg angles of massless legs during flight are not gov-
erned by dynamical equations, hence the equations of mo-
tion of this bipedal SLIP version are identical to those of the
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Table 1. Functional Expressions for φ(t, x0)φ(t, x0)φ(t, x0) and | det(DxR(x̄))|| det(DxR(x̄))|| det(DxR(x̄))| for Different Locations of the Liftoff and Touchdown
Event

(LO → TD) φ(t, x0) | det(DxR(x̄))|
(1 → 1)
(1 → 2)

ωf t + ωf

ωs
(arccos(z0)+ θ0)+ ϕoff (1 − ωf

ωs
)− π − θ(t) |1+ (−˙̄z−˙̄θ

√
1−z̄2)( ωfωs −1)

(−˙̄z−˙̄θ
√

1−z̄2)+ωf
√

1−z̄2
|

˙̄θ< −˙̄z√
1−z̄2
> 1

(2 → 2) ωf t + (arccos(z0)+ θ0)− ϕs

2
(1 − ωf

ωs
)− π − θ(t) 1

(1 → 3) ωst + (arccos(z0)+ θ0)− ϕs

2
(1 − ωs

ωf
)− π ωs

ωf
− θ(t) 1

(2 → 3)
(3 → 3)

ωst + ωs

ωf
(arccos(z0)+ θ0)+ ϕoff (1 − ωs

ωf
)− π ωs

ωf
− θ(t) |1 + (−˙̄z−˙̄θ

√
1−z̄2)( ωsωf −1)

(−˙̄z−˙̄θ
√

1−z̄2)+ωs
√

1−z̄2
|

˙̄θ< −˙̄z√
1−z̄2
< 1

monopedal SLIP model presented inAltendorfer, Koditschek,
and Holmes (2004). Moreover, the end of flight is solely de-
termined by the flight leg with leg angleφBF (t); the flight leg
during stance and the stance leg during flight can therefore be
ignored. The complete expression for the effectively resulting
monopedal recirculation strategy now derives from eqs. (11)
and (8):

φ(t, x0) = φBF (t)− θ(t) = φBR (t + tLO)− θ(t) (12)

wheretLO = φ−1
BL
(φ0+θ0) is the time with respect to the RHex

clock when liftoff occurs andφ0 = arccos(z0) is the angle of
the stance leg at liftoff in the inertial frame. This procedure is
illustrated within the body frame in Figure 2.

By inserting the expressions for the RHex clock trajectory
(7) into eq. (12), the angular trajectory for the 3DoF SLIP sys-
tem is obtained. Since the leg angle trajectoryφ(t, x0) (12)
is based on two piecewise-defined functions (7), different ex-
pressions forφ(t, x0) are derived depending on where liftoff
and touchdown occurs. We distinguish three regions (see Fig-
ure 2) with respect to the RHex clock time:

region 1

0 ≤ t <
ts

2
,

region 2

ts

2
≤ t <

tc − ts

2
,

and region 3

tc − ts

2
≤ t <

tc

2
.

We enumerate these different liftoff–touchdown combina-
tions by two numbers (LO→ TD) which denote the region
in Figure 2 where liftoff and touchdown occurs. Six different
cases together with the corresponding leg angle trajectory and
the absolute value of the determinant of the return map Jaco-
bian at a fixed point are listed in Table 1. “Backward” cases

such as(2 → 1) are not listed as they would correspond to
multiple revolutions of the leg which we do not consider.

Table 1 shows that the angular trajectory at any instant in
time has the general form

φ(t, x0) = ωt + k (arccos(z0)+ θ0)︸ ︷︷ ︸
=φB0

+αA − θ(t) (13)

with ω ∈ {ωf , ωs}, and k ∈ {ωs/ωf ,1, ωf /ωs}; the dif-
ferent values ofαA can be read from Table 1. The value
| det(DxR(x̄))| = 1 for k = 1 is the result of an underlying
time reversal symmetry of the discrete flight map as shown in
appendix A of Altendorfer, Koditschek, and Holmes (2004).
This opens the possibility of neutrally stable behavior of this
3DoF SLIP system analogous to the one proven for a 2DoF
SLIP system in appendix C of Altendorfer, Koditschek, and
Holmes (2004).

