Organic carbon, and not copper, controls denitrification in oxygen minimum zones of the ocean

Bess B. Ward a,*, Caroline B. Tuit b,1, Amal Jayakumar a,2, Jeremy J. Rich c, James Moffett d,3, S. Wajih A. Naqvi e

a Department of Geosciences, Princeton University, M-51 Guyot Hall, Princeton, NJ 08544, USA
b Gradient Corporation, 20 University Road, Cambridge, MA 02138, USA
c Center for Environmental Studies, Brown University, 135 Angell Street, Box 1943, Providence, RI 02912, USA
d Department of Biology, University of Southern California, Los Angeles, CA 90089-0371, USA
e National Institute of Oceanography, Goa, Dona Paula 403004, India

1. Introduction

Conventional denitrification, the sequential reduction of nitrate to nitrite, then to nitric oxide and nitrous oxide and finally to dinitrogen gas, has long been considered the main loss term in the microbial N cycle. The process is performed mostly by heterotrophic bacteria that are facultatively anaerobic, utilizing oxidized N compounds for respiration when oxygen becomes limiting in soils and aquatic environments (Zumft, 1997). Denitrification often occurs sequentially, both in cultures and in the environment, such that nitrate is first reduced completely to nitrite before gas production occurs, leading to transient accumulations of nitrite and nitrous oxide (Goering and Cline, 1970; Payne, 1973; Naqvi et al., 2000; Betlach and Tiedje, 1981). The three major oceanic oxygen minimum zones (OMZs) are important sites for fixed N loss (as evidenced by nitrate deficits and excess N2). Nitrite and nitrous oxide occur in characteristic depth distributions in the OMZs, and these distributions are assumed to be the result of denitrification (Goering, 1968; Naqvi and Noronha, 1991; Anderson et al., 1982). Early reports of denitrification rates derived from incubations with 15NO3 showed that the depth distribution of denitrification paralleled that of the nitrite concentration in the OMZ (Goering, 1968). The mechanism leading to and maintaining these distributions has never been fully explained.

An alternative pathway, leading to dinitrogen gas via the oxidation of ammonium by nitrite, termed anammox...
(anaerobic ammonia oxidation), has been detected in many aquatic environments (Dalsgaard et al., 2005). Measurements of anammox and denitrification rates using isotope tracer experiments have detected both anammox and denitrification in marine sediments, but have detected predominantly anammox in the water column of marine OMZs (Thamdrup et al., 2006; Hamersley et al., 2007). Denitrifying bacteria are easily isolated from OMZ waters, and the signature genes of denitrification (nirS and nirK, which encode the iron and copper-type nitrite reductases, respectively) are easily amplified from marine systems (Braker et al., 2000; Jayakumar et al., 2004), suggesting that denitrifiers are abundant and ubiquitous. Thus, their apparent lack of activity in tracer experiments is perplexing.

The difficulties of explaining the distribution of denitrification intermediates in the OMZs and of detecting denitrification in situ led us to investigate environmental factors that might limit or control denitrification in seawater. The obvious possibilities include the distribution and concentration of oxygen, nitrate, organic carbon, and trace metals. Analysis of distributions of oxygen and nitrite in the OMZ regions (Morrison et al., 1999) shows that elevated nitrite is present only rarely in suboxic waters at oxygen concentrations $>2–4 \mu M$. Thresholds of 2–4 μM for the initiation of denitrification have been deduced from such correlations, but denitrification is observed, and the denitrification enzymes are induced, in cultures at much higher oxygen concentrations (Korner and Zumft, 1989). Nitrate is abundant in subsurface waters and is rarely completely depleted in the open ocean, so it does not appear to be limiting. Iron is involved in large numbers of enzymes in all except a few fermentative bacteria, and is thus potentially a limiting factor in the ocean. Iron is likely more available in sub- or anoxic waters than in oxygenated surface waters (Witter et al., 2000; Moffett et al., 2007), however, so seems less likely than copper to be a specific inhibitor of denitrification.

Heterotrophic denitrifiers depend on a supply of organic matter, which, in the OMZ, could be supplied by vertical flux of planktonic production from shallower layers, or by horizontal transport. Carbon supply is generally correlated with regional denitrification rates (Liu and Kaplan, 1984). Severe oxygen depletion usually occurs between 80 and 800 m and varies both temporally and spatially in intensity. The low sinking rate (McCave, 1975; Mikkelsen and Pejrup, 2001) of small particles ($\sim 10–100 \mu m$) implies that material from overlying production could reach the OMZ within a few days to weeks, so carbon inputs are expected to be episodic and linked to surface layer processes. Ocean circulation is partly responsible for the maintenance of low oxygen in subsurface waters, and may influence both the supply of carbon and the replenishment of oxygen. CFC estimates of the age of the water in the OMZ of the Arabian Sea are 20–30 years (Howell et al., 1997).