Note that eq. (13) is of the form of eq. (6) with the body
frame sensor modelCB(x0) = arccos(z0) + θ0 = φB0, i.e.,
no body frame velocity measurement is required. Based on
the properties of symmetric orbits that we focus on in this
paper, a necessary condition on a RHex clock parameter for
asymptotic stability can now be derived.

2.2. A Necessary Condition for Asymptotic Stability

For symmetric orbits, the liftoff and touchdown leg angles in
the inertial frame are of equal magnitude but opposite sign:
φ0 = −φ(tTD). This also holds for the pitching angles:θ0 =
−θ(tTD). Using eq. (8) to translate the liftoff and touchdown
angles to the body frame

φB(tLO) = φ0 + θ0

φB(tTD) = φ(tTD)+ θ(tTD)

we obtainφB(tLO) + φB(tTD) = 0. With the definitionφ̂B =
φB − ϕoff as in Figure 2, this equality can be rewritten as

φ̂B(tLO)+ φ̂B(tTD) = −2ϕoff . (14)
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Table 2. Table of Allowed Transitions (LO → TD) for Sym-
metric Orbits in Terms of the Sign of the Leg Offset Pa-
rameter ϕoffϕoffϕoff of the RHex Clock

(LO → TD) ϕoff < 0 ϕoff = 0 ϕoff > 0

(1 → 1)
(1 → 2)

no no yes

(2 → 2)
(1 → 3)

yes yes yes

(2 → 3)
(3 → 3)

yes no no

“Backward” transitions such as(2 → 1) are not considered as
they would correspond to multiple revolutions of the leg during
flight.

This equation constrains the allowed liftoff–touchdown tran-
sitions between regions 1–3 in Figure 2 for symmetric orbits;
e.g.,ϕoff > 0 excludes transitions between the regions(2 →
3) and(3 → 3) because there we havêφB(tLO) ≥ |φ̂B(tTD)|
whereas|φ̂B(tTD)| > φ̂B(tLO)by eq. (14).Table 2 shows which
liftoff–touchdown transitions are possible as a function of the
sign of RHex clock’s leg offset angleϕoff .

If ˙̄θ < −˙̄z/√1 − z̄2, the determinant for the transitions
(2 → 3)and(3 → 3)will be less than one. Hence, a necessary
condition for asymptotic stability isϕoff < 0 provided that
˙̄θ < −˙̄z/√1 − z̄2. On the other hand, a sufficient condition
for instability (including neutral stability) isϕoff > 0 provided
that ˙̄θ < −˙̄z/√1 − z̄2.

It should be emphasized that the expressions in Table 1 are
independent of the specific 3DoF SLIP potentialV as long
as the general conditionsP1–P3 listed in Section 1.3.1 are
obeyed. However, a specific SLIP model does influence the
location of fixed points̄x and therefore the numerical value of
the determinant for the cases 1→ 1,1 → 2,2 → 3,3 → 3
as well as the location of the eigenvalues.

This analysis provides for the first time an analytical tool to
assess the stability properties of a rigid-body RHex-like SLIP
model. We now examine its relevance to the SimSect model
of the open-loop clock-driven robot RHex.

3. Application: Toward Hierarchical Control of
a Hexapedal Robot

In this section we explore numerically the applicability
of these ideas to the robot RHex (Saranli, Buehler, and
Koditschek 2001). In Section 3.1 we review the general ap-
proach to hierarchical control (Full and Koditschek 1999) in
the specific context of a RHex-like anchor system compared
to the SLIP template with a physically motivated stance phase
potential and leg angle trajectory. In Section 3.2 we present
simulation results and assess the degree of correspondence
between the simulated anchor and its putative template.

3.1. Control of the Anchor by Controlling the Template

We seek to assess the advantages and costs of imposing a
hierarchical organization on the control and stabilization ar-
chitectures of complex, high-DoF mechanisms such as RHex.
In this paper, this assessment centers on exploring the notion
of the template and anchor hierarchy introduced in Full and
Koditschek (1999).