Copper is a cofactor in two of the enzymes involved in the denitrification pathway, the copper-containing nitrite reductase (NiRK) and nitrous oxide reductase (Nos). Thus it is possible that copper availability could specifically limit denitrification and account for the accumulation of nitrite and nitrous oxide by limiting the activity of these two enzymes. Low copper concentrations can indeed lead to nitrite or nitrous oxide accumulation in cultivated denitrifying bacteria (Granger and Ward, 2003), suggesting that the concentrations of copper found in OMZs might be low enough to limit natural assemblages of denitrifiers. In natural populations, copper limitation would likely result in the build up of nitrous oxide, rather than nitrite, which could be reduced by other denitrifying bacteria using the iron-dependent nitrite reductase, NiRKS.

In oceanic OMZs, where about a third of marine denitrification takes place (Codispoti et al., 2001), total concentrations of copper are low, 0.5–2.0 nM (Danielsson, 1980; Saagar et al., 1992; Boyle et al., 1977; De Baar et al., 1985). While these values are higher than dissolved iron in iron-limited areas of the oceans, most copper is organically complexed in the water column (Coale and Bruland, 1990; Moffett and Dupont, 2007). Moreover, in OMZ regions, copper speciation is strongly influenced by the presence of small concentrations of sulfides and thiols, which can be found in oxygen-depleted waters (Luther, 1991; Al-Farawati and van den Berg, 1999; Laglera and van den Berg, 2003; Leal and Van den Berg, 1998). Concentrations of metal–sulfide complexes in the Arabian Sea OMZ are between 1 and 2 nM (Theberge et al., 1997) implying that most of the copper may be tightly bound in the form of inert sulfide complexes.

The primary goal of this work was to evaluate whether organic carbon or copper availability could limit denitrification in the OMZ regions and to investigate the potential for denitrification in waters that have been historically assumed to harbor high rates of denitrification. Here, we report results of incubation experiments designed to investigate the response of natural microbial assemblages to increased copper and organic carbon concentrations. We visited the three most significant regions of water-column denitrification in the global ocean, the Eastern Tropical South Pacific (ETSP) off the coast of Peru, the Eastern Tropical North Pacific (ETNP) off the coast of Mexico, and the Arabian Sea (AS), and performed “grow out” experiments under controlled conditions.

2. Methods

Incubation experiments were conducted during three cruises to the major OMZs of the world oceans; the ETNP (R/V New Horizon November 2003), the Arabian Sea (R/V Sagar Kanya September–October 2004) and the ETSP (R/V Knorr October 2005). Station locations are listed in Table 1 and shown on the maps in Fig. 1. Incubations were performed at two stations each in the ETNP and ETSP, and at four stations in the Arabian Sea (AS).

The water-column hydrography was examined using a Seabird CTD for salinity, temperature, transmission, fluorescence and oxygen concentration. Niskin bottles on the CTD rosette were sampled for nitrate, nitrite and nitrous oxide and cell counts. Nitrite was measured on board ship colorimetrically (Parsons et al., 1984) either
Nitrate samples from the Arabian Sea were also measured by nutrient autoanalyzer on board ship, but ETNP and ETSP nitrate samples were frozen and measured on land either by nutrient autoanalyzer (ETNP) or colorimetrically (Parsons et al., 1984) manually on a Shimadzu UV/VIS spectrophotometer. Nitrous oxide for ETNP and AS samples was measured using the sequential extraction method (Byrne and Nicholas, 1986) on board ship using a Shimadzu mini-2 gas chromatograph with an electron-capture detector and a 2 m × 2.2 mm inner diameter Haysep D column (80/100 mesh). The column was set at ambient temperature while the injection port and detector were maintained at 50 and 300 °C, respectively. The carrier gas was ultra-high-purity N₂. The sample was extracted three times by shaking for 15 min with an equal volume of He gas. Each extraction (0.5 ml) was injected into the GC. Analyses were standardized using ambient air and a 1 ppm nitrous oxide standard (Scott Gas).

Total copper was determined at three of the four Arabian Sea stations and two of the four ETNP stations (Table 1). Copper was determined by inductively coupled plasma mass spectroscopy (ICP–MS) on a Finnegan Element 2 instrument using the magnesium hydroxide coprecipitation method of Wu and Boyle (1998) with isotope dilution.