A template is a low-dimensional model of an abstract
mechanism operating within an idealized environment capa-
ble of representing a specific task of interest. It generally must
be “anchored” in some appropriate higher-dimensional phys-
ical mechanism designed to actually carry out the task in the
real world. We seek controllers whose closed loops result in a
“prescriptive” correspondence (defined in Section 1.1) of the
dynamics of the high- and low-DoF models. Hence, the con-
troller must (a) force the high-dimensional anchor to follow
the dynamics of the low-dimensional template (anchoring),
and (b) control the template to achieve a certain task. For
example, Koditschek and colleagues have anchored a sim-
ple stable periodic vertical (1DoF) batting template (Buehler,
Koditschek, and Kindlman 1990) to achieve a two-ball sta-
ble juggling task in planar (4DoF; Buehler, Koditschek, and
Kindlman 1994) and three-dimensional (6DoF; Rizzi, Whit-
comb, and Koditschek 1992) environments. In these settings,
a continuous time controller is used to create within the total
state space (formed by coupling the “host” physical mecha-
nism with its task environment) an attracting invariant sub-
manifold whose restriction dynamics is a copy of the tem-
plate (Buehler and Koditschek 1990; Westervelt, Grizzle,
and Koditschek 2003). In other settings (e.g., in Nakanishi,
Fukuda, and Koditschek 2000), we have simply approximated
the desired restriction dynamics. Recently, the SLIP tem-
plate has been “approximately anchored” in a 24DoF SimSect
model of RHex (Saranli 2002).

However, in all these cases, the anchoring controllers have
relied on “inverse dynamics” (the exact cancellation of un-
wanted dynamical terms and introduction of desired dynam-
ical terms) that requires very high bandwidth accurate state
feedback as well as very accurate robot models. In the present
setting, with the limitation to individual hip angles sensed
with respect to the body frame, there is not enough state in-
formation to even approximate an inverse dynamics solution.
Yet it is an empirical fact that the physical machine anchors
some form of the SLIP template (Altendorfer et al. 2001a)
that seems to persist over a wide variation in clock parameter
settings (Weingarten et al. 2004). The question now arises as
to how to derive proper advantage of this useful but presently
poorly understood fact. Whereas the nature of the anchoring
mechanism remains open, the previous section provides the
beginnings of a method for commanding the behavior of the
template, and hopefully thereby the salient properties of the
gait of robot that anchors it. Namely, for the RHex clock pa-
rameter settings that lead to a stable steady-state gait in the



1008 THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH / October–November 2004

physical machine it is natural to ask whether they will produce
the same gait in the anchored SLIP template. Short of answer-
ing that question in the physically realistic machine, we now
take a preliminary look at its resolution respecting our best
numerical simulation written in SimSect (Saranli 2000).

Specifically, we provide numerical evidence for the agree-
ment of the stability properties of an RHex-like model pro-
grammed in the SimSect simulation environment (Saranli
2000) with the stability properties of the 3DoF SLIP model
introduced in Section 2.1. This numerical surrogate for the
physical machine does not exactly predict RHex’s empiri-
cal performance in any specific regime, but exhibits general
enough correspondence to the robot’s qualitative behavior that
we use it regularly as a debugging tool prior to physical exper-
iments with a new controller (Weingarten et al. 2004).We now
show that in a physically interesting operational regime, sta-
ble simulations in SimSect correspond to stable fixed points
of the corresponding SLIP model.

Here, “correspondence” is established by fitting simulation
data to a 3DoF SLIP model with an RHex-like leg angle tra-
jectory (13) using the RHex clock parameters of the SimSect
simulation. The stance phase potential used in this model

V (y, z, θ) = γ

2
(ζ − 1)2

(
1 + cθθθ

2 + cθψθψ + cψψψ
2
)
(15)

is the generalization of a potentialV (ψ, θ) = (γ /2)(ζ −
1)2(1 + cθ+ψ(θ + ψ)2), which could be implemented in a
physical single-leg hopping robot by a passive leg spring and
a passive torsional spring between the body and the leg. The
generalized potential (15) would require passive springs at-
tached to a “comoving” inertial frame, preventing a physical
implementation with a one-legged robot. However, we believe
that this model reasonably approximates the moments due to
the “outrigger” front and back legs, compressed against the
horizontal ground surface, in the tripod stance phase of RHex.