Seawater (5 ml) was preserved with 2% glutaraldehyde, quick frozen in liquid nitrogen and stored at −80 °C for microbial abundance analysis on shore. Microbial cell abundance was determined by flow cytometry (Princeton Flow Cytometry Center) using Syto 13 dye (Invitrogen) and a Bentley Dickinson FACSort with a 488 nm laser.

2.1. Incubation experiments

Experimental depths were chosen on the basis of the nitrite concentration profile (Table 1). Water was collected in Teflon-lined 30-l GoFlo bottles hung on trace metal clean Kevlar line. The bottles were plumbed with 1/4 in acid-cleaned Teflon tubing and pressurized with ultra-high-purity He gas while the incubation bags were being filled. Incubations were performed in 10-l trace metal

Table 1
Station locations and characteristics

<table>
<thead>
<tr>
<th>Station</th>
<th>Long.</th>
<th>Lat.</th>
<th>Sampling depth (m)</th>
<th>Copper (nM kg⁻¹)</th>
<th>O₂ (µmol kg⁻¹)</th>
<th>NO₃ (µM)</th>
<th>NO₂ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETNP</td>
<td>15</td>
<td>105.72W</td>
<td>18.43N</td>
<td>100</td>
<td>1.06</td>
<td>5.2</td>
<td>16.5</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>119.00W</td>
<td>15.03N</td>
<td>185</td>
<td>1.25</td>
<td>5.7</td>
<td>~25</td>
</tr>
<tr>
<td>ETSP</td>
<td>9</td>
<td>75.13W</td>
<td>15.63S</td>
<td>250</td>
<td>ND</td>
<td>5.5</td>
<td>~18</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>78.17W</td>
<td>11.00E</td>
<td>250</td>
<td>ND</td>
<td>2.4</td>
<td>~22</td>
</tr>
<tr>
<td>Arabian Sea</td>
<td>1</td>
<td>68.00E</td>
<td>17.00N</td>
<td>230</td>
<td>1.2</td>
<td>3</td>
<td>18.4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>64.60E</td>
<td>19.80N</td>
<td>276</td>
<td>1.9</td>
<td>3</td>
<td>20.6</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>57.55E</td>
<td>18.37N</td>
<td>176</td>
<td>ND</td>
<td>3</td>
<td>23.6</td>
</tr>
<tr>
<td></td>
<td>23</td>
<td>64.00E</td>
<td>15.00N</td>
<td>250</td>
<td>2.1</td>
<td>2</td>
<td>18.4</td>
</tr>
</tbody>
</table>

Fig. 1. Map of station locations in the three major OMZ regions.
clean gas tight trilaminate bags (Pollution Management Corporation, Oak Park, IL, USA). Each bag, fitted with a three-way Teflon stopcock, was cleaned with 10% HCl, rinsed with sterile MilliQ water, and then filled and flushed with filtered ultrapure He at least 6 times to eliminate any oxygen from possible headspace. Water from the GoFlo bottle was plumbed directly to the bag inside a HEPA-filtered flow bench within a clean bubble.

Incubations were amended with approximately 5 μM 15NO$_3$. Individual bags received specific amendments of organic carbon (to a final concentration of 10 μg l$^{-1}$ of 1:1 casamino acids and bactopeptone) and 2–4 nM copper; all additions were prepared under trace metal clean and sterile conditions. Bags were incubated at 10–14 °C, depending on the ambient temperature, for 5–14 days and sampled each day for nitrite, nitrate, nitrous oxide and cell density. Copper additions to incubations increased the total concentrations by 2–4-fold over ambient concentrations. On the ETNP cruise, Cu measurements of water subsampled from incubation bags filled with seawater show that the bags were not contaminating the samples with copper (data not shown).

3. Results

Hydrographic conditions and nutrient, oxygen and copper concentrations at the depths from which incubation samples were collected are shown in Table 1. Oxygen concentrations were not measured in the sample bottles; the CTD probe data represent initial conditions at the target sampling depth. Except for AS Station 17, all samples were collected from depths well within a broad OMZ, where oxygen concentration was relatively invariant over 10s to 100s of meters, so these in situ measurements are valid estimates for the initial conditions. These values are at the lower limit of precision and accuracy for CTD oxygen probes, but they are all consistent with levels at which denitrification is usually indicated by accumulation of nitrite (Morrison et al., 1999), and nitrite was present initially in all samples except that at AS Station 17.