3.2. Correspondence Between RHex-Like Simulations and
Their Fitted SLIP Models

Simulations of an RHex-like hexapedal robot were run in Sim-
Sect (Saranli 2000) over a discretized range of clock param-
eters of RHex’s open-loop clock controller (Saranli, Buehler,
and Koditschek 2001) that respect assumptionsR1, R2, R3
of Section 2.1:tc ∈ [0.235,0.245], ϕs ∈ [0.84,1.04], ϕoff ∈
[−0.16,0.04], df ∈ [0.52,0.6], where the duty factordf is
defined asdf = (tc − ts)/tc. Of the resulting 1815 SimSect
simulations, 522 (= 29%) were stable according to the crite-
ria ofAppendixA1. Then, a 3DoF SLIP model with the stance
potential (15) and the leg angle trajectory (13) was fitted to
those stable cases following the fitting procedure outlined in
Appendix A2.

We will show that the 3DoF SLIP model approximates
the 24DoF SimSect steady-state dynamics surprisingly well,

given the gulf in dimension. Specifically, the trajectory fitting
errors are very small on average; the fixed points of the Sim-
Sect simulations and the fitted SLIP models are within the
same order of magnitude, and the asymptotic behavior agrees
in almost all cases, as detailed below.

However, while the fitted SLIP models provide good cor-
respondence once a specific SimSect operating point has been
selected, it is not the case that a priori specification of clock
parameters yields a SLIP model whose fixed point locus and
stability predicts that observed in the SimSect model. In this
sense, the present SLIP model provides a descriptive but not
prescriptive representation of the SimSect dynamics.

3.2.1. Correspondence of Trajectories

The quality of the fit is assessed for each stable simulation by
the two fitting error numbers�yzL2 and�θL2 as described in
AppendixA3. The average fitting error and standard deviation
for both errors for the 522 stable SimSect simulations for the
Cartesian coordinates is small�yzL2 = 3.82± 0.42% and of
similar magnitude as the fitting errors for 2DoF SLIP models
observed in Altendorfer et al. (2002), whereas the average fit-
ting error for the pitch coordinates,�θL2 = 93.65± 25.76%,
is considerably larger. As an illustration of the fitting results
a sample SLIP fit is presented in Figure 3. The data trajec-
tories ofy(t), ẏ(t), z(t), ż(t), θ(t), θ̇ (t), ζ(t) are plotted to-
gether with the trajectories of their fitted SLIP models.

The large�θL2 fitting error is an indication that the pro-
posed 3DoF SLIP model is not a sufficiently accurate abstrac-
tion of SimSect’s pitching dynamics. A further contributing
factor to the size of�θL2 is the fact that the magnitudes of both
θ(t) andθ̇ (t) trajectories are small, which makes the denom-
inator of the fitting error�θL2 (18) small. Another deviation
of the dynamics of the fitted SLIP model from SimSect is ap-
parent in thėy(t) trajectories of Figure 3, which is typical of
all fitted SLIP models. Here, the fitted SLIP trajectory is out
of phase with the SimSect COM trajectory; nevertheless, the
fitting error�yzL2 is small because of the large average value
of the SimSect trajectory that enters eq. (18). We believe that
the acceleration in the forward direction during the leg com-
pression phase seen in SimSect as opposed to a deceleration in
the corresponding SLIP model is due to the non-conservative
nature of the SimSect model, where energy is pumped into
the system by the hip torques, and then lost to damping and
friction (a similar discrepancy motivated the inclusion of dis-
sipative losses and hip torques in a model of horizontal plane
insect locomotion; Schmitt and Holmes 2003).

3.2.2. Correspondence of Fixed Points

Next, we investigate whether the fixed point of the fitted
SLIP model accurately predicts the fixed point of the corre-
sponding SimSect run. In general, the fitted SLIP model with
the initial condition obtained from its SimSect simulation as
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ż
(t

)
ẏ
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Fig. 3. Trajectories of a stable SimSect simulation and the corresponding trajectories of the fitted SLIP model. The fitting
errors are�yzL2 = 3.56% and�θL2 = 51.46%.

described in Appendix A3 will not operate at a fixed point
of its return mapR. Hence, a root-finding algorithm (Mat-
lab’s “fsolve”) is employed to determine the fixed pointx̄SLIP
(if it exists) of the return mapR of the fitted SLIP model as
well as the eigenvalues{λi}i=1,...,4 of the Jacobian of the return
map:DxR(x̄SLIP ). The fixed pointx̄SLIP is then compared to
the “fixed point”x̄Sim, the appropriate projection of the initial
data point of the SimSect simulation stance data. Scatter plots
of the components of the fixed pointsx̄SLIP and x̄Sim of all
stable SimSect simulations are shown in Figure 4. For per-
fect correspondence of the SimSect and SLIP dynamics, all
fixed point components should lie on the 45◦ identity lines.
The fixed point components are, in general, well correlated
(correlation coefficientsρ ≥ 0.5), except foṙ̄zSLIP and ˙̄zSim.
The fixed pointṡ̄zSim assume an almost constant value and the
pitching components of̄xSLIP tend to be of similar magnitude
but opposite sign of the pitching components ofx̄Sim.

The correspondence in terms of the apex coordinatesz̄A,
the apex height, and̄̇yA, the apex forward speed, is more per-
suasive (Figure 5); the scatter plots show strong correlation
(correlation coefficientsρ > 0.85). This improvement might
be due to the fact that the apex event is unambiguously de-
fined for both SimSect and SLIP simulations, whereas only
an effective touchdown event where at least one of the three
stance legs touch the ground (see Section A1) can be defined

for the six-legged SimSect model. The small offset of about
3% in the apex forward speeds can be explained by the phase
shifts that are generally observed in theẏ(t) component of
the fitted SLIP with respect to the SimSect simulation data;
see Figure 3.

In summary, the orders of magnitude of the components of
the fixed points match well despite the simplicity of the SLIP
model with respect to the robot RHex.

3.2.3. Correspondence of Stability at a Fixed Point

Given the numerically determined eigenvalues{λi}i=1,...,4 of a
fitted SLIP model at its fixed point̄xSLIP , its local asymptotic
stability properties can be assessed. The magnitude of the de-
terminant|�4

i=1λi | agrees to a high numerical precision with
the appropriate expression in Table 1, predicting instability
for ϕoff > 0 and allowing asymptotic stability forϕoff < 0
according to Table 2 (the constraint˙̄θ < −˙̄z/√1 − z̄2 was
satisfied in all numerical simulations). Thus, the numerical
simulation results for our 3DoF SLIP model correspond ex-
actly to the theoretical predictions, as the analysis of Section 2
dictates. In contrast, the correspondence between the stability
of the SLIP and the SimSect models is somewhat blurred by
the practicalities of the purely numerical analysis available to
the latter.
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SimSect simulations that are stable in the sense of Ap-
pendix A1 are found with similar frequency of occurrence
for ϕoff > 0 as well as forϕoff < 0 for the range of clock
parameters considered. However, this discrepancy in numer-
ical classification does not necessarily indict the accuracy of
the SLIP stability predictions since most of the unstable SLIP
instances in this regime had very weak instability with eigen-
values just barely exceeding unity magnitude; for example,
|λi | < 1.05, i = 1, ...,4 for 92% of the 522 SimSect runs
that were classified as “stable”. Indeed, SLIP simulations in
this regime would require many iterations to detect instabil-
ity according to the numerical criteria applied to the Sim-
Sect trajectories. For example, see figure 3(b) in Altendorfer,
Koditschek, and Holmes (2004) for a “weakly” unstable tra-
jectory of a 2DoF SLIP model with|λ1| = |λ2| ≈ 1.007.