In the case of the ETSP, water was collected using individual Go-Flo bottles on a hydrowire, and weather conditions prevented precise resampling of the same depth. The initial nitrate concentration of 18 μM represents the average measured in the individual bottles (13–25 μM). The variability is due to sampling within the gradient of the nitrate deficit in the vicinity of 250 m; oxygen concentrations were at the minimum detection level of the CTD probe between about 60 and 400 m, so that this variation in nitrate concentration was not paralleled by any detectable variability in oxygen concentration.

AS Station 17 was the only station that was not located within a permanent oceanic OMZ; this coastal station had relatively low oxygen, but no nitrite initially, suggesting that denitrification had not commenced in situ. Nitrite concentrations at the other sampling depths were at levels usually associated with denitrification.

The Arabian Sea samples were substantially warmer than samples from equivalent depths in the ETNP and ETSP, but the minor variation in salinity among stations was probably not of biological significance.

In incubations in the ETNP and ETSP, DIN concentrations and cell numbers did not change in the control (no additions) and Cu-only treatments over the course of 5–8-day incubations (Figs. 2 and 3). The results shown are representative of the same patterns that were observed at AS Station 17.
other stations at these sites. The initial levels of nitrate and nitrite differed among incubations, especially in the ETSP, where each bag was filled from a separate Go-Flo cast, and weather prevented exact depth replication between casts. Whatever the initial levels, however, nitrate concentrations in the control treatments changed not at all in the ETNP and very slowly, if at all, in the ETSP.

In incubations that received amendments of carbon or carbon plus Cu, a classic denitrification sequence occurred, like that observed in some denitrifying bacterial
cultures (Zumft, 1997) as nitrate is first depleted, leading to sequential accumulation and disappearance of intermediates nitrite and nitrous oxide. Nitrate was completely depleted within a day or two, nitrite accumulated transiently and then was completely depleted, and cell number increased rapidly during the nitrate and nitrite reduction stages (Figs. 2 and 3). Nitrous oxide was measured only in the ETNP, and it appeared transiently on the same time frame as the transient appearance of nitrite. For both nitrite and nitrous oxide, the events were rapid enough that the 24 h sampling interval probably caused an underestimation of the true rates of production and consumption.

In striking contrast to the ETNP and ETSP, denitrification was observed in all treatments in bags incubated with water from the Arabian Sea OMZ. There was no difference between the bags that received carbon additions and those that did not. At all four stations in the Arabian Sea, controls and all treatments behaved essentially similarly and all exhibited the classical denitrification sequence (Figs. 4–7) described for the carbon additions in the ETNP and ETSP experiments (Figs. 2 and 3). Replicate bags sometimes differed in the timing of the phases, but were consistent in the sense that slower nitrate depletion was accompanied by delayed nitrite accumulation and depletion. For example, at Station 2 in the AS (Fig. 5), the second Cu treatment developed faster than it did in the other three bags, but all followed the same pattern. At Station 17 (Fig. 6), the two Cu treatments lagged behind the controls by about a day, but cell numbers in all treatments reached similar levels.

The nitrous oxide record is incomplete at Station 17 (Fig. 6) because the experiment ended before the transient pulse of N₂O had time to develop fully. The denitrification sequence was somewhat slower at Station 17 than in the ETNP and ETSP, and it appears that N₂O was just beginning to accumulate at the end of the experiment; it would be expected to reach levels of a few hundred nM, as was observed in all other bag experiments in which N₂O was measured.

The apparent increase in nitrate between the first two time points in the AS experiments is due to the addition of a nitrate tracer, not in situ production of nitrate. Results from the tracer measurements will be reported elsewhere.

Even in bags that underwent rapid and complete denitrification, nitrate depletion was sometimes preceded by a lag of 1–2 days. Cell number, however, increased dramatically in concert with the decrease in nitrate concentration. The growth rate of cell population in the bags, estimated from the exponential portion of the cell abundance time courses, ranged from 0.006 to 0.022 day⁻¹ (generation times of 156 to 48 h) (Table 2). Using the average cell number between adjacent time points, the maximum nitrate reduction rates for individual treatments ranged from 1.6 to 4.5 x 10⁻⁶ μmol cell⁻¹ day⁻¹ (Table 2) and from 0.73 to 2.1 x 10⁻⁶ μmol cell⁻¹ day⁻¹ for nitrite reduction (Table 2). The maximum absolute nitrate removal rates, based on the single greatest change between adjacent time points, ranged from 6.8 to 20.6 μM day⁻¹ (Table 2). When growth occurred, the highest growth rates were observed in the four ETSP in incubations to which additional carbon was added, and the lowest rate in the Arabian Sea incubations that underwent complete denitrification in the absence of carbon additions. Higher absolute nitrate reduction rates were observed in the ETSP and ETNP than in the AS, although nitrate reduction occurred in the ETSP and ETNP incubations only when carbon was added.
4. Discussion