Thus, the practical instability criteria of the numerical
study (the first two criteria of Appendix A1) would fail to de-
tect SLIP instability. In summary, the stability criteria of this

preliminary numerical study (appropriate to the approximate
relationship between RHex’s physical performance and the
SimSect model) demonstrate good correspondence between
SLIP and SimSect model stability properties over the regimes
examined, but are insufficiently precise for a complete assess-
ment of the quality of fit.

4. Conclusions

In this paper we apply the factored stability analysis of Al-
tendorfer, Koditschek, and Holmes (2004) to a particular
3DoF SLIP model with pitching dynamics and an RHex-like
leg recirculation strategy that satisfies the theoretically de-
rived necessary condition for asymptotic stability in certain
parameter regions.

This is the first reported use of analytical methods to help
account for the stabilizing (or destabilizing) influence of RHex
clock parameter settings driving any physical mechanism in
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an open-loop manner. We also offer preliminary results of
an accompanying numerical study intended to shed light on
how close this newly tractable 3DoF SLIP model may come
to serving as a template for the physical robot, RHex, itself
(Saranli, Buehler, and Koditschek 2001). Numerical results
indicate that the SLIP model indeed captures the salient as-
pects of the steady-state dynamics (small Cartesian fitting er-
rors and order of magnitude agreement of fixed points) of
the SimSect model. It also accurately predicts the SimSect
model’s stability properties within the limitations of the finite
time and finite iteration stability criteria of Appendix A1.

This example application of the symmetry factored stabil-
ity analysis of Altendorfer, Koditschek, and Holmes (2004)
begins to suggest the advance over solely empirical tuning
(Weingarten et al. 2004) to be made by strengthening the
theoretical foundations of locomotion control. It seems clear
that further extensions of the theory capable of addressing the
consequences of energy increasing (e.g., actuators) and de-
creasing (e.g., friction) influences will be required before we
have a body of theory that can directly inform the design of
controllers for useful physical machines like RHex.

Appendix A: SLIP Fitting Protocol

A1. SimSect Simulations

The following criteria must be met by a SimSect simulation
(for a detailed discussion of the SimSect simulation environ-
ment, see Saranli 2000) that has aerial phases and that is con-
sidered stable.

1. A simulation must successfully complete 10 s of sim-
ulation time without crashing, i.e., by maintaining up-
right forward locomotion.

2. A simulation must be stable over the last 20 strides. A
stride is a part of the trajectory between two isolated
maxima of thez-component of the COM trajectory.
Stability is measured in terms of the maximal deviation
of averaged linear and angular velocities at the mini-
mum of thez-component of the COM trajectory for the
last 20 individual strides with respect to the respective
averaged quantities over those strides.

3. The second to last stride of the simulation is selected and
is required to exhibit a flight phase at the two isolated
maxima delimiting a stride, i.e., none of SimSect’s six
legs touches the ground over a finite amount of time
around these maxima. In addition, at the minimum of
the z-component of the COM trajectory all three legs
of the stance tripod are required to touch the ground,
whereas all three legs of the flight tripod must be off
the ground.

Once a SimSect simulation has passed all of the above con-
ditions, it is called stable. Then a 3DoF SLIP model is

fit to the simulation data of the selected stride. The sim-
ulation data required for fitting are given by time series

vectorsỹyySim, ˙̃yyySim, ¨̃yyySim, z̃zzSim, ˙̃zzzSim, ¨̃zzzSim, θ̃θθSim, ˙̃
θθθSim,

¨̃
θθθSim which

form the part of the stride trajectory where at least one of the
three legs of the stance tripod of the SimSect model is on the
ground whereas all three legs of the flight tripod are in the air
(“stance phase”).1 Here, they-coordinate denotes the forward
position of SimSect’s COM,z denotes the vertical position of
the robot’s COM, andθ denotes the pitch angle of the robot
in the sagittal plane.