4.1. Denitrification rates

The simplest interpretation of the incubation results is that organic carbon, and not copper, is an important limiting factor for denitrification in marine OMZs. Both the ETSP and ETNP samples showed no DIN or cell number changes in the absence of added carbon, and the rapid changes that occurred in the presence of carbon suggest strong carbon limitation under ambient conditions. The Arabian Sea incubations, in contrast, were not carbon limited, as denitrification proceeded at comparable rates in controls and in bags to which either Cu or C or both had been added.

The timing of the Arabian Sea cruise, immediately after the southwest monsoons, may have been a factor in this
observation. During the cruise, several phytoplankton blooms were observed in the surface waters, and SeaWIFS data from September 2004 indicate that the blooms were widespread. This high surface productivity may have fueled rapid denitrification in the underlying suboxic waters. It may be that other times of year, denitrification in the Arabian Sea is carbon limited as in the other OMZ regimes, but the present results do not allow us to distinguish between spatial and temporal variability.

Denitrification rates (rate of nitrate removal) measured in the Arabian Sea incubations were very rapid (Table 2), equivalent on a per cell basis to rates observed in the carbon addition incubations in the ETSP (Table 2). With time points at approximately 24 h intervals, the resolution of our computed growth rates and DIN reduction rates is limited. Nevertheless, a reasonable exponential fit for 3–4 points could be obtained for the cell numbers, suggesting that most of the assemblage underwent exponential growth in the bags. The generation times computed for the incubations are longer than usually observed under culture conditions (on the order of 5–45 h; Otte et al., 1996; Ogilvie et al., 1997), but the curve fits implied that growth commenced almost immediately in some incubations (e.g., ETSP and AS Station 17).

The absolute rates of nitrate reduction measured in the Arabian Sea experiments with no carbon additions were lower than those observed in the ETSP and ETNP after carbon addition. In the ETSP and AS, except for AS Station 17, nitrate reduction rates were roughly correlated with growth rate of cells in the incubation. The observed rates are rapid enough to deplete the ambient nitrate in a few days and clearly are not representative of rates that occur in the ocean (Table 2). One of the highest reported rates in the literature (2.4 µM day⁻¹; Castro-Gonzalez and Farias, 2004) is still much lower than observed in the bags but most other reported rates for all three OMZs are lower by 3–4 orders of magnitude (e.g., Devol et al., 2006; Naqvi and Shailaja, 1993; Cline and Richards, 1972; Codispoti et al., 1986). In the OMZs, nitrate is never totally depleted and a seasonally and spatially variable secondary nitrite maximum persists. This indicates that although denitrification proceeds to completion (i.e., N₂ excess accumulates), intermediates persist even at those sites where the process was apparently not carbon limited. The persistence of denitrification intermediates in nature may be due to the episodic nature of organic carbon supply.

The high rates and occurrence of complete nitrate depletion must be attributed to some kind of incubation artifact, although the nature of the artifact is not clear. The amount of nitrate reduction that occurred would deplete the total nitrate pool in no more than a few days. In the bags, the nitrate was drawn down to zero, and must have been accompanied by organic carbon oxidation. The measured nitrate reduction rates in Table 2 would imply C oxidation rates of 47–206 µM C day⁻¹ assuming C:N of 7–10. This consumption far exceeds the amount of labile carbon that was added to the plus C treatments in the ETSP and ETNP, so the added carbon must have activated bacterial metabolism to increase utilization of the in situ DOC pool. The particulate carbon flux in this region of the water column is on the order of 0.5–1 mmol m⁻² day⁻¹ (Lee et al., 1998; Honjo et al., 1999). Maximum observed DOC concentrations at OMZ depths are on the order of 100–200 µM (Kumar et al., 1990; Naqvi and Gupta, 1985). Neither N nor C removal rates of this order are compatible with the C and N supply rates implied by these fluxes and in situ concentrations.

Containment artifacts, such as increases in total cell number and abundance of colony forming units, can be detected after incubations as short as 5 h (Ferguson et al., 2008).