A2. Fitting Procedure

The equations of motion of SLIP’s stance phase (seeAltendor-
fer, Koditschek, and Holmes 2004) and the equation for the
total conserved energy in terms of dimensional variables can
be written as

m̃ ¨̃y = −∂ỹV (ỹ, z̃, θ̃ )
m̃( ¨̃z+ g̃) = −∂z̃V (ỹ, z̃, θ̃ )

Ĩ
¨̃
θ = −∂θ̃V (ỹ, z̃, θ̃ ) (16)

Ĩ

2
˙̃
θ

2 = Ẽ0 − V (ỹ, z̃, θ̃ )− m̃g̃z̃− m̃

2
( ˙̃y2 + ˙̃z2

)

with V (ỹ, z̃, θ̃ ) = κ̃

2
(ζ̃ − ζ̃0)

2(1 + cθθ θ̃
2 + cθψ θ̃ ψ̃ + cψψψ̃

2),

ζ̃ = √
(ỹ +�ỹ)2 + z̃2, and ψ̃ = arctan(ỹ +�ỹ/z̃). We

want to determine the a priori unknown parameterscf =
(κ̃, ζ̃0, cθθ , cθψ, cψψ,�ỹ, Ẽ0) by fitting the numerical data of
a single stance phase of a SimSect simulation to eqs. (16).
The first five components ofcf are parameters that determine
the SLIP potentialV . The sixth component,�ỹ, resets they-
coordinate origin and hence determines they-position of the
foothold of the fitted virtual SLIP with respect to the stance
data. The fitting parameters also include the total energyẼ0,
because in SimSect the total energy is not constant due to
damping, frictional losses and hip motor torques.

In order to determine the fitting parameterscf a nonlinear
fitting procedure (using Matlab’s “lsqcurvefit”) is employed
that computes

min
cf

||Ff it (cf , x̃xx)− x̃xxf it ||22 (17)

where x̃xx = (ỹyySim, z̃zzSim, θ̃θθSim,
˙̃yyy2

Sim
+ ˙̃zzz2

Sim
), x̃xxf it =

(m̃ ¨̃yyySim, m̃( ¨̃zzzSim + g), Ĩ ¨̃
θθθSim, (Ĩ /2)

˙̃
θθθ

2

Sim
), andFf it (cf , x̃xx) is the

expression obtained by insertingx̃xx into the right-hand side of
eq. (16). Once a solutioncf has been found, the quality of the
fit must be quantified.

A3. Fitting Error Assessment

Instead of using the residual (17), which lacks an intu-
itive physical interpretation and does not represent an error

1. The stance tripod of RHex and the SimSect model is formed by those three
legs that are simultaneously in the slow phase of the RHex clock controller.
The flight tripod is formed by the other three legs that are in the fast phase.
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measure in phase space, we compute fitting errors as in
Schwind (1998) and Altendorfer et al. (2001b). The assess-
ment of the quality of the fit proceeds in two steps. First, a SLIP
simulation over the same period of time as the data trajectory
is run with the fitted value ofcf . The initial conditions are
taken to be the positions and velocities of the data trajectory
at the minimum of̃zzzSim.2 Secondly, the resulting SLIP trajec-

toriesỹyySLIP , ˙̃yyySLIP , z̃zzSLIP , ˙̃zzzSLIP , θ̃θθSLIP , ˙̃
θθθSLIP are compared to

the data trajectories byL2 percent errors:

�XL2 = 100
||XSim −XSLIP ||2

||XSim||2 . (18)

Here,X ∈ {ỹyy, ˙̃yyy, z̃zz, ˙̃zzz, θ̃θθ, ˙̃
θθθ} and|| · ||2 is the standard 2-norm.

In an effort to simplify the assessment of the fitting error, the
quality of the fit is reported as two numbers: the averageL2

percent error of the Cartesian coordinates�yzL2 = (�ỹyyL2
+

�z̃zzL2 +� ˙̃yyyL2
+� ˙̃zzzL2)/4, and the averageL2 percent error of

the pitch coordinates�θL2 = (�θ̃θθL2 +�
˙̃
θθθL2)/2.
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