![Fig. 7. DIN concentrations in incubation experiments from the Arabian Sea Station 23 for nitrate, nitrite, nitrous oxide and cell density. Copper additions were 2 nM total copper. Treatments included two controls (no additions) (open diamonds) and two copper additions (open triangles).](image-url)
In both the ETNP and the ETSP, however, incubations without C additions did not change for several days; therefore, simply enclosing the water in an incubation bag is not sufficient to induce denitrification or cell abundance increases if C is limiting. A similar result was reported in control experiments designed to test the effect of carbon.

Table 2: Growth and DIN transformation rates in big bag incubations

1. Growth rates (computed from “exponential” portion of cell number curve)

<table>
<thead>
<tr>
<th>Station</th>
<th>Treatment</th>
<th>Interval (h)</th>
<th>k (per h)</th>
<th>R^2</th>
<th>Generation time (h)</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETSP</td>
<td>C</td>
<td>0–35</td>
<td>0.022</td>
<td>0.94</td>
<td>45</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0–35</td>
<td>0.021</td>
<td>0.99</td>
<td>48</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>C+Cu</td>
<td>0–59</td>
<td>0.021</td>
<td>0.96</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>C+Cu</td>
<td>0–59</td>
<td>0.018</td>
<td>0.98</td>
<td>56</td>
<td>4</td>
</tr>
<tr>
<td>AS2</td>
<td>Control</td>
<td>27–143</td>
<td>0.008</td>
<td>0.93</td>
<td>123</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>27–143</td>
<td>0.007</td>
<td>0.82</td>
<td>135</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>27–143</td>
<td>0.006</td>
<td>0.85</td>
<td>156</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>27–143</td>
<td>0.012</td>
<td>0.85</td>
<td>82</td>
<td>4</td>
</tr>
<tr>
<td>AS17</td>
<td>Control</td>
<td>0–67</td>
<td>0.017</td>
<td>0.96</td>
<td>59</td>
<td>4</td>
</tr>
<tr>
<td>AS23</td>
<td>Control</td>
<td>21–122</td>
<td>0.013</td>
<td>0.87</td>
<td>75</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>21–122</td>
<td>0.015</td>
<td>0.91</td>
<td>68</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>21–122</td>
<td>0.012</td>
<td>0.87</td>
<td>84</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Cu</td>
<td>21–122</td>
<td>0.014</td>
<td>0.96</td>
<td>71</td>
<td>4</td>
</tr>
</tbody>
</table>

Notes: Cell abundance data for ETNP, AS1 and most treatments at AS17 not adequate to estimate growth rates.

2. Rate of nitrate reduction per cell during exponential phase (max rates from steepest decline in NO$_3$)

<table>
<thead>
<tr>
<th>Station</th>
<th>Treatment</th>
<th>µmol NO$_3$ cell$^{-1}$ day$^{-1}$</th>
<th>st. dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETNP</td>
<td>C, C+Cu</td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETSP</td>
<td>C, C+Cu</td>
<td>3.4×10^{-4}</td>
<td>$1.2E \times 10^{-8}$</td>
<td>4</td>
</tr>
<tr>
<td>AS1</td>
<td>C, C+Cu</td>
<td>1.6×10^{-4}</td>
<td>5.9×10^{-9}</td>
<td>8</td>
</tr>
<tr>
<td>AS2</td>
<td>Control, Cu</td>
<td>3.2×10^{-4}</td>
<td>$2.0E \times 10^{-8}$</td>
<td>4</td>
</tr>
<tr>
<td>AS17</td>
<td>Control</td>
<td>4.5×10^{-5}</td>
<td>$1.6E \times 10^{-8}$</td>
<td>7</td>
</tr>
<tr>
<td>AS23</td>
<td>Control, Cu</td>
<td>3.5×10^{-4}</td>
<td>$1.6E \times 10^{-8}$</td>
<td>7</td>
</tr>
</tbody>
</table>

Note: ETNP rates not computed because inadequate cell abundance data.

3. Rate of nitrite reduction per cell during exponential phase (max rates from steepest decline in NO$_2$)

<table>
<thead>
<tr>
<th>Station</th>
<th>Treatment</th>
<th>µmol NO$_2$ cell$^{-1}$ day$^{-1}$</th>
<th>st. dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETNP</td>
<td>C, C+Cu</td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ETSP</td>
<td>C, C+Cu</td>
<td>7.9×10^{-9}</td>
<td>1.4×10^{-9}</td>
<td>4</td>
</tr>
<tr>
<td>AS1</td>
<td>C, C+Cu</td>
<td>7.3×10^{-9}</td>
<td>3.2×10^{-9}</td>
<td>2</td>
</tr>
<tr>
<td>AS2</td>
<td>Control, Cu</td>
<td>2.1×10^{-8}</td>
<td>7.8×10^{-9}</td>
<td>4</td>
</tr>
<tr>
<td>AS17</td>
<td>Control</td>
<td>n.d.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AS23</td>
<td>Control, Cu</td>
<td>1.5×10^{-8}</td>
<td>6.0×10^{-9}</td>
<td>6</td>
</tr>
</tbody>
</table>

Notes: ETNP rates not computed because inadequate cell abundance data AS17 did not go through complete NO$_2$ depletion so rates cannot be computed.

4. Absolute NO$_3$ reduction rates (single highest rate for each treatment)

<table>
<thead>
<tr>
<th>Station</th>
<th>Treatment</th>
<th>µmol l$^{-1}$ day$^{-1}$</th>
<th>st. dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETNP</td>
<td>C, C+Cu</td>
<td>20.6</td>
<td>5.8</td>
<td>6</td>
</tr>
<tr>
<td>ETSP</td>
<td>C, C+Cu</td>
<td>17.7</td>
<td>1.6</td>
<td>4</td>
</tr>
<tr>
<td>AS1</td>
<td>C, C+Cu</td>
<td>7.8</td>
<td>3.3</td>
<td>8</td>
</tr>
<tr>
<td>AS2</td>
<td>Control, Cu</td>
<td>9.7</td>
<td>1.9</td>
<td>4</td>
</tr>
<tr>
<td>AS17</td>
<td>Control</td>
<td>6.8</td>
<td>3.2</td>
<td>4</td>
</tr>
<tr>
<td>AS23</td>
<td>Control, Cu</td>
<td>14.0</td>
<td>3.3</td>
<td>4</td>
</tr>
</tbody>
</table>

Maximum rates for listed treatments were averaged.
additions on denitrification in the Baltic Sea (Brettar and Rheinheimer, 1992).

On the other hand, even when denitrification commenced without additions, it was often preceded by a lag of 20–70 h (Figs. 2–7). In the ETNP and ETSP, it might be reasonable to ascribe the lag to acclimatization by a natural population to a new carbon source. The ETSP microbial community, however, did not show a lag, commencing exponential growth by the first time point (Fig. 3, Table 2) and the Arabian Sea incubations exhibited a lag even when carbon was not added to the incubations.

Oxygen contamination might be suspected in causing the lag, but we have no evidence that such contamination occurred. On later cruises, oxygen concentrations in the initial sampling bottles, in the initial bags and in the bags after 8 days of incubation were measured using a flow through microelectrode. No oxygen and no changes in the oxygen levels were detected in any of the 40 or so bags tested (unpublished data). In previous bag incubation experiments, we measured oxygen in the bags periodically over several days using the microcolormetric method and did not observe changes in concentration at the low micromolar level (Ward et al., 2005).

One of the control incubations from Arabian Sea Station 1 (Fig. 4) shows what happens when a bag develops a leak and becomes contaminated with oxygen. Between 89 and 120 h there was a rapid increase in cell number and a rapid decrease in nitrite and nitrate. Such an increase in cell number did not occur during the initial lag in denitrification, which argues that the lag is not caused by oxygen contamination. Indirectly, it can be argued that if oxygen were the cause of the cell growth we would expect significant growth before the onset of denitrification. The timing of cell growth, however, generally coincided with the onset of denitrification, and the same lag was evident in both sets of curves.

If low levels of oxygen were present in the bags initially, we might hypothesize an analogy with the diauxic lag observed in water treatment systems in which aerobic and anaerobic conditions are alternated on cycles of up to several hours (Liu et al., 1998). Such systems usually experience a lag of up to several hours before denitrification resumes after exposure to oxygen. The proposed explanation for the diauxic lag is that after switching from aerobic to anaerobic growth, substantial time is required to build up the activity of denitrifying enzymes. The length of the lag before denitrification commenced was dependent upon the length of the preceding aerobic period, which influences the nitrate flux needed to induce and stimulate denitrifying enzyme activity (Hamilton et al., 2005).

It may be that the apparent lag period preceding rapid denitrification in the bags is the actual in situ condition and the commencement of rapid denitrification is the artifact. The incubation conditions may increase denitrification rates by wall effects, elimination of grazers, isolation from oxygen diffusion or trapping of organic particles that otherwise would have rapidly fallen out of the denitrification zone. Wall effects also may increase denitrification rates by providing an attachment surface. The usual approach for minimizing wall effects is to increase the volume of the incubation, but at 8–10 l the size of these incubations exceeds that usually employed to limit wall effects and increasing the incubation size any farther would be methodologically unfeasible. If wall effects are the dominant factor in determining rates in 10-l bags, then most conventional incubation experimental designs must be reevaluated.

Undersampling of zooplankton grazers can lead to artificial enhancement of rates in incubations but microbial grazers would have been present in the unfiltered bag incubations. The isolation of a water sample from oxygen diffusion may also artificially increase the denitrification rate, but does not explain the lack of cell growth during the initial lag. The samples were collected from a region of the OMZ in which oxygen concentration gradients are minimal, so resupply of oxygen by diffusion would never be significant under in situ conditions. Horizontal advection, especially in the AS, could, however, introduce water with variable nitrite and oxygen conditions, thus preventing long term anoxia at the OMZ depth and preventing complete acclimation of the microbial community.

The trapping of rapidly falling organic particles may increase initial carbon availability, but would be expected to be highly variable among sampling bottles. This is not consistent with the unambiguous treatment effects we observed. There does not appear to be a satisfying explanation for the extreme rapidity of the observed denitrification rates, nor for the lag that preceded denitrification in both amended and control samples.

Anammox has also been reported in the ETSP, where it was more important than denitrification (Thamdrup et al., 2006; Hamersley et al., 2007), and is likely to be important in all the OMZs. The in situ rates of anammox or denitrification might be below the detection limit of the DIN measurements used to infer denitrification rates in the bag assays reported here. Lags in the onset of denitrification were observed in the OMZ of the ETSP, while there was no lag in anammox activity (Thamdrup et al., 2006; Hamersley et al., 2007). On the other hand, anammox was not important compared to denitrification in the Arabian Sea (Nicholls et al., 2007). These studies used the 15N isotope pairing method, which is a sensitive method for direct detection of anammox and denitrification. Regardless of the relative importance of anammox and denitrification, the experiments reported here were designed to evaluate factors that may limit the activity and growth of denitrifying bacteria in OMZs (copper is required specifically by denitrifying enzymes and organic carbon is not utilized by the autotrophic anammox organisms).

4.2. Copper speciation and bioavailability

There was no indication in this study that copper was limiting denitrification rates or influencing the production of nitrous oxide. The control and copper addition treatments behaved essentially the same in all three OMZs. Cu speciation data from these stations (Moffett, unpublished) show that Cu was tightly complexed by organic ligands, with free Cu$^{2+}$ as low as 10^{-14} M in the ETNP and 10^{-18} M
in the Arabian Sea, far below the limiting value previously reported for denitrifiers (Granger and Ward, 2003). However, those ligands were saturated by Cu additions of 2–4 nM, resulting in free Cu increasing by several orders of magnitude. Therefore, Cu added in the incubations was expected to be much more bioavailable to denitrifiers. The absence of any effect of the added Cu suggests that denitrifiers are able to utilize naturally occurring Cu even when it is tightly complexed. Prokaryotes have evolved strategies to acquire organically complexed iron, such as the production of siderophores, and it is possible that similar mechanisms may be employed by denitrifiers with respect to copper. Because denitrifiers appear to be able to take up the copper they require, even at very low ambient conditions, and the lack of stimulation by increased concentrations of bioavailable copper, we conclude that copper is not the controlling variable for denitrification in the OMZs.

5. Conclusion

Organic carbon availability does appear to be limiting in the ETNP and ETSP. These results lead to the hypothesis that denitrification in the OMZs is linked to the supply of organic material, most likely through episodic transport of sinking material from productive overlying waters. A more systematic investigation of denitrification rates and regulation in space and time will be required to distinguish between fundamental geographical contrasts between the AS and the ETNP and ETSP and the denitrification response to seasonally varying carbon inputs in all three regions.

Acknowledgments

We thank Ralph Goericke for accommodating our work on his ETNP cruise in 2003. This work was supported by NSF grants to JM, BBW and AJ. We would like to take this opportunity to thank H. Naik, A. Pratihary and P.V. Narvekar for their help onboard ORV Sagar Kanya with data collection and nutrient analysis. We also thank the crew and officers onboard ORV Sagar Kanya, R/V New Horizon and R/V Knorr.

References

Byrne, M.D., Nichols, D.J.D., 1986. Multiple-phase equilibration head-space analysis for the determination of N2O an N2 during bacterial denitrification. Analytical Biochemistry 154, 470–475.